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Abstract—Modern ICT infrastructures are evolving thanks to
the advantages offered by virtualisation in terms of flexibility,
scalability, and savings on hardware-related costs. More recently,
virtualisation has gained momentum in the Internet Service
Providers’ infrastructures as well, where Software Defined Net-
working and Network Function Virtualisation paradigms pro-
pose programmability of the network and the softwarisation of
proprietary hardware appliances. In this scenario, lightweight
virtualisation technologies, such as Linux containers, have a
significant role, as they address the needs for scalability, availabil-
ity and fast deployment to support the software-based network
infrastructures. In this paper, we focus on defining a reusable
design for a container-based Virtual Network Security Function,
by highlighting the peculiarities of its architecture compared
to a Virtual Machine-based instance. Moreover, we present a
prototype application of this architecture to implement an HTTP
reverse proxy with application-layer filtering capabilities, tailored
for the NFV Security-as-a-Service scenario. We evaluate the
performance of this prototype and compare it to the results
of alternative deployments, namely the Virtual Machine and
bare-metal solutions. Finally, we evaluate the proposed solution
in a load-balancing scenario, for increased throughput and
availability.

I. INTRODUCTION

Internet Service Providers (ISPs) are experiencing a
paradigm shift in their networks, due to flexible networking
technologies such as Network Function Virtualisation (NFV)
and Software Defined Networks (SDN). More specifically, the
network operators benefit from the advantages of virtualisa-
tion in terms of availability, scalability and flexible resource
usage. Virtual Network Functions (VNFs) are deployed in the
operator infrastructure to deliver both networking and security
services for the provider itself and the end users as well. The
conjunct use of NFV and SDN enables ISPs to instantiate
network security services close to threats, in order to minimise
the reaction time and maximise the mitigation result.

In this scenario, the Security-as-a-Service (SecaaS)
paradigm can be exploited by ISPs to adopt security-oriented
VNFs, i.e. Virtual Network Security Functions (vNSFs), that
can be provided to their clients, such as enterprise networks.

Virtual Machines (VMs) have been traditionally the target
for the NFV reference implementations, although different
NFV frameworks are moving towards lightweight virtuali-

sation techniques recently. In particular, Linux Containers
implement Operative System (OS) virtualisation, allowing a
single host to run different processes in isolated sandboxes
that share the same kernel. This technology allows faster
deployment than traditional VMs, as containers virtualise the
user-space portion of the OS only, hence they are lighter than
traditional virtualised instances. Moreover, the overall density
of applications running on the same host can be higher on
container-based virtualisation, as part of the OS is shared with
the host. From the security perspective, containers leverage
Linux kernel technologies, namely Cgroups, Root Capabilities
and Namespaces, to isolate the different virtual instances and
allocate resources for each of them.

Although they provide significant advantages over tra-
ditional virtualisation, containers have not been yet fully
exploited for the NFV scenario. This paper aims at tack-
ling this gap, proposing a concrete, replicable design of a
container-based vNSF, which leverages the interaction be-
tween lightweight virtualisation environments for its config-
uration, reporting and security application. In this regard,
the authors also present a reference implementation for the
container-based vNSF, highlighting its peculiarities in respect
to a VM-based deployment. This prototype is evaluated in a
specific application of the SecaaS use case, which is targeted
for the protection of a web application. The authors do not
intend to propose a security analysis on container-based vNSFs
in this work, although security-oriented principles and best
practices are considered as part of the overall design and
implementation of the prototype.

The paper is structured as follows. The related work on this
subject is described in Section II. Then, the motivation behind
this research is presented in Section III. Section IV describes
the SecaaS scenario where the proposal is developed, followed
by the design and architecture of the container-based vNSF
in Section V. The prototype of the vNSF, that implements
a reverse proxy enhanced with application layer filtering, is
presented in Section VI. Then, experimental results of the
evaluation of the prototype are reported in Section VII. Future
work on the proposed solution is presented in Section VIII.
Finally, the authors’ conclusions are reported in Section IX.978-1-5386-4633-5/18/$31.00 c© 2018 IEEE



II. RELATED WORK

Containers have been recently addressed by open-source
reference implementations of the NFV architecture. The Open
Baton [1] framework implements an ETSI compliant NFV
Management and Orchestration (MANO) stack, and its latest
release at the time of writing provides built-in support for
a specific container engine, named Docker [2], in addition
to an OpenStack cloud management system. Docker is a
widespread lightweight virtualisation platform, which defines
both the packaging specification of a container, via the so-
called Dockerfile, and its running environment, the Docker
Engine. It also defines the requirements and work-flows to ship
and distribute containers via centralised repositories such as
the built-in Docker Hub. Although different container solutions
exist, Docker has quickly become the de-facto standard for
production environments, being supported by Amazon Web
Services, Microsoft Azure and Google Cloud Compute En-
gine. Open Baton has recently implemented a MANO Virtual
Infrastructure Manager (VIM) driver for Docker. The OPNFV
[3] framework leverages Open Baton for the MANO stack and
it supports both OpenStack for standard VMs and Kubernetes,
a production-ready container management system that can
run different lightweight virtualisation run-times, including
Docker. The platform developed by the Open Source MANO
(OSM) [4] project, an ETSI-hosted activity based on the ETSI
NFV specifications, does not fully support containers at the
VIM level at the time of writing, although the VIM emulator
tool [5] has been proposed recently to emulate a VIM using
Docker containers.

Application of lightweight virtualisation techniques to NFV
has been investigated in literature as well. Cziva et al. [6]
present a framework, named Glasgow Network Functions
(GLANF), to manage the life-cycle of VNFs in a OpenFlow-
based SDN infrastructure, leveraging Docker to achieve low
performance overhead and to reduce deployment time. The
authors’ evaluation of their Docker-based network functions
shows that the instantiation time improves by up to 68%
over hypervisor-based virtualisation techniques, such as Linux
KVM or Xen. Cziva and Pezaros [7] also propose a con-
crete application of GLANF to the network edge, exploiting
lightweight container-based network functions that can run
on a variety of edge devices. Anderson et al. [8] investigate
performance of container-based network functions, addressing
Docker as a promising technology to enhance efficiency and
deployment time of NFV environments. The authors also stress
the potential of Docker in terms of packaging specification,
as a means to standardise the vNSF format and to ease its
distribution. The authors discuss the performance overhead in-
troduced by Docker standard networking technologies, namely
Linux bridge and Open vSwitch, and evaluate alternative
solutions, such as macvlan and SR-IOV.

The Docker container engine is gaining momentum both
in the literature and the technical solutions regarding the
NFV environment, because of its potential to address relevant
challenges in terms of performance and distribution of vNSFs.

Hence, the research described in this paper focuses on Docker
for the implementation of a container-based vNSF prototype.

III. MOTIVATION

The ETSI NFV Industry Specification Group has developed
a standard [9] to discuss applicability of different virtualisa-
tion layers to the NFV infrastructure. The hypervisor-based
technologies are considered the present typical solutions for
the deployment of VNFs, hence ETSI has developed an
hypervisor-domain specification [10] to clarify the interaction
between the hypervisor, the VIM and the compute nodes
that host the virtual machines. OS virtualisation is considered
as an alternative for the deployment of VNF Components
[9] in case multiple instances of the same VNF need to be
deployed on the same ISP infrastructure, but more specific
details on the container-domain in NFV are missing at the
time of writing. Moreover, the high-level architecture of a VNF
[11] encompasses both VMs and containers to implement the
VNF building blocks, but does not differentiate among peculiar
design principles of the different virtualisation techniques. The
authors aim at defining a reusable design for a container-based
vNSF, which is currently missing from literature. Available
frameworks for the NFV focus on orchestration of network
functions in both hypervisor and container domains, although
they do not provide concrete specifications on the internal
structure of the VNFs to be deployed on top of these domains.

IV. SCENARIO

The design and development of a container-based vNSF is
framed in a specific use case of the ETSI NFV framework,
i.e. the Security-as-a-Service [12] scenario. This use case is
motivated by the need of protecting ICT infrastructures effec-
tively in an evolving threat environment, where vNSFs can
be exploited to both monitor and react upon detected attacks.
An ISP could build SecaaS services to secure his clients’
networks, freeing them from the costs of managing, operating
and upgrading dedicated network and security devices. In this
scenario, big data analytics can play a significant role to fulfil
the anomaly detection and define a mitigation strategy.

A high-level architecture of the SecaaS use case is depicted
in Figure 1. It includes the following components:

• Data Analysis & Remediation Engine (DARE). It per-
forms threat detection using analytics, cognitive intelli-
gence and monitoring of the infrastructure, in order to
define a mitigation strategy for an attack.

• vNSF store. A catalogue of vNSFs that can be instanti-
ated in the network, belonging to different categories:
– Monitoring vNSF. It monitors the traffic of the net-

work, acting as a network probe, event generator or
honeypot. The relevant information of monitored traffic
is fed to the DARE.

– Reaction vNSF. It applies a mitigation strategy defined
by the DARE, with the aim of preventing or stopping
a threat.

• Dashboard. A visualisation component that can be ac-
cessed by the infrastructure administrator, to display the



Fig. 1. ETSI NFV Security-as-a-Service use case

analytics result and recommend mitigations for incoming
threats.

The vNSFs can be deployed onto the client gateway or in the
ISP network infrastructure. In addition to these components,
the SecaaS use case also specifies vNSF and infrastructure
attestation as a necessary step to ensure that the SecaaS service
is trustworthy. In this scenario, the design and development of
a container-based vNSF should take into account the need for
providing monitoring and/or reaction capabilities for specific
security threats, in addition to reporting the relevant network
and security information to trusted third-parties for analytics.

The SecaaS use case introduces relevant challenges in terms
of correctness, availability and scalability of the vNSFs, given
their critical role in a ISP infrastructure. These requirements
are typically implemented in traditional deployments of se-
curity middle-boxes, hence they should be considered by the
NFV paradigm as well. The authors propose a design that
addresses both availability and scalability requirements by
focusing on a lightweight virtualisation technology, which
provides both reduced deployment time, more flexible re-
configuration and consolidation. The correctness requirement,
which would ensure that the vNSF application acts as ex-
pected, should be addressed by means of attestation and/or
monitoring of the vNSFs ecosystem, hence it is not targeted
explicitly by this proposal.

V. DESIGN AND ARCHITECTURE

The high-level design of a vNSF is depicted in Figure 2.
A single vNSF is composed by different vNSF Components,
which can be implemented by VMs or containers, according to
the standard [11]. In our proposal, the vNSF Components are
to be implemented by different containers, which are by nature
stateless virtual instances. In order to share data among differ-
ent containers, OS-level virtualisation proposes both standard
network interaction and volumes. Volumes define a binding
between a local directory of the container and another path,

Fig. 2. vNSF design

external to its mount namespace. The Docker container engine
suggests the use of volumes because they do not require
modification at the network configuration of containers and
underlying hosts. Moreover, they can be stored on remote
hosts or cloud providers, hence they are independent from
the directory structure of the host machine. Docker volumes
can be shared by containers running heterogeneous OSes and
they do not add to the overall size of the virtual instance. For
the sake of modularity, we base our initial design on volumes
as they fulfil the requirements in terms of reliable interaction
between containers and persistence of the application data.
Moreover, they can be paired with Mandatory Access Control
technologies, such as the Security-Enhanced Linux (SELinux)
system in the Linux kernel, to manage access to file sys-
tem object via enforceable security policies. Nonetheless, we
consider network communication in-between containers as a
viable alternative to volumes, as it would remove the overhead
related to the file system access. However, it is to be noted
that introducing network-based interaction between Docker
containers would require additional client-server services to
be run on each of the instances.

In a micro-service oriented design, single user processes are
run by different virtual instances. This paradigm is embraced
by OS virtualisation implementation design as well, according
to the one process per container principle. This methodology
aims at decoupling the different applications, to address scala-
bility of the service and reuse of the implementations. Because
of this, we expect to have more intra-vNSF communications in
a container-based scenario than a VM-based implementation.
In this regard, the network interaction would require each
container to run additional processes to manage the client-
server connection, interfering with this paradigm.

From a security perspective, the design of a vNSF should
limit the number of containers that are accessible from the net-
work. In Figure 2, only vNSF Component A manages inbound
and outbound traffic, while the other components contribute
in the fulfilment of the internal logic of the application. The
vNSF traffic can be directed towards the external networks or
to/from other vNSFs of the same network service. Container
management systems use port mapping on the host to expose
an internal port of a virtual instance. The attack surface of
the host increases by adding port mappings to expose services
deployed in the containers, hence it is necessary to minimise
the number of open ports on the host.



Having the requirements in mind, the authors propose a
detailed architecture for a vNSF, tailored for the SecaaS use
case. In this regard, such virtual instance should be able to
receive security-oriented policies to define monitoring and
reaction actions to security threats, collect and report appli-
cation logs to an external entity, for higher-level monitoring
and further analysis and, finally, apply the vNSF logic by
leveraging internal communication between highly-specialised
containers. We propose a vNSF architecture that is composed
of different containers to implement specific capabilities,
which share information using volumes. There is a one-to-
one mapping between each of these capabilities and a separate
VNF Component. The architectural components are described
as follows in this section.

vNSF volumes

As introduced before, volumes are a viable solution to share
and persist information among different containers, even if
they are deployed on separate hosts. In our proposal, three
different volumes are introduced to both persist and share
separate information:

• Policy volume. It is used to receive security policies
that define the behaviour of the vNSF, and it is typically
accessed with write permission by a management entity
such as a security controller/orchestrator [13].

• Configuration volume. It is used to map the directories
containing configuration files that are directly used by the
vNSF application software.

• Log volume. It contains the logs of the vNSF application
and consumed by the reporting logic for further analysis.

Policy translator

The ETSI NFV specification states that VNF may receive
policies from the MANO stack via a specific logical interface.
The proposed architecture includes a container to serve as
a security policy translator. It is in charge of processing
the input policies, which are received in the Policy volume,
and to write specific configuration rules that can be applied
by the vNSF application logic in the Configuration volume.
This container is not conceived as a long-lived entity, as
its execution terminates as soon as it writes the application-
dependent policies on the Configuration volume.

The abstraction of a policy language serves as an interme-
diate layer to enable interoperability between different vNSFs
implementations that tackle the same security control. For
example, a SecaaS service could allow the user to choose
between two different implementations for a Layer 3 filtering
function, allowing vNSF developers to implement translation
logics tailored for the filtering application (e.g. iptables, pf-
Sense, Open vSwitch).

In this regard, we propose the reuse and extension of the pol-
icy abstraction language defined in the scope of the SECURity
at the network EDge (SECURED) [14] FP7 European research
project. It defines application-independent configuration rules
for different security capabilities, specified in a Medium-level
Security Policy Language (MSPL), that represent the building

Fig. 3. vNSF architecture and instantiation work-flow

blocks of network and security controls [15]. The SECURED
project also specifies a centralised process to translate policies
to application-level configuration rules, pursued by a Security
Policy Manager of the infrastructure. In our proposal, we
offload the translation to the single vNSF, to reduce the load
on the centralised NFV MANO stack.

Log collector

This component is in charge of aggregating the output of
the vNSF application logic and to package it in a format that is
processable by third entities, such as the SecaaS Data Analysis
and Remediation Engine. The logs are read from the Log
volume, which serves as a persistence entity within the vNSF.
It is to be noted that additional techniques are needed to ensure
reliability and availability of application logs, especially for
auditing purposes, and this component is not meant to fulfil
the auditing requirements for a NFV environment. Logs are
merely conceived as an evidence of the monitoring/reaction
activity pursued by the vNSF, to result in more effective
mitigation actions to security threats.

vNSF Application logic

It consists of one (or more) containers that run security and
network This component reads application configuration from
the Configuration volume and writes its output to the Log
volume.

Instantiation work-flow

An overall depiction of the vNSF architecture is presented
in Figure 3, along with the sequence of interactions between
its components that shall occur during its instantiation.

1) The security policy is written to the Policy volume
configured on the vNSF by a management entity, such
as the NFV Virtual Network Function Manager;

2) the Policy translator reads the content of the Policy
volume and processes the received data to produce ap-
plication specific configuration rules;



3) the Policy translator writes the vNSF rules to the Con-
figuration volume;

4) the vNSF Application logic is initialised with the con-
figuration rules and starts to act according to its security
control;

5) the vNSF Application logic reports the results of its
security control to the Log volume;

6) the Log collector aggregates the vNSF logs and produces
in output an evidence of the vNSF operation, to be further
processed by the analytics.

In this work-flow, the vNSF is configured at instantia-
tion time via the Policy translator, which can be removed
afterwards. The current architecture does not provide any
capabilities to update the state of the vNSF, and hence
its security policies. This is due to the peculiarities of a
container-based vNSF, which differentiate its behaviour from
a traditional VM-based instance. First of all, best-practices in
container development aim at stateless instances, which can be
easily deployed in a micro-service environment. Moreover, the
faster instantiation time and flexibility provided by OS-level
virtualisation allows container management systems to quickly
re-deploy instances in case their state is changed, instead of
updating the running instances. The down-time due to the
re-deployment can be mitigated by instantiating the updated
vNSF before shutting down the obsolete instance, redirecting
the traffic to the newest vNSF once it is fully loaded.

VI. DEVELOPMENT OF THE PROTOTYPE

In this section, we introduce the case study for the devel-
opment of a vNSF prototype tailored for the SecaaS scenario.
Then, we describe the technical aspects of the development
process, focusing on the open-source technologies selected for
each functionality.

Case study for the prototype

We focus on a practical case study for the development of a
vNSF prototype, represented by an HTTP Reverse Proxy (RP)
with embedded filtering capabilities via a Web Application
Firewall (WAF).

A RP is an intermediate entity, or a gateway, that resides
between a web client and one or more Origin Servers, whose
role is to retrieve the web resources on behalf of such client. A
RP has significant advantages from the infrastructural point of
view, which becomes transparent to modification in the back-
end network. It also allows load balancing of the incoming
traffic, as the RP may adopt optimisation strategies to forward
the client requests to different replicas of an Origin Server.

A RP also enables protection mechanisms on the incoming
traffic, whose headers and payload may be analysed before
forwarding the packets to the proper Origin Server. In this
regard, a RP is often paired with a WAF, which employs
a series of security controls based on known web-based
attacks. A WAF can apply mitigations to web applications
hosted on the Origin Servers with a centralised approach,
without delegating the security checks on the web applications
themselves. In this regard, a WAF can be used also to reduce

the Window of Exposure to a new web-based attack, as all the
back-end applications can be protected by a single update on
the WAF itself.

The Open Web Application Security Project (OWASP) [16]
and The Web Application Security Consortium (WASC) [17]
both support The Web Application Firewall Evaluation Criteria
Project (WAFEC), that aims to increase the use of Web Ap-
plication Firewalls and also defines a series of criteria to help
the security administrators to choose the best solution for their
web applications [18]. WAFEC defines several architectures
for the deployment of the WAF, i.e. Reverse Proxy, Bridge,
Router and Embedded solutions.

The Reverse Proxy main advantage over the Bridge and
Router alternatives is that it terminates the clients’ sessions,
such as encrypted TLS connections, allowing a deeper in-
spection of packets than transparent Layer 2-3 protection (up
to application layer, i.e. Layer 7). Moreover, the Embedded
solution, which implies the installation of a WAF on the
application server itself, is not considered as a viable solution
in the NFV SecaaS scenario, where an ISP may provide a
vNSF to secure heterogeneous web application servers without
additional development and integration costs by its clients.

Technology selection for the vNSF prototype

Different open-source technologies have been analysed to
select the best RP and WAF combination. Regarding the RP
software, we have considered Apache HTTP Server (HTTPD)
[19], Apache Traffic Server [20], Varnish Cache [21], HAProxy
[22] and nginx [23]. At the time of writing, HTTPD and
nginx appear to be the most popular solutions [24] on the
market. The starting point for the selection of the proper RP
technology is represented by its integration with an open-
source WAF. In this regard, ModSecurity [25] and NAXSI [26]
WAF technologies have been taken into account, as the first
can be integrated with both HTTPD and nginx, while the latter
only interoperates with nginx. Therefore, we have evaluated
different RP and WAF combinations, namely HTTPD with
ModSecurity, nginx with ModSecurity and nginx with NAXSI.

The tests are based on a single machine, equipped with an
Intel Core i7-4510U at 2GHz, 12GiB of DDR3 RAM, Debian
9 Stretch 64 bit Linux distribution with kernel Linux 4.9.0-
3-amd64 and Docker version 17.06.0-ce. The different tests
have been performed by running the evaluated software in a
separate Docker container. We have used a benchmarking tool,
i.e. ApacheBench (ab) [27] version 2.3, to simulate concurrent
HTTP requests directed towards the test Origin Server.

Firstly, we have evaluated the number of requests satisfied
by the Origin Server with and without a RP, to ensure that
the Origin Server itself is not a bottleneck. In this regard, we
have tested each of the RPs with concurrent HTTP requests
performed by 1000 users in a timespan of 45 s. The result,
depicted in Figure 4, shows that nginx has the worst impact
on the total number of requests to be served by the Origin
Server. Then, we have simulated HTTP connections with a
keep-alive header, as suggested by WAFEC, for a timespan of
45 s and a number of 250, 500 and 1000 concurrent users. The



Fig. 4. Number of requests served by Reverse Proxies

Fig. 5. CPU share by different RP and WAF combinations

Fig. 6. RAM usage by different RP and WAF combinations

average CPU share by each of the tested solutions is reported
in Figure 5. The different combinations have comparable
performance, although the nginx-NAXSI solution minimises
the CPU usage. Moreover, we have measured the average
RAM usage of all the solutions, which result in a significant
advantage of the nginx-NAXSI solution over the competi-
tors, as depicted in Figure 6. Finally, we have measured
the throughput of all of the RP and WAF combinations, by
instantiating a single Origin Server in a Docker container,
hosting a 32KiB web page, and executing HTTP requests
for 45 s. The result, depicted in Figure 7, shows that nginx-

Fig. 7. Throughput of different RP and WAF combinations

NAXSI has the highest throughput, while nginx-ModSecurity
is the worst performing solution. We have discarded the nginx-
ModSecurity solution given its scarce experimental results.
Although being promising from a performance perspective,
the nginx-NAXSI solution has a significant disadvantage in
terms of effectiveness in a NFV scenario. More specifically,
NAXSI adopts a positive security model which evaluates the
incoming traffic according to basic rules (e.g. the presence
of certain characters, such as <>,(){}), computing a danger
index for all of the packets. Only the packets that exceed a
pre-defined threshold of the index are considered malicious
traffic. This logic is effective to protect a web application from
unknown vulnerabilities, but it requires a learning period that
is not negligible in a NFV scenario, which requires a fast
deployment and reaction to security threats.

ModSecurity adopts a negative, rule-based model that can
be integrated with the OWASP rules for addressing common
web application threats, such as SQL Injection, Broken Au-
thentication and Session Management and Cross-site Scripting
(XSS). Hence, the HTTPD-ModSecurity solution can be easily
deployed on a network infrastructure and quickly provide WAF
protection for the client’ web services. Hence, the HTTPD-
ModSecurity solution has been finally adopted for the vNSF
prototype.

Work-flow manager

We have developed a component, named vNSF Controller,
to act as a work-flow manager for the deployment of the vNSF.
The main role of this component is to implement container-
oriented life-cycle functionalities for the vNSFs, such as to
instantiate and stop an instance, that are typically managed by
the VNF Manager in a ETSI NFV MANO implementation.
This application allows the reuse of the different vNSF Com-
ponents among different vNSFs, more specifically the Policy
translator and Log collector modules.

In order to instantiate a vNSF, we have defined a manifest
file in JSON format to include all the parameters of the differ-
ent vNSF Components and a description of their interconnec-
tion. The manifest includes identification data for the vNSF,
information about each vNSF Component (as supported by the
Docker engine semantics) and details about the volumes used



to interconnect the Docker containers. The vNSF Controller
parses the manifest to initiate the deployment of the vNSF,
which consists of the following steps:

1) build the Dockerfiles for each vNSF Component;
2) download the Docker images from the specified registry

in the manifest;
3) create the volumes to interconnect the vNSF Components;
4) execute the vNSF Components.
The vNSF Controller internally executes the containers in

a configurable order. In our architecture, the policy translator
container must complete its execution before instantiating the
vNSF application logic. The de-facto standard for defining
multi-container Docker applications, named Docker Compose,
does not ensure that a container has completed its execu-
tion before running the next instance [28]. Hence, we have
developed a custom logic for managing the synchronisation
in-between the execution of multiple containers in the vNSF
Controller, leveraging the standard Docker API.

Policy translator

The policy specification language adopted for the prototype
is the MSPL, as defined by the SECURED project, which
is based on a XML language. We have developed a XSD
schema tailored for the RP and WAF configuration, which
abstracts the HTTPD and ModSecurity rules. Regarding the
RP, we have included configuration rules for the different
virtual hosts (e.g. domain names, Origin Server IP address and
port). Regarding ModSecurity, the policy includes parameters
to enable or disable standard WAF security controls and levels
of inspection (i.e. headers and bodies) . An excerpt of a
possible MSPL policy for the WAF is presented in Figure 8,
which disables HTTP response body inspection, blocks SQL
Injection attacks and logs requests performed by well-known
black-listed User Agents.

Log collector

This component has been realised by leveraging the
Logstash software, which is capable of receiving data from
different sources, aggregate the information and forward them
to a consumer, such as the DARE in the SecaaS scenario. The
current implementation uses a volume to receive the log files
in input, although a possible upgrade may leverage network-
based log forwarding technologies, such as syslog, to eliminate
the overhead in accessing the volume.

VII. EVALUATION OF THE PROTOTYPE

In this section, we present the experimental results of the
evaluation of the vNSF prototype in different scenarios. First
of all, we aim at demonstrating the low performance overhead
introduced in the vNSF by the Docker encapsulation, against
both a VM-based deployment and a bare-metal solution. In this
regard, we adopt Linux KVM for the full virtualisation test,
as it is widely utilised in cloud deployments and supported by
the OpenStack compute node implementation. Regarding the
Docker deployment, we utilise the Docker Engine installed on
the host machine, in order to minimise the overhead introduced

<a p p l i c a t i o n −l a y e r−c o n d i t i o n >
. . .
<r e q u e s t−body−i n s p e c t i o n >

ENABLED
</ r e q u e s t−body−i n s p e c t i o n >
<r e s p o n s e−body−i n s p e c t i o n >

NOTENABLED
</ r e s p o n s e−body−i n s p e c t i o n >
<p a t t e r n >

<p a t t e r n−name>
SQL INJECTION

</ p a t t e r −name>
<mode>ENABLED</mode>

</ p a t t e r n >
<p a t t e r n >

<p a t t e r n−name>
BAD ROBOTS

</ p a t t e r n−name>
<mode>DETECTION ONLY</mode>

</ p a t t e r n >
</ a p p l i c a t i o n −l a y e r−c o n d i t i o n >

Fig. 8. Excerpt of an MSPL policy for the WAF vNSF.

by virtualisation. The vNSF prototype is deployed on a host
machine with a single Network Interface Card (NIC), which
is connected to an isolated switch. Both the client user agent,
represented by the ab benchmarking tool, and the Origin
Server, a bare-metal deployment of an HTTPD server (hosting
a single web page), are connected to the switch. The vNSF
application logic leverages HTTPD 2.4.6 and ModSecurity
2.7.3-5.el7, and its host is equipped with a dual core CPU,
the Intel Core i5-5300U at 2.3GHz, 16GiB of DDR3 RAM,
running CentOS 7 64 bit with Linux kernel 3.10.0. The KVM
scenario has been tested in a virtual instance equipped with a
dual core virtual CPU and 1GiB of RAM. The client machine
is equipped with a dual core CPU, named Intel Core i7-4510U
at 2GHz, 12GiB of DDR3 RAM, running Debian 9 Stretch
64 bit with Linux kernel 4.9.0-3-amd64 and ab 2.3. Finally,
the Origin Server uses an Intel Core 2 6400 dual core CPU
at 2.13GHz, 2GiB of DDR2 RAM, CentOS 7 64 bit with
Linux kernel 3.10.0 and HTTPD 2.4.6.

The ModSecurity rule set adopted in all the tests is the
default OWASP ModSecurity Core Rule Set enabled for all
packet headers and request body only. The different tests
described in this section have been performed on the same
test-bed with comparable overall network usage, and the final
results are computed as the average value of the measures
recorded in three separate runs. The chosen metric is the
throughput of the vNSF, expressed in MiBps, to demon-
strate the low performance overhead introduced by contain-
ers against competitors. Another acceptable metric would be
the introduced latency, and it will be considered for further
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Fig. 10. vNSF throughput on bare-metal, Docker and KVM deployments

evaluation of the prototype.
Figure 9 depicts the different deployments of the vNSF,

which include:
(a) bare-metal execution on the host machine;
(b) encapsulation in a Docker container, which is executed by

the host machine Docker Engine and is interconnected to
the NIC via the default Docker bridge;

(c) encapsulation in a KVM instance, which is executed
via libvirt QEMU-KVM hypervisor driver [29] and is
interconnected to the NIC via the default libvirt bridge.

Both case (b) and (c) leverage iptables [30], the packet filter
of the Linux kernel, to provide Network Address Translation
(NAT) based connectivity to the virtual instances, in order
to let them reach the external network. In this scenario, we
have performed a test by issuing a number of HTTP GET
keep-alive requests for a timespan of 120 s, with a total of
50, 100 and 250 concurrent users. The Origin Server web
page has a dimension of 40KiB. The throughput expressed
by each solution is plotted in Figure 10. The chart shows
that the Docker-based deployment is comparable to the bare-
metal solution, as its average throughput is 2% lower than the
highest registered value. The KVM test has an average 32%

lower throughput than the bare-metal scenario, justified by the
overhead introduced by the full virtualisation network stack.
We also note that the throughput decreases at the increase of
concurrent users in each of the deployments. In the Docker
scenario, the throughput registered with 250 concurrent users
is 15% lower than the value registered with 50 clients.

We have performed a second test of the Docker-based
vNSF in a load-balanced scenario, comprising the following
components:

• the client user agent, i.e. the ab benchmarking tool;
• a host machine running the HAProxy load balancer,

equipped with two different NICs;
• a switch that interconnects the load balancer with two

application servers;
• two replicas of the container-based vNSF, hosted in

identical application servers equipped with two NICs;
• a switch that interconnects the vNSF application servers

with the Origin Server;
• an Origin Server, running a single web server as an

HTTPD bare-metal deployment.
The links between the load balancer and the application
servers have a 1Gibitps bandwidth, while the other links
have a 100Mbitps bandwidth, due to avoid a load-balancing
bottleneck. The machine hosting the Client user agent has
the same hardware configuration of the previous test. The
Origin Server is equipped with a dual core CPU, the Intel
Core i5-5300U at 2.3GHz, 16GiB of DDR3 RAM, and it
runs CentOS 7 64 bit with Linux kernel 3.10.0. Both the load
balancer and the application server replicas are equipped with
an Intel Core 2 6400 dual core CPU at 2.13GHz, 2GiB of
DDR2 RAM, CentOS 7 64 bit with Linux kernel 3.10.0. The
HAProxy load balancer is configured at TCP level and adopts
a round robin policy for the forwarding of the requests to the
replicas. In this scenario, we have evaluated the throughput of
the vNSF without any replicas and no load balancer, by issuing
a number of HTTP GET keep-alive requests in a timespan of
120 s with 50, 100 and 250 concurrent users. The Origin Server
is configured to serve a single 40KiB page. Then, we have
performed the same test by including both the replicas and the
HAProxy load balancer. The results are plotted in Figure 11,
resulting in an average 71% increase of the throughput in the
load-balanced scenario than the single vNSF deployment.

VIII. FUTURE WORK

We aim at extending the research work described in this
paper with respect to the overall architecture and its integration
with upstream container management systems, in order to
enhance maintainability and automation.

Regarding the architecture extension, we are focused on
increasing the performance of the vNSF. This may be ac-
complished by investigating alternative methodologies to in-
terconnect the vNSF Components rather than volumes, which
introduce a significant overhead in terms of write and read
access to the file system. Moreover, the log aggregation and
pre-processing may be offloaded to an external, centralised
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entity of the cloud infrastructure, limiting the scope of the
vNSF log collector to a distributed log shipper.

With respect to the integration with upstream container
management systems, Kubernetes and Apache Mesos both
provide the network and infrastructure automation in a multi-
host container environment. In particular, Kubernetes is con-
sidered highly promising as it is already been integrated with
the OPNFV [3] framework. In this regard, we are interested in
both multi-host networking, to detach the vNSF Components
from a single host deployment, and the automation of the
vNSF instantiation (that we have proved in the vNSF Con-
troller PoC). Regarding the multi-host networking, we plan to
investigate advanced Docker network technologies, such as the
built-in overlay driver and the third-party Weave Net solution.
The Open Source MANO VIM emulator may be an alternative
target platform for the integration of the proposed solution,
although it currently limits the deployment of containers to a
single node.

IX. CONCLUSION

In this research work, we investigate the peculiarities of de-
veloping a container-based vNSF, which results in the design
of a multi-container architecture to include vNSF Components
that suit the policy translation and log reporting capabilities of
the ETSI NFV SecaaS scenario. This architecture is different
from a VM-based vNSF with respect to the intra-vNSF interac-
tions and segmentation of duties in different virtual instances,
according to the one process per container paradigm and for
the sake of modularity. Moreover, in this paper we propose
a concrete implementation of such architecture for a Reverse
Proxy vNSF, enhanced with filtering capabilities of a Web
Application Firewall. In this regard, we have compared several
open-source technologies, evaluating their performance and
suitability to the NFV scenario. In this research, we partially
address the management and orchestration requirements of a
vNSF, by proposing a PoC for a standalone vNSF Controller
that could be further integrated with a container management
system. Finally, the experimental evaluation of our prototype
shows that the proposed solution outperforms a VM-based
vNSF with the same application logic, and can be also
applied in a load-balanced scenario for improved resilience
and performance.
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