
Evaluation of Apache Spot’s machine learning capabilities in an 
SDN/NFV enabled environment 

Workshop paper 

 
Christos M. Mathas 

University of Peloponnese 
Greece 

mathas.ch.m@uop.gr  
 

Olga E. Segou, PhD 
Orion Innovations PC 

Greece 
osegou@orioninnovations.gr 

Georgios Xylouris 
Orion Innovations PC 

Greece 
gxilouris@orioninnovations.gr 

Dimitris Christinakis 
Orion Innovations PC 

Greece 
dchristinakis@orioninnovations.gr 

Michail-Alexandros Kourtis 
Institute of Informatics and 

Telecommunications 
National Centre for Scientific Research 

“Demokritos” 
Greece 

akis.kourtis@iit.demokritos.gr 
 

Costas Vassilakis 
University of Peloponnese 

Greece 
costas@uop.gr 

Anastasios Kourtis 
Institute of Informatics and Telecommunications 

National Centre for Scientific Research “Demokritos” 
Greece 

kourtis@iit.demokritos.gr 
 

 

ABSTRACT 
Software Defined Networking (SDN) and Network Function 
Virtualisation (NFV) are transforming modern networks towards 
a service-oriented architecture. At the same time, the 
cybersecurity industry is rapidly adopting Machine Learning 
(ML) algorithms to improve detection and mitigation of complex 
attacks. Traditional intrusion detection systems perform 
signature-based detection, based on well-known malicious traffic 
patterns that signify potential attacks. The main drawback of 
this method is that attack patterns need to be known in advance 
and signatures must be preconfigured. Hence, typical systems 
fail to detect a zero-day attack or an attack with unknown 
signature. This work considers the use of machine learning for 
advanced anomaly detection, and specifically deploys the 
Apache Spot ML framework on an SDN/NFV-enabled testbed 
running cybersecurity services as Virtual Network Functions 
(VNFs). VNFs are used to capture traffic for ingestion by the ML 
algorithm and apply mitigation measures in case of a detected 
anomaly. Apache Spot utilises Latent Dirichlet Allocation to 
identify anomalous traffic patterns in Netflow, DNS and proxy 
data. The overall performance of Apache Spot is evaluated by 
deploying Denial of Service (Slowloris, BoNeSi) and a Data 

Exfiltration attack (iodine). 

CCS CONCEPTS 
• Computer systems organization → Distributed 
Architectures; Cloud Computing • Networks → Network 
Security; Network Services • Computing Methodologies → 
Machine Learning. 

KEYWORDS 
Software Defined Networking, Network Function Virtualisation, 
Machine Learning, Latent Dirichlet Allocation, Apache Spot, 
Penetration Testing, SHIELD Project. 
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1 INTRODUCTION 
The increasing demand for high-speed internet access has led 

to the evolution of the Internet towards softwarised and more 
scalable architectures. Software Defined Networking (SDN) [1] 
and Network Function Virtualisation (NFV) [2] are considered 
two key enabling technologies that underline the evolution of 
future infrastructures. The SDN/NFV paradigm enables ISPs to 
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compose and manage complex network services at the click of a 
button, while drastically improving time and cost efficiency [3]. 

At the same time, the growing number of complex cyber 
threats is often overlooked by traditional cybersecurity systems, 
due to the size, variety and velocity of traffic data that need to be 
inspected for signs of malicious activity. Cyber-attacks are 
observed with increasing frequency and impact radius, even on 
global scale [4]. With that in mind, governments and 
organizations are increasing their cybersecurity investment to 
ensure the integrity of their data and networks, focusing on 
advanced systems for detection and mitigation. Signature-based 
intrusion detection systems [5] search for known suspicious 
patterns that are often attributed to known cyber-attacks. The 
obvious drawback is that the attack signatures need to be known 
in advance and the detection techniques are too rigid, making 
detection harder in case of a multi-vector attack or zero-day 
exploit. Anomaly detection systems [6], on the other hand, can 
be trained with typical network traffic to create a baseline of 
normal traffic. This is especially critical when there is no attack 
signature associated with the malicious activity. Misclassified 
results, such as false positive or false negative detection, 
however, can have adverse operational effects. 

Previous research in this area has considered a variety of 
different ML algorithms for anomaly detection. The authors in 
[7] follow a more general approach and present research related 
to anomaly detection, without focusing on its practical use in 
network security. The work in [8] and [9] focuses on surveying 
intrusion detection in the context of cyber security through data 
mining and machine learning methods. A multitude of methods 
have been used for the implementation of machine learning 
classifiers in cyber security research for anomaly detection. One 
approach is that of Artificial Neural Networks (ANN) [10] that 
requires a more time-consuming preprocessing stage, an ANN 
training stage and an ANN decision stage. Another popular 
approach is the use of a Bayesian network [11]; in that work, 
Bayesian networks are used to classify operating system calls 
which are the result of the reception of TCP/IP packets. The 
EXPOSURE system [12] utilizes decision trees in order to 
perform passive DNS analysis. Other classifiers, like Random 
Forest [13] are combinations of decision trees and ensemble 
learning, while Naïve Bayes [14], approaches offer a simplistic 
implementation of a Bayes classifier. 

This work considers the case of Apache Spot [15], a machine 
learning (ML)-based platform for anomaly detection, that utilises 
Latent Dirichlet Allocation [16] to detect unusual traffic patterns. 
Latent Dirichlet Allocation is a Natural Language Processing 
algorithm, which is a factor that sets it apart from the common 
machine learning classifiers in use. Natural Language Processing 
methods are easy to apply on the variety of different network 
traffic logs and improve the overall threat intelligence 
capabilities by including more sources of structured, human-
readable, textual data.  

Other systems offer similar capabilities, such as Sqrrl [17] and 
Apache Metron [18]; Apache Spot sets itself apart not only by its 
machine learning capabilities, but also from its Open Data Model 

(ODM). As machine learning becomes a mainstream technology 
that is present in many consumer products, the cybersecurity 
industry has been quick to adopt it to improve on the existing 
defense capabilities. ODM brings together all security-related 
data (event, user, network, endpoint, etc.) into a singular view 
that can be used to detect threats more effectively. It also 
provides the ability to share and reuse threat detection models, 
analytics, and more. This improves interoperability among 
anomaly detection platforms and fosters the creation of an open 
data community.  

Apache Spot is deployed and evaluated in the SHIELD [19]   
[20] SDN/NFV-enabled testbed in Athens, Greece. SHIELD 
proposes “a universal solution for dynamically establishing and 
deploying virtual security infrastructures into ISP and corporate 
networks”. The project builds on the huge momentum of 
Network Functions Virtualisation (NFV) in order to virtualise 
security appliances into virtual Network Security Functions 
(vNSFs), to be instantiated within the network infrastructure.  

Spot’s integration with SDN/NFV leads to improved data 
ingestion, while cybersecurity VNFs can immediately receive 
threat information and apply mitigation measures. Its overall 
performance is tested using various penetration testing tools. In 
this work UDP flooding [21], Slowloris [21] and DNS Tunneling 
[22] attacks are performed. These attacks were selected due to 
the variation in the attack traffic in terms of velocity, variety and 
volume. In the case of UDP flooding, the attack traffic features 
high volume and velocity. Slowloris is a protocol-based Denial of 
Service attack that generates much smaller amounts of malicious 
incoming traffic. DNS tunneling is used as an example of a DNS-
based data exfiltration attack that generates small amounts of 
traffic.  

The rest of this paper is organized as follows: Section 2 
presents the SDN/NFV testbed and Spot’s core functions, 
deployment and mode of operation. It also presents the 
penetration testing tools used to perform the attacks against the 
network. Section 3 analyses the results of the penetration tests. 
Section 4 concludes this paper and discusses future work. The 
presented analysis aims to explore the performance of Apache 
Spot in this network setup, evaluate machine learning-based 
attack detection, and investigate Apache Spot configuration 
optimization for improvement of its performance in an 
SDN/NFV context. 

2 EXPERIMENTAL AND COMPUTATIONAL 
DETAILS 

2.1 The SHIELD Environment 
SHIELD aims to develop a next-generation cybersecurity 

platform tailored for software networks, based on the SDN/NFV 
paradigm, big data and infrastructure attestation. The core 
components of the SHIELD platform (Figure 1) are deployed in 
two SDN/NFV testbeds in Athens and Barcelona, and include 
[23] [24]:  
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 The vNSF Orchestrator (vNSFO): vNSFO is based on 
the ETSI-supported open-source Management and 
Orchestration framework (Open Source MANO). The 
OSM orchestrator [25] is used to manage the lifecycle 
of the vNSFs. OSM on-boards vNSF packages, 
instantiates Network Services (NSs) in specific points 
of presence within the network infrastructure and 
monitors the running services. 

 The Virtual Infrastructure Manager (VIM): ETSI-
MANO [26] defines the VIM as the framework that 
manages computing, storage and network resources. 
SHIELD deploys the OpenStack platform as a VIM.  

 The SDN Controller: OpenDaylight Carbon [27] is 
used as the SDN controller.  

 The Data Analysis and Remediation Engine 
(DARE): The DARE is an information-driven intrusion 
detection and prevention platform that stores and 
analyses heterogeneous network information, 
previously collected via the vNSFs. 

 The virtual Network Security Functions (vNSFs): 
OSM deploys cybersecurity as-a-Service in the form of 
KVM-based vNSFs (such as firewalls, deep packet 
inspection, intrusion detection etc.)  

 The vNSF Store: Registers valid vNSF images from 
vNSF developers. 

 The Trust Monitor [28]: Integrity of the NFVI, the 
vNSFs and the SDN Controller is checked periodically 
to detect compromised software and/or hardware. This 
work is based on the Trusted Computing paradigm and 
its Remote Attestation workflow. 

 The Security dashboard and controller: The 
dashboard provides an overview of the security status 
and allows the operators to apply remediation actions 
received by the remediation engine of the DARE. 

The DARE features cognitive and analytical components 
capable of predicting specific vulnerabilities and attacks. The 
processing and analysis of large amounts of data is carried out 
using big data analytics and ML techniques. Furthermore, the 
DARE remediation engine utilises the outputs from the cognitive 
and data analytics modules and various contextual information 
to determine a mitigation plan for the existing threats. The 
mitigation actions are relayed to the vNSFO in the XML-based 
Medium-Level Security Policy Language (MSPL) format [29]. The 

vNSFO then sends the appropriate rules to the vNSF, which 
applies them. For example, SHIELD deploys an OVS-based 
firewall vNSFs in a KVM/CentOS virtual machine, which 
receives rules to block IP addresses etc. This paper focuses on 
Apache Spot which is deployed as a DARE component. The 
anomalies detected by Apache Spot are passed to the 
remediation engine, which provides specific rules to the SHIELD 
vNSFs, such as blocking or rate limiting rules etc. This paper 
focuses on the Athens experimentation testbed, which is 
deployed and maintained by the National Centre for Scientific 
Research “Demokritos” (NCSRD), Orion Innovations P.C. and 
Space Hellas S.A. The Athens testbed provides ETSI-compliant 
[2] Network Function Virtualisation Infrastructure (NFVI) and 
deploys vNSFs, such as virtualized Firewalls, Deep Packet 
Inspection, Intrusion Detection and an instance of Apache Spot. 

 

 

Figure 1: The SHIELD Platform. 

2.2 Apache Spot 
Apache Spot is an open-source platform that aims to facilitate 

the detection of cyber threats by using machine learning, rather 
than traditional signature-based detection. Apache Spot collects 
NetFlow, DNS and proxy data and analyses them to learn what 
constitutes typical network traffic. Anomalous traffic patterns 
are then identified and reported. The following subsections 
present Spot’s core functions (Figure 2).  

2.2.1 Data Ingestion 
The data ingestion framework follows a distributed 

architecture that minimises the possibility of data loss and 

 

Figure 2: Apache Spot core functions. 
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ensures the availability of the service, even under heavy data 
loads that require significant processing power.  

NetFlow, DNS and proxy data are captured in the network in 
nfcapd1, pcap2 and bluecoat3 formats, respectively. The 
corresponding files are aggregated in Spot’s filesystem, which is 
monitored by Collector daemons. Spot’s Collectors initiate the 
ingestion process when new data are found in the filesystem. At 
this point, the data are human-readable. After the collection of 
the data, Spot’s Worker daemons ingest the data, convert them 
to Avro-Parquet format4 and place them in a Hive database. 
Workers are connected to Apache Kafka topics and partitions. 
There are two kinds of workers: 

 Python workers which use multithreading to process 
the NetFlow and DNS data, and  

 Spark streaming workers which execute a Spark 
application to read data from Apache Kafka. 

The ingestion of the data in Hive tables at this point is 
necessary, since it prepares them in a form that is easily parsed 
by the Machine Learning algorithm. 

2.2.2 Machine Learning 
Apache Spot’s machine learning includes routines for 

analyzing suspicious connects from the collection of the 
previously ingested data, based on Latent Dirichlet Allocation 
(LDA) [16]. LDA is a generative probabilistic model for 
collections of discrete data such as text corpora. Specifically, 
LDA is a topic modeling algorithm that defines a three-level 
hierarchical Bayesian model, in which each item of a collection is 
modeled as a finite mixture over an underlying set of topics. For 
its usage in Apache Spot it has been implemented using Spark 
MLlib [30]. Apache Spot applies LDA to network traffic, by 
converting the log entries to words through aggregation and 
discretization. This way, documents correspond to IP addresses, 
words to log entries (corresponding to an IP address) and topics 
to normal network traffic profiles. As a result, Apache Spot 
deduces a probabilistic model for each IP’s behavior. The model 
assigns to each log entry a probability. The events (log entries) 
with the lowest probabilities are flagged as suspicious for further 
analysis. The output of this analysis is a list which includes the 
events that are less probable to occur according to a model of 
normal traffic conditions. Less probability of encountering a 
specific type of traffic means that this traffic is considered by 
Spot as the most suspicious. 

2.2.3 Operational Analytics & Semi-Supervised Learning 
Apache Spot provides a graphical Operational Analytics (OA) 

interface where it analyzes and presents the results of the 
machine learning algorithm. The results are divided in NetFlow, 
DNS, Proxy and by date of creation. Apache Spot allows semi-
supervised learning through its OA module, in the sense that the 
                                                                 
1  https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_pape
r09186a00800a3db9.html 
2 https://en.wikipedia.org/wiki/Pcap 
3 ELFF-compatible format, http://www.w3.org/TR/WD-logfile.html 
4 https://avro.apache.org/docs/1.2.0/ and http://parquet.apache.org/ 

user can evaluate and affect the model by scoring IP addresses 
and ports in terms of possible risks. These scores become 
available for use in the next execution of the ML algorithm. In 
this experimental deployment, no scoring was performed on the 
user-side. 

2.3 Penetration Testing 
The following attacks were utilized to assess Spot’s 

performance: Slowloris, UDP Flooding and DNS Tunneling. 

2.3.1 Slowloris 
Slowloris [31] is a protocol-based DoS attack, that exploits 

HTTP protocol mechanisms to overwhelm the target, without 
the need to generate a massive flood of traffic. This attack 
establishes a lot of partial HTTP connections, that are not 
allowed to complete or to time-out. It is, therefore, a low 
bandwidth attack with almost no side-effects on other services 
and ports. By sending partial requests, Slowloris establishes 
connections with the target server which remain active as the 
server waits for the requests to complete, thus depleting its 
network resources. The server quickly reaches its maximum 
number of concurrent connections, which results in Denial of 
Service. The fact that this attack uses legitimate and not 
malformed packets, low bandwidth, and doesn’t affect other 
services makes it very difficult for classic intrusion detection 
systems to detect. 

2.3.2 UDP Flooding 
BoNeSi [32] is a tool for simulating DDoS attacks. The attack 

is deployed using the default settings, which results to the 
creation of a UDP flood. The UDP protocol is connectionless and 
sessionless, which means that it establishes connections without 
the use of a three-way handshake like the TCP protocol. This 
makes it easy to abuse in order to overwhelm the target with a 
flood of UDP packets containing random data and it also means 
that it doesn’t require a lot of resources to be committed by the 
attacker, other than network bandwidth, to be successful. The 
target server tries to find the service to which these packets are 
addressed to by reading the data and when it fails to find the 
service, it replies with “ICMP destination unreachable” packets. 
The UDP flood differs from Slowloris in the sense that it requires 
massive amounts of traffic to compromise the target server. 

2.3.3 DNS Tunneling 
The DNS tunneling [22] attack is used to bypass firewall 

restrictions and exfiltrate data from a network and/or establish a 
command and control channel between a commanding host 
outside the firewalled network perimeter and a 
compromised/accomplice host inside this perimeter. The data or 
the commands and their responses, are encoded in DNS queries 
and directed to a DNS server operated by the attacker. The 
malicious server is assigned a domain, so that any DNS query 
containing this domain is forwarded to the attacker. Iodine [33] 
is a tool for sending IPV4 data through a DNS server, by 
deploying a DNS tunnel among two endpoints. The iodine client 
serves as the compromised system that sends data through the 



Evaluation of Apache Spot’s machine learning capabilities in an 
SDN/NFV enabled environment 

CyberTIM Workshop, ARES Conference 2018, August 2018, 
Hamburg, Germany 

 

 5 

tunnel, and the iodine server is deployed as the malicious 
authoritative DNS server that receives the exfiltrated data or 
handles the command and control channel. 

2.4 Deployment Configuration 
The installation of Apache Spot (Figure 3) was made on a 

Cloudera Cluster version 5.11.1y. A minimum of three Cloudera 
nodes is required in order to deploy the Setup, Ingestion, 
Machine Learning and Operational Analytics components of 
Apache Spot. Three hosts were set up running Ubuntu Trusty 
14.04 and the prerequisite components (HDFS, Hive, Impala, 
Kafka, Spark, Yarn, and Zookeeper). Our setup with the 3 Virtual 
Machines (VMs) was the following:  

 Cloudera-host-1.shield.com: Configured as the Machine 
Learning (ML) Node, includes the Yarn Node Manager; 

 Cloudera-host-2.shield.com: Configured as the Setup 
and Ingest Node, also known as the Edge Gateway 
(GW node), includes Kafka Broker and HDFS NFS 
Gateway; and 

 Cloudera-manager.shield.com: Operational Analytics 
(OA) node, includes Cloudera Manager. 

In addition to Spot, two virtual machines running Ubuntu 
16.04 Server and a virtual machine running Kali Linux 2017.2 
were deployed and configured as follows: 

 The target server: The victim server that is under 
Apache Spot’s supervision.  

 The traffic generator: Replays files which contain 
normal, legitimate traffic. 

 The attacker: A Kali Linux VM, which performs the 
attacks against the victim webserver. 

Network traffic was recorded and anonymised from the 
network of the Media Networks Laboratory (at the Institute of 
Informatics and Telecommunications of NCSR Demokritos) and 
saved in pcap files. For the NetFlow Telemetry, the target server 
forwards the traffic from its network interface, using the fprobe 
tool, to cloudera-host-2, which is the server responsible for the 
data ingestion function of Apache Spot. Cloudera-host-2 records 
the traffic in nfcapd files. The attacks are deployed through Kali 
Linux in real time (during the replay of the network traffic from 
the traffic generator). This way, they are also forwarded to 
cloudera-host-2 and saved in the aforementioned nfcapd files. 

 
For the DNS telemetry, three virtual machines running 

Ubuntu 16.04 Server and one virtual machine running Ubuntu 
14.04 Server were deployed and configured as follows: 

 The legitimate users 1 and 2: These users load well-
known webpages and save the traffic in pcap files, thus 
creating normal DNS traffic. 

 Iodine Client: Loads well-known websites, but 
additionally sends data using the iperf tool through a 
DNS tunnel which is established with the Iodine Server 
and these are saved in pcap files. 

 Iodine Server: Receives the data sent by the Iodine 
Client using the iperf tool at the network interface of 
the DNS tunnel. 

In the DNS tunneling scenario, PhantomJS [34] is used to 
create traffic towards Alexa’s top 100 websites [35]. This 
generates the normal DNS traffic for this experiment, which is 
saved in pcap files ingested by Apache Spot. The iodine client 
signifies the compromised system that has set up the tunnel. 
Iperf [36] traffic is sent through the tunnel, encoded in the DNS 

 

Figure 3: Deployment configuration of the experimental setup. 
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queries towards the malicious authoritative DNS server (the 
iodine server). 

Each attack was executed ten times, and the results were 
collected and analyzed. The analysis results are presented and 
discussed in the following section. 

3 RESULTS AND DISCUSSION 
Apache Spot outputs the results of the ML algorithm in the 

form of a csv file. The csv file contains a ranking of the network 
traffic with the first entry being the one considered the most 
dangerous. Each entry contains the probability of being normal 
as calculated by the machine learning algorithm. Furthermore, 
each entry provides extensive information like date and time, 
source and destination IP addresses, source and destination 
ports, network protocol etc. The file is further processed to 
obtain the following metrics: 

 The attack ranking, meaning the position of the first 
entry which is part of the attack. This metric is labeled 
as “Position” in our results. 

 The probability assigned to the first entry which is part 
of the attack. This metric is labeled as “Probability” in 
our results. 

 The number of entries which are part of the attack in 
the first 100 entries of the CSV file. This metric is 
labeled as “First 100” in our results. 

 The percentage of the entries which are part of the 
attack for the whole CSV file. This metric is labeled as 
“Occurrence %” in our results. 

In order to get a better visualization of the distribution 
between the ten attacks executed with each penetration testing 
tool and determine the performance of the classifier, results are 
presented in boxplot and Receiver Operating Characteristic 
(ROC) curve. A receiver operating characteristic (ROC) curve 
[37] is a technique used for visualizing the performance of 
binary classifiers. The plot is created by using the True Positive 
Rate of the classifier, also known as sensitivity and the False 
Positive Rate, also known as Fall-Out. For example, if a given 
result x is a true positive the curve moves 1/(#-of-positives) 
upwards and if false positive 1/(#-of-negatives) to the right. The 
area under the ROC curve, called AUROC, represents the 
probability that the classifier will rank a randomly chosen true 
positive instance higher than a randomly chosen false positive 
instance. 

The boxplot (also known as a box-and-whiskers plot) is a 
single dimensional figure that illustrates the overall properties of 
a selected dataset in a simple visualization. The lower boundary 
of the box represents the first quartile Q1, i.e. the boundary that 
denotes 25% of the measurements. The median (Q2) lies within 
the box, and the top boundary of the box represents the Q3 
quartile (75% of the measurements). The relative position of the 
median, with respect to Q1 and Q3, can indicate whether a 
distribution is symmetrical or skewed. The interquartile range 
IQR is defined as: 

 

              
The system’s range of normal operations is defined by the 

whiskers, which are calculated as a function of the interquartile 
range:   

                           
 

                           
Where k is a constant, set to k=1.5 as per Tukey’s 

recommendation [38]. If the lower and upper whisker exceed the 
range of the minimum and maximum value, they are set to 
match them. If there are measurements that lie outside of the 
range defined by the whiskers, they are considered outliers 
(Figure 4).   

 

Figure 4: Box Plot Definition. 

3.1 Slowloris 
Table 1 illustrates experimental results after the ten 

executions of the Slowloris attack (in chronological order). The 
continuously open TCP connections make it stand out as an 
anomaly inside the data gathered from the network and thus it’s 
being ranked as an anomaly. Although the first instance of the 
detected anomaly is ranked highly in terms of its position, the 
low number of anomalies in the first 100 results indicates the 
presence of numerous false positives. Slowloris is a low 
bandwidth attack taking up 2-4% of total traffic, as indicated by 
the low Occurrence percentage. A better indication of how 
efficiently Apache Spot detects the Slowloris attack is the high 
average AUROC value. AUROC evaluates the results of the 
machine learning model across the entire set of measurements. 

 



Evaluation of Apache Spot’s machine learning capabilities in an 
SDN/NFV enabled environment 

CyberTIM Workshop, ARES Conference 2018, August 2018, 
Hamburg, Germany 

 

 7 

Table 1: Slowloris test results. 

Position First 100 Probability Occurrence % AUROC 

1 1 3.03E-05 3.388494878 0.70613 

45 2 4.09E-05 3.109037018 0.83707 

3 4 2.95E-05 3.802653298 0.71053 

46 1 3.1E-05 2.958544408 0.80984 

2 4 2.31E-05 2.6737318 0.78203 

1 4 1.95E-05 2.842614412 0.76789 

1 2 1.93E-05 2.782220821 0.75087 

3 6 2.38E-05 2.995452056 0.79304 

6 1 2.48E-05 2.626526191 0.82088 

1 3 1.95E-05 2.647144165 0.82342 

Average 2.62E-05 2.982641905 0.780171 

Variance 4.67E-11 0.13871497 0.002128 

3.2 BoNeSi 
Table 2 depicts the results of ten executions of the BoNeSi 

attack (in chronological order). The BoNeSi attack was not 
successfully detected, which is attributed to the high occurrence 
percentage. The traffic generated by the UDP flood is much 
higher than normal traffic and thus disrupts the trained model. 
The algorithm starts considering the attack traffic as normal 
traffic rather than an anomaly. This is also supported by the low 
average AUROC value, which indicates that the BoNeSi traffic 
was considered as normal by the machine learning model. 

Table 2: BoNeSi test results. 

Position First 100 Probability Occurrence % AUROC 

40 2 3E-05 76.27055362 0.04333 

36 3 1.98E-05 76.12198357 0.04168 

63 2 3.92E-05 72.17966475 0.03832 

28 2 2.08E-05 79.11053165 0.05949 

124 0 5.88E-05 72.08022243 0.06492 

132 0 0.000118 61.87038159 0.05606 

47 2 3E-05 76.16703952 0.04501 

72 3 3.92E-05 81.13165516 0.06449 

29 3 1.31E-05 78.40206661 0.03994 

105 0 3.15E-05 78.17122694 0.0405 

Average 4E-05 75.15053259 0.049373 

Variance 9.05E-10 29.88880099 0.000114 

3.3 Comparison between Slowloris and BoNeSi 
Figure 5 presents the box plots for the Position metric for both 

Slowloris and BoNeSi. The Slowloris box plot shows good results 

for the 75% of the distribution, but the remaining 25% reaches 
high values, thus the distribution is skewed. The BoNeSi box plot 
has a larger interquartile range showing that the results for the 
Position metric exhibit more variance in the case of BoNeSi. 
Figure 6 presents the box plots for the Probability metric for both 
Slowloris and BoNeSi. Similar values are observed up to the 
distribution’s 75% percentile, although in the case for BoNeSi the 
top 25% measurements show significantly worse detection 
performance. The upper whisker in this case represents a useful 
metric and can be considered to be the threshold value for 
detection. Apache Spot allows the user to set a threshold value 
for anomaly detection and restrict the data that are analysed and 
visualized in its Operational Analytics. Considering that the 
overload of information that typically occurs in cyber security 
response, this is an important metric to estimate for a variety of 
cyber attacks. However, it is also shown that attacks with 
differing velocity and volume characteristics can vary in their 
detection thresholds. Figure 7 presents the ROC curve of the 
eighth Slowloris test as an example. Figure 8 illustrates the ROC 
curve of the second BoNeSi test as an example. 

 

 

Figure 5: Position metric for Slowloris and BoNeSi. 

 

Figure 6: Probability metric for Slowloris and BoNeSi. 
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Figure 7: A ROC curve for Slowloris. 

 

Figure 8: A ROC curve for BoNeSi. 

3.4 Iodine 
Table 3 presents the results of the ten executions of the 

Iodine attack experiment, while Figure 9 illustrates the ROC 
curve of the second test as an example. In the case of iodine, the 
results vary, showing that Spot does not effectively detect this 
attack. The low AUROC value shows that the classifier would 
need additional intelligence to better distinguish between false 
and true positives. Metrics such as the length of the DNS packet 
or the information entropy for the tunneled traffic would be 
necessary to improve the detection capabilities of Apache Spot in 
the context of this attack. 

 

Figure 9: ROC curve of Iodine test #4. 

Table 3: Iodine test results. 

Position First 100 Probability Occurrence % AUROC 

4396 0 0.001214 2.654931102 0.106351 

4832 0 3.72E-04 0.96459498 0.143839 

1323 0 6.80E-04 3.266025207 0.141951 

48 5 1.95E-04 4.329268293 0.421774 

6599 0 3.50E-04 0.887902331 0.278647 

81 4 3.82E-04 2.47187685 0.317081 

619 0 0.001579 3.081664099 0.203787 

3 8 2.35E-04 3.437132785 0.337798 

1005 0 0.001846 3.58829084 0.121898 

2 1 0.001191 6.375033342 0.138234 

Average 0.00080443 3.105671983 0.221136 

Variance 3.65E-07 2.518062774 0.012091 
 

3.5 Varying traffic conditions 
In order to assess how traffic volume affects the detection 

capabilities of Apache Spot, additional tests were performed with 
Slowloris, with a three-fold increase in normal traffic (in terms 
of number of flows) and a shorter attack window that produced 
less malicious flows. In effect, the occurrence percentage of the 
attack was decreased, and more normal traffic was provided to 
the machine learning model. 

In Table 4 and Figure 10, the ML algorithm ranked about 90% 
of the results with even lower probability, as it stood out more as 
an anomaly. The first 100 worst ranked results still contained a 
large number of false positives just as in the case of the initial 
setup. This increase can be explained by the lower occurrence of 
the attack, which makes the attack stand up as an anomaly. 
Another factor contributing to the increase of AUROC is the 
lower number of attack flows which results in an increase of the 
true positive rate (ROC). Figure 11 compares the probabilities 
assigned to normal legitimate traffic versus the Slowloris attack 
traffic. Normal traffic is shown to feature a wider range of 
operations (between the whiskers) which is expected, as it is 
ranked as more probable. The area in the boxplot near the 
normal traffic lower whisker, shows that normal and attack 
traffic probabilities overlap. This designates the area where the 
false positives may occur. Additional computation or an 
appropriate classification algorithm is necessary in this case, to 
reduce the number of false positive detections. Hence, while 
Apache Spot can effectively detect anomalies in the network 
traffic, it is not able to distinguish between atypical legitimate 
traffic and attack traffic without further effort.  
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Table 4: Slowloris results for the modified traffic flow 
pattern. 

Position First 100 Probability Occurrence % AUROC 
3 2 7.12E-06 0.752554059 0.92927 
62 4 8.25E-06 0.436317896 0.97269 
3 1 6.78E-06 0.407834793 0.97041 
4 2 7.22E-06 0.512330365 0.97414 
3 5 6.74E-06 0.668097628 0.96869 
3 3 7.44E-06 0.578707049 0.97531 
2 6 5.06E-06 0.788402504 0.93475 
132 0 1.50E-05 0.754733042 0.94012 
66 3 7.38E-06 0.584756899 0.95739 
3 4 5.32E-06 0.710545745 0.96549 

Average 7.63E-06 0.619427998 0.958827 
Variance 7.64E-12 0.01865386 0.000309 

 

 

Figure 10: Probability metric for the Slowloris attack, 
initial vs. modified traffic flow pattern. 

 

Figure 11: Probability metric for normal and attack traffic 
for the Slowloris attack, modified traffic flow pattern. 

4 CONCLUSIONS 
In this work, the Apache Spot machine learning framework 

was deployed and assessed in terms of its performance regarding 
the detection of three different attacks, namely Slowloris, UDP 
flooding and DNS tunneling. Results show that Apache Spot can 
successfully detect attacks such as Slowloris, which generate 
small amounts of network traffic and usually evade common 
intrusion detection systems (IDS). The results were less 
promising in the case of UDP flooding and DNS tunneling. In the 

case of UDP flooding, the amount of attack traffic disrupted the 
trained model and caused many misclassifications. 

Results showed that the velocity and volume of the attack 
traffic, with respect to the normal traffic on the network, are 
determining factors that affect its detection capabilities. The 
machine learning algorithm requires a large amount of normal 
traffic to be trained and create a reference model for normal 
traffic. As normal traffic increases, true positive rates increase as 
well. False positives occurred in all analyses more frequently 
than false negatives, although they were ranked with low 
probabilities, as top threats. The high false positive rate may 
indicate a vulnerability that can lead to the exploitation of ML-
based systems to induce a Denial-of-Service by misclassifying 
legitimate traffic as anomalous and applying remediation 
measures against it.  

The results were positively affected by the increase in normal 
traffic and the decrease of the attack traffic which lead to a lower 
occurrence of the attack. Based on these conclusions, our future 
work is steered towards estimating how the ML algorithms 
would be vulnerable to poisoning attacks that would cause the 
training model to be compromised and cause misclassifications, 
in the form of false positives and false negatives. 
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