
Evaluation of Apache Spot’s machine learning capabilities in an
SDN/NFV enabled environment

Workshop paper

Christos M. Mathas

University of Peloponnese
Greece

mathas.ch.m@uop.gr

Olga E. Segou, PhD
Orion Innovations PC

Greece
osegou@orioninnovations.gr

Georgios Xylouris
Orion Innovations PC

Greece
gxilouris@orioninnovations.gr

Dimitris Christinakis
Orion Innovations PC

Greece
dchristinakis@orioninnovations.gr

Michail-Alexandros Kourtis
Institute of Informatics and

Telecommunications
National Centre for Scientific Research

“Demokritos”
Greece

akis.kourtis@iit.demokritos.gr

Costas Vassilakis
University of Peloponnese

Greece
costas@uop.gr

Anastasios Kourtis
Institute of Informatics and Telecommunications

National Centre for Scientific Research “Demokritos”
Greece

kourtis@iit.demokritos.gr

ABSTRACT
Software Defined Networking (SDN) and Network Function
Virtualisation (NFV) are transforming modern networks towards
a service-oriented architecture. At the same time, the
cybersecurity industry is rapidly adopting Machine Learning
(ML) algorithms to improve detection and mitigation of complex
attacks. Traditional intrusion detection systems perform
signature-based detection, based on well-known malicious traffic
patterns that signify potential attacks. The main drawback of
this method is that attack patterns need to be known in advance
and signatures must be preconfigured. Hence, typical systems
fail to detect a zero-day attack or an attack with unknown
signature. This work considers the use of machine learning for
advanced anomaly detection, and specifically deploys the
Apache Spot ML framework on an SDN/NFV-enabled testbed
running cybersecurity services as Virtual Network Functions
(VNFs). VNFs are used to capture traffic for ingestion by the ML
algorithm and apply mitigation measures in case of a detected
anomaly. Apache Spot utilises Latent Dirichlet Allocation to
identify anomalous traffic patterns in Netflow, DNS and proxy
data. The overall performance of Apache Spot is evaluated by
deploying Denial of Service (Slowloris, BoNeSi) and a Data

Exfiltration attack (iodine).

CCS CONCEPTS
• Computer systems organization → Distributed
Architectures; Cloud Computing • Networks → Network
Security; Network Services • Computing Methodologies →
Machine Learning.

KEYWORDS
Software Defined Networking, Network Function Virtualisation,
Machine Learning, Latent Dirichlet Allocation, Apache Spot,
Penetration Testing, SHIELD Project.

ACM Reference format:

C. M. Mathas, O. E. Segou, G. Xylouris, D. Christinakis, M. A.
Kourtis, C. Vassilakis and A. Kourtis. 2018. SIG Proceedings
Paper in word Format. In Proceedings of CyberTIM Workshop,
ARES conference, Hamburg, Germany, August 2018 (CyberTIM
Workshop, ARES Conference 2018), 10 pages.

1 INTRODUCTION
The increasing demand for high-speed internet access has led

to the evolution of the Internet towards softwarised and more
scalable architectures. Software Defined Networking (SDN) [1]
and Network Function Virtualisation (NFV) [2] are considered
two key enabling technologies that underline the evolution of
future infrastructures. The SDN/NFV paradigm enables ISPs to

*Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
ARES 2018, August 27–30, 2018, Hamburg, Germany
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6448-5/18/08…$15.00
https://doi.org/10.1145/3230833.3233278

mailto:mathas.ch.m@uop.gr
mailto:osegou@orioninnovations.gr
mailto:gxilouris@orioninnovations.gr
mailto:dchristinakis@orioninnovations.gr
mailto:akis.kourtis@iit.demokritos.gr
mailto:costas@uop.gr
mailto:kourtis@iit.demokritos.gr

CyberTIM Workshop, ARES Conference 2018, August 2018,
Hamburg, Germany

C. M. Mathas et al.

2

compose and manage complex network services at the click of a
button, while drastically improving time and cost efficiency [3].

At the same time, the growing number of complex cyber
threats is often overlooked by traditional cybersecurity systems,
due to the size, variety and velocity of traffic data that need to be
inspected for signs of malicious activity. Cyber-attacks are
observed with increasing frequency and impact radius, even on
global scale [4]. With that in mind, governments and
organizations are increasing their cybersecurity investment to
ensure the integrity of their data and networks, focusing on
advanced systems for detection and mitigation. Signature-based
intrusion detection systems [5] search for known suspicious
patterns that are often attributed to known cyber-attacks. The
obvious drawback is that the attack signatures need to be known
in advance and the detection techniques are too rigid, making
detection harder in case of a multi-vector attack or zero-day
exploit. Anomaly detection systems [6], on the other hand, can
be trained with typical network traffic to create a baseline of
normal traffic. This is especially critical when there is no attack
signature associated with the malicious activity. Misclassified
results, such as false positive or false negative detection,
however, can have adverse operational effects.

Previous research in this area has considered a variety of
different ML algorithms for anomaly detection. The authors in
[7] follow a more general approach and present research related
to anomaly detection, without focusing on its practical use in
network security. The work in [8] and [9] focuses on surveying
intrusion detection in the context of cyber security through data
mining and machine learning methods. A multitude of methods
have been used for the implementation of machine learning
classifiers in cyber security research for anomaly detection. One
approach is that of Artificial Neural Networks (ANN) [10] that
requires a more time-consuming preprocessing stage, an ANN
training stage and an ANN decision stage. Another popular
approach is the use of a Bayesian network [11]; in that work,
Bayesian networks are used to classify operating system calls
which are the result of the reception of TCP/IP packets. The
EXPOSURE system [12] utilizes decision trees in order to
perform passive DNS analysis. Other classifiers, like Random
Forest [13] are combinations of decision trees and ensemble
learning, while Naïve Bayes [14], approaches offer a simplistic
implementation of a Bayes classifier.

This work considers the case of Apache Spot [15], a machine
learning (ML)-based platform for anomaly detection, that utilises
Latent Dirichlet Allocation [16] to detect unusual traffic patterns.
Latent Dirichlet Allocation is a Natural Language Processing
algorithm, which is a factor that sets it apart from the common
machine learning classifiers in use. Natural Language Processing
methods are easy to apply on the variety of different network
traffic logs and improve the overall threat intelligence
capabilities by including more sources of structured, human-
readable, textual data.

Other systems offer similar capabilities, such as Sqrrl [17] and
Apache Metron [18]; Apache Spot sets itself apart not only by its
machine learning capabilities, but also from its Open Data Model

(ODM). As machine learning becomes a mainstream technology
that is present in many consumer products, the cybersecurity
industry has been quick to adopt it to improve on the existing
defense capabilities. ODM brings together all security-related
data (event, user, network, endpoint, etc.) into a singular view
that can be used to detect threats more effectively. It also
provides the ability to share and reuse threat detection models,
analytics, and more. This improves interoperability among
anomaly detection platforms and fosters the creation of an open
data community.

Apache Spot is deployed and evaluated in the SHIELD [19]
[20] SDN/NFV-enabled testbed in Athens, Greece. SHIELD
proposes “a universal solution for dynamically establishing and
deploying virtual security infrastructures into ISP and corporate
networks”. The project builds on the huge momentum of
Network Functions Virtualisation (NFV) in order to virtualise
security appliances into virtual Network Security Functions
(vNSFs), to be instantiated within the network infrastructure.

Spot’s integration with SDN/NFV leads to improved data
ingestion, while cybersecurity VNFs can immediately receive
threat information and apply mitigation measures. Its overall
performance is tested using various penetration testing tools. In
this work UDP flooding [21], Slowloris [21] and DNS Tunneling
[22] attacks are performed. These attacks were selected due to
the variation in the attack traffic in terms of velocity, variety and
volume. In the case of UDP flooding, the attack traffic features
high volume and velocity. Slowloris is a protocol-based Denial of
Service attack that generates much smaller amounts of malicious
incoming traffic. DNS tunneling is used as an example of a DNS-
based data exfiltration attack that generates small amounts of
traffic.

The rest of this paper is organized as follows: Section 2
presents the SDN/NFV testbed and Spot’s core functions,
deployment and mode of operation. It also presents the
penetration testing tools used to perform the attacks against the
network. Section 3 analyses the results of the penetration tests.
Section 4 concludes this paper and discusses future work. The
presented analysis aims to explore the performance of Apache
Spot in this network setup, evaluate machine learning-based
attack detection, and investigate Apache Spot configuration
optimization for improvement of its performance in an
SDN/NFV context.

2 EXPERIMENTAL AND COMPUTATIONAL
DETAILS

2.1 The SHIELD Environment
SHIELD aims to develop a next-generation cybersecurity

platform tailored for software networks, based on the SDN/NFV
paradigm, big data and infrastructure attestation. The core
components of the SHIELD platform (Figure 1) are deployed in
two SDN/NFV testbeds in Athens and Barcelona, and include
[23] [24]:

Evaluation of Apache Spot’s machine learning capabilities in an
SDN/NFV enabled environment

CyberTIM Workshop, ARES Conference 2018, August 2018,
Hamburg, Germany

 3

 The vNSF Orchestrator (vNSFO): vNSFO is based on
the ETSI-supported open-source Management and
Orchestration framework (Open Source MANO). The
OSM orchestrator [25] is used to manage the lifecycle
of the vNSFs. OSM on-boards vNSF packages,
instantiates Network Services (NSs) in specific points
of presence within the network infrastructure and
monitors the running services.

 The Virtual Infrastructure Manager (VIM): ETSI-
MANO [26] defines the VIM as the framework that
manages computing, storage and network resources.
SHIELD deploys the OpenStack platform as a VIM.

 The SDN Controller: OpenDaylight Carbon [27] is
used as the SDN controller.

 The Data Analysis and Remediation Engine
(DARE): The DARE is an information-driven intrusion
detection and prevention platform that stores and
analyses heterogeneous network information,
previously collected via the vNSFs.

 The virtual Network Security Functions (vNSFs):
OSM deploys cybersecurity as-a-Service in the form of
KVM-based vNSFs (such as firewalls, deep packet
inspection, intrusion detection etc.)

 The vNSF Store: Registers valid vNSF images from
vNSF developers.

 The Trust Monitor [28]: Integrity of the NFVI, the
vNSFs and the SDN Controller is checked periodically
to detect compromised software and/or hardware. This
work is based on the Trusted Computing paradigm and
its Remote Attestation workflow.

 The Security dashboard and controller: The
dashboard provides an overview of the security status
and allows the operators to apply remediation actions
received by the remediation engine of the DARE.

The DARE features cognitive and analytical components
capable of predicting specific vulnerabilities and attacks. The
processing and analysis of large amounts of data is carried out
using big data analytics and ML techniques. Furthermore, the
DARE remediation engine utilises the outputs from the cognitive
and data analytics modules and various contextual information
to determine a mitigation plan for the existing threats. The
mitigation actions are relayed to the vNSFO in the XML-based
Medium-Level Security Policy Language (MSPL) format [29]. The

vNSFO then sends the appropriate rules to the vNSF, which
applies them. For example, SHIELD deploys an OVS-based
firewall vNSFs in a KVM/CentOS virtual machine, which
receives rules to block IP addresses etc. This paper focuses on
Apache Spot which is deployed as a DARE component. The
anomalies detected by Apache Spot are passed to the
remediation engine, which provides specific rules to the SHIELD
vNSFs, such as blocking or rate limiting rules etc. This paper
focuses on the Athens experimentation testbed, which is
deployed and maintained by the National Centre for Scientific
Research “Demokritos” (NCSRD), Orion Innovations P.C. and
Space Hellas S.A. The Athens testbed provides ETSI-compliant
[2] Network Function Virtualisation Infrastructure (NFVI) and
deploys vNSFs, such as virtualized Firewalls, Deep Packet
Inspection, Intrusion Detection and an instance of Apache Spot.

Figure 1: The SHIELD Platform.

2.2 Apache Spot
Apache Spot is an open-source platform that aims to facilitate

the detection of cyber threats by using machine learning, rather
than traditional signature-based detection. Apache Spot collects
NetFlow, DNS and proxy data and analyses them to learn what
constitutes typical network traffic. Anomalous traffic patterns
are then identified and reported. The following subsections
present Spot’s core functions (Figure 2).

2.2.1 Data Ingestion
The data ingestion framework follows a distributed

architecture that minimises the possibility of data loss and

Figure 2: Apache Spot core functions.

CyberTIM Workshop, ARES Conference 2018, August 2018,
Hamburg, Germany

C. M. Mathas et al.

4

ensures the availability of the service, even under heavy data
loads that require significant processing power.

NetFlow, DNS and proxy data are captured in the network in
nfcapd1, pcap2 and bluecoat3 formats, respectively. The
corresponding files are aggregated in Spot’s filesystem, which is
monitored by Collector daemons. Spot’s Collectors initiate the
ingestion process when new data are found in the filesystem. At
this point, the data are human-readable. After the collection of
the data, Spot’s Worker daemons ingest the data, convert them
to Avro-Parquet format4 and place them in a Hive database.
Workers are connected to Apache Kafka topics and partitions.
There are two kinds of workers:

 Python workers which use multithreading to process
the NetFlow and DNS data, and

 Spark streaming workers which execute a Spark
application to read data from Apache Kafka.

The ingestion of the data in Hive tables at this point is
necessary, since it prepares them in a form that is easily parsed
by the Machine Learning algorithm.

2.2.2 Machine Learning
Apache Spot’s machine learning includes routines for

analyzing suspicious connects from the collection of the
previously ingested data, based on Latent Dirichlet Allocation
(LDA) [16]. LDA is a generative probabilistic model for
collections of discrete data such as text corpora. Specifically,
LDA is a topic modeling algorithm that defines a three-level
hierarchical Bayesian model, in which each item of a collection is
modeled as a finite mixture over an underlying set of topics. For
its usage in Apache Spot it has been implemented using Spark
MLlib [30]. Apache Spot applies LDA to network traffic, by
converting the log entries to words through aggregation and
discretization. This way, documents correspond to IP addresses,
words to log entries (corresponding to an IP address) and topics
to normal network traffic profiles. As a result, Apache Spot
deduces a probabilistic model for each IP’s behavior. The model
assigns to each log entry a probability. The events (log entries)
with the lowest probabilities are flagged as suspicious for further
analysis. The output of this analysis is a list which includes the
events that are less probable to occur according to a model of
normal traffic conditions. Less probability of encountering a
specific type of traffic means that this traffic is considered by
Spot as the most suspicious.

2.2.3 Operational Analytics & Semi-Supervised Learning
Apache Spot provides a graphical Operational Analytics (OA)

interface where it analyzes and presents the results of the
machine learning algorithm. The results are divided in NetFlow,
DNS, Proxy and by date of creation. Apache Spot allows semi-
supervised learning through its OA module, in the sense that the

1 https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_pape
r09186a00800a3db9.html
2 https://en.wikipedia.org/wiki/Pcap
3 ELFF-compatible format, http://www.w3.org/TR/WD-logfile.html
4 https://avro.apache.org/docs/1.2.0/ and http://parquet.apache.org/

user can evaluate and affect the model by scoring IP addresses
and ports in terms of possible risks. These scores become
available for use in the next execution of the ML algorithm. In
this experimental deployment, no scoring was performed on the
user-side.

2.3 Penetration Testing
The following attacks were utilized to assess Spot’s

performance: Slowloris, UDP Flooding and DNS Tunneling.

2.3.1 Slowloris
Slowloris [31] is a protocol-based DoS attack, that exploits

HTTP protocol mechanisms to overwhelm the target, without
the need to generate a massive flood of traffic. This attack
establishes a lot of partial HTTP connections, that are not
allowed to complete or to time-out. It is, therefore, a low
bandwidth attack with almost no side-effects on other services
and ports. By sending partial requests, Slowloris establishes
connections with the target server which remain active as the
server waits for the requests to complete, thus depleting its
network resources. The server quickly reaches its maximum
number of concurrent connections, which results in Denial of
Service. The fact that this attack uses legitimate and not
malformed packets, low bandwidth, and doesn’t affect other
services makes it very difficult for classic intrusion detection
systems to detect.

2.3.2 UDP Flooding
BoNeSi [32] is a tool for simulating DDoS attacks. The attack

is deployed using the default settings, which results to the
creation of a UDP flood. The UDP protocol is connectionless and
sessionless, which means that it establishes connections without
the use of a three-way handshake like the TCP protocol. This
makes it easy to abuse in order to overwhelm the target with a
flood of UDP packets containing random data and it also means
that it doesn’t require a lot of resources to be committed by the
attacker, other than network bandwidth, to be successful. The
target server tries to find the service to which these packets are
addressed to by reading the data and when it fails to find the
service, it replies with “ICMP destination unreachable” packets.
The UDP flood differs from Slowloris in the sense that it requires
massive amounts of traffic to compromise the target server.

2.3.3 DNS Tunneling
The DNS tunneling [22] attack is used to bypass firewall

restrictions and exfiltrate data from a network and/or establish a
command and control channel between a commanding host
outside the firewalled network perimeter and a
compromised/accomplice host inside this perimeter. The data or
the commands and their responses, are encoded in DNS queries
and directed to a DNS server operated by the attacker. The
malicious server is assigned a domain, so that any DNS query
containing this domain is forwarded to the attacker. Iodine [33]
is a tool for sending IPV4 data through a DNS server, by
deploying a DNS tunnel among two endpoints. The iodine client
serves as the compromised system that sends data through the

Evaluation of Apache Spot’s machine learning capabilities in an
SDN/NFV enabled environment

CyberTIM Workshop, ARES Conference 2018, August 2018,
Hamburg, Germany

 5

tunnel, and the iodine server is deployed as the malicious
authoritative DNS server that receives the exfiltrated data or
handles the command and control channel.

2.4 Deployment Configuration
The installation of Apache Spot (Figure 3) was made on a

Cloudera Cluster version 5.11.1y. A minimum of three Cloudera
nodes is required in order to deploy the Setup, Ingestion,
Machine Learning and Operational Analytics components of
Apache Spot. Three hosts were set up running Ubuntu Trusty
14.04 and the prerequisite components (HDFS, Hive, Impala,
Kafka, Spark, Yarn, and Zookeeper). Our setup with the 3 Virtual
Machines (VMs) was the following:

 Cloudera-host-1.shield.com: Configured as the Machine
Learning (ML) Node, includes the Yarn Node Manager;

 Cloudera-host-2.shield.com: Configured as the Setup
and Ingest Node, also known as the Edge Gateway
(GW node), includes Kafka Broker and HDFS NFS
Gateway; and

 Cloudera-manager.shield.com: Operational Analytics
(OA) node, includes Cloudera Manager.

In addition to Spot, two virtual machines running Ubuntu
16.04 Server and a virtual machine running Kali Linux 2017.2
were deployed and configured as follows:

 The target server: The victim server that is under
Apache Spot’s supervision.

 The traffic generator: Replays files which contain
normal, legitimate traffic.

 The attacker: A Kali Linux VM, which performs the
attacks against the victim webserver.

Network traffic was recorded and anonymised from the
network of the Media Networks Laboratory (at the Institute of
Informatics and Telecommunications of NCSR Demokritos) and
saved in pcap files. For the NetFlow Telemetry, the target server
forwards the traffic from its network interface, using the fprobe
tool, to cloudera-host-2, which is the server responsible for the
data ingestion function of Apache Spot. Cloudera-host-2 records
the traffic in nfcapd files. The attacks are deployed through Kali
Linux in real time (during the replay of the network traffic from
the traffic generator). This way, they are also forwarded to
cloudera-host-2 and saved in the aforementioned nfcapd files.

For the DNS telemetry, three virtual machines running

Ubuntu 16.04 Server and one virtual machine running Ubuntu
14.04 Server were deployed and configured as follows:

 The legitimate users 1 and 2: These users load well-
known webpages and save the traffic in pcap files, thus
creating normal DNS traffic.

 Iodine Client: Loads well-known websites, but
additionally sends data using the iperf tool through a
DNS tunnel which is established with the Iodine Server
and these are saved in pcap files.

 Iodine Server: Receives the data sent by the Iodine
Client using the iperf tool at the network interface of
the DNS tunnel.

In the DNS tunneling scenario, PhantomJS [34] is used to
create traffic towards Alexa’s top 100 websites [35]. This
generates the normal DNS traffic for this experiment, which is
saved in pcap files ingested by Apache Spot. The iodine client
signifies the compromised system that has set up the tunnel.
Iperf [36] traffic is sent through the tunnel, encoded in the DNS

Figure 3: Deployment configuration of the experimental setup.

CyberTIM Workshop, ARES Conference 2018, August 2018,
Hamburg, Germany

C. M. Mathas et al.

6

queries towards the malicious authoritative DNS server (the
iodine server).

Each attack was executed ten times, and the results were
collected and analyzed. The analysis results are presented and
discussed in the following section.

3 RESULTS AND DISCUSSION
Apache Spot outputs the results of the ML algorithm in the

form of a csv file. The csv file contains a ranking of the network
traffic with the first entry being the one considered the most
dangerous. Each entry contains the probability of being normal
as calculated by the machine learning algorithm. Furthermore,
each entry provides extensive information like date and time,
source and destination IP addresses, source and destination
ports, network protocol etc. The file is further processed to
obtain the following metrics:

 The attack ranking, meaning the position of the first
entry which is part of the attack. This metric is labeled
as “Position” in our results.

 The probability assigned to the first entry which is part
of the attack. This metric is labeled as “Probability” in
our results.

 The number of entries which are part of the attack in
the first 100 entries of the CSV file. This metric is
labeled as “First 100” in our results.

 The percentage of the entries which are part of the
attack for the whole CSV file. This metric is labeled as
“Occurrence %” in our results.

In order to get a better visualization of the distribution
between the ten attacks executed with each penetration testing
tool and determine the performance of the classifier, results are
presented in boxplot and Receiver Operating Characteristic
(ROC) curve. A receiver operating characteristic (ROC) curve
[37] is a technique used for visualizing the performance of
binary classifiers. The plot is created by using the True Positive
Rate of the classifier, also known as sensitivity and the False
Positive Rate, also known as Fall-Out. For example, if a given
result x is a true positive the curve moves 1/(#-of-positives)
upwards and if false positive 1/(#-of-negatives) to the right. The
area under the ROC curve, called AUROC, represents the
probability that the classifier will rank a randomly chosen true
positive instance higher than a randomly chosen false positive
instance.

The boxplot (also known as a box-and-whiskers plot) is a
single dimensional figure that illustrates the overall properties of
a selected dataset in a simple visualization. The lower boundary
of the box represents the first quartile Q1, i.e. the boundary that
denotes 25% of the measurements. The median (Q2) lies within
the box, and the top boundary of the box represents the Q3
quartile (75% of the measurements). The relative position of the
median, with respect to Q1 and Q3, can indicate whether a
distribution is symmetrical or skewed. The interquartile range
IQR is defined as:

The system’s range of normal operations is defined by the

whiskers, which are calculated as a function of the interquartile
range:

Where k is a constant, set to k=1.5 as per Tukey’s

recommendation [38]. If the lower and upper whisker exceed the
range of the minimum and maximum value, they are set to
match them. If there are measurements that lie outside of the
range defined by the whiskers, they are considered outliers
(Figure 4).

Figure 4: Box Plot Definition.

3.1 Slowloris
Table 1 illustrates experimental results after the ten

executions of the Slowloris attack (in chronological order). The
continuously open TCP connections make it stand out as an
anomaly inside the data gathered from the network and thus it’s
being ranked as an anomaly. Although the first instance of the
detected anomaly is ranked highly in terms of its position, the
low number of anomalies in the first 100 results indicates the
presence of numerous false positives. Slowloris is a low
bandwidth attack taking up 2-4% of total traffic, as indicated by
the low Occurrence percentage. A better indication of how
efficiently Apache Spot detects the Slowloris attack is the high
average AUROC value. AUROC evaluates the results of the
machine learning model across the entire set of measurements.

Evaluation of Apache Spot’s machine learning capabilities in an
SDN/NFV enabled environment

CyberTIM Workshop, ARES Conference 2018, August 2018,
Hamburg, Germany

 7

Table 1: Slowloris test results.

Position First 100 Probability Occurrence % AUROC

1 1 3.03E-05 3.388494878 0.70613

45 2 4.09E-05 3.109037018 0.83707

3 4 2.95E-05 3.802653298 0.71053

46 1 3.1E-05 2.958544408 0.80984

2 4 2.31E-05 2.6737318 0.78203

1 4 1.95E-05 2.842614412 0.76789

1 2 1.93E-05 2.782220821 0.75087

3 6 2.38E-05 2.995452056 0.79304

6 1 2.48E-05 2.626526191 0.82088

1 3 1.95E-05 2.647144165 0.82342

Average 2.62E-05 2.982641905 0.780171

Variance 4.67E-11 0.13871497 0.002128

3.2 BoNeSi
Table 2 depicts the results of ten executions of the BoNeSi

attack (in chronological order). The BoNeSi attack was not
successfully detected, which is attributed to the high occurrence
percentage. The traffic generated by the UDP flood is much
higher than normal traffic and thus disrupts the trained model.
The algorithm starts considering the attack traffic as normal
traffic rather than an anomaly. This is also supported by the low
average AUROC value, which indicates that the BoNeSi traffic
was considered as normal by the machine learning model.

Table 2: BoNeSi test results.

Position First 100 Probability Occurrence % AUROC

40 2 3E-05 76.27055362 0.04333

36 3 1.98E-05 76.12198357 0.04168

63 2 3.92E-05 72.17966475 0.03832

28 2 2.08E-05 79.11053165 0.05949

124 0 5.88E-05 72.08022243 0.06492

132 0 0.000118 61.87038159 0.05606

47 2 3E-05 76.16703952 0.04501

72 3 3.92E-05 81.13165516 0.06449

29 3 1.31E-05 78.40206661 0.03994

105 0 3.15E-05 78.17122694 0.0405

Average 4E-05 75.15053259 0.049373

Variance 9.05E-10 29.88880099 0.000114

3.3 Comparison between Slowloris and BoNeSi
Figure 5 presents the box plots for the Position metric for both

Slowloris and BoNeSi. The Slowloris box plot shows good results

for the 75% of the distribution, but the remaining 25% reaches
high values, thus the distribution is skewed. The BoNeSi box plot
has a larger interquartile range showing that the results for the
Position metric exhibit more variance in the case of BoNeSi.
Figure 6 presents the box plots for the Probability metric for both
Slowloris and BoNeSi. Similar values are observed up to the
distribution’s 75% percentile, although in the case for BoNeSi the
top 25% measurements show significantly worse detection
performance. The upper whisker in this case represents a useful
metric and can be considered to be the threshold value for
detection. Apache Spot allows the user to set a threshold value
for anomaly detection and restrict the data that are analysed and
visualized in its Operational Analytics. Considering that the
overload of information that typically occurs in cyber security
response, this is an important metric to estimate for a variety of
cyber attacks. However, it is also shown that attacks with
differing velocity and volume characteristics can vary in their
detection thresholds. Figure 7 presents the ROC curve of the
eighth Slowloris test as an example. Figure 8 illustrates the ROC
curve of the second BoNeSi test as an example.

Figure 5: Position metric for Slowloris and BoNeSi.

Figure 6: Probability metric for Slowloris and BoNeSi.

CyberTIM Workshop, ARES Conference 2018, August 2018,
Hamburg, Germany

C. M. Mathas et al.

8

Figure 7: A ROC curve for Slowloris.

Figure 8: A ROC curve for BoNeSi.

3.4 Iodine
Table 3 presents the results of the ten executions of the

Iodine attack experiment, while Figure 9 illustrates the ROC
curve of the second test as an example. In the case of iodine, the
results vary, showing that Spot does not effectively detect this
attack. The low AUROC value shows that the classifier would
need additional intelligence to better distinguish between false
and true positives. Metrics such as the length of the DNS packet
or the information entropy for the tunneled traffic would be
necessary to improve the detection capabilities of Apache Spot in
the context of this attack.

Figure 9: ROC curve of Iodine test #4.

Table 3: Iodine test results.

Position First 100 Probability Occurrence % AUROC

4396 0 0.001214 2.654931102 0.106351

4832 0 3.72E-04 0.96459498 0.143839

1323 0 6.80E-04 3.266025207 0.141951

48 5 1.95E-04 4.329268293 0.421774

6599 0 3.50E-04 0.887902331 0.278647

81 4 3.82E-04 2.47187685 0.317081

619 0 0.001579 3.081664099 0.203787

3 8 2.35E-04 3.437132785 0.337798

1005 0 0.001846 3.58829084 0.121898

2 1 0.001191 6.375033342 0.138234

Average 0.00080443 3.105671983 0.221136

Variance 3.65E-07 2.518062774 0.012091

3.5 Varying traffic conditions
In order to assess how traffic volume affects the detection

capabilities of Apache Spot, additional tests were performed with
Slowloris, with a three-fold increase in normal traffic (in terms
of number of flows) and a shorter attack window that produced
less malicious flows. In effect, the occurrence percentage of the
attack was decreased, and more normal traffic was provided to
the machine learning model.

In Table 4 and Figure 10, the ML algorithm ranked about 90%
of the results with even lower probability, as it stood out more as
an anomaly. The first 100 worst ranked results still contained a
large number of false positives just as in the case of the initial
setup. This increase can be explained by the lower occurrence of
the attack, which makes the attack stand up as an anomaly.
Another factor contributing to the increase of AUROC is the
lower number of attack flows which results in an increase of the
true positive rate (ROC). Figure 11 compares the probabilities
assigned to normal legitimate traffic versus the Slowloris attack
traffic. Normal traffic is shown to feature a wider range of
operations (between the whiskers) which is expected, as it is
ranked as more probable. The area in the boxplot near the
normal traffic lower whisker, shows that normal and attack
traffic probabilities overlap. This designates the area where the
false positives may occur. Additional computation or an
appropriate classification algorithm is necessary in this case, to
reduce the number of false positive detections. Hence, while
Apache Spot can effectively detect anomalies in the network
traffic, it is not able to distinguish between atypical legitimate
traffic and attack traffic without further effort.

Evaluation of Apache Spot’s machine learning capabilities in an
SDN/NFV enabled environment

CyberTIM Workshop, ARES Conference 2018, August 2018,
Hamburg, Germany

 9

Table 4: Slowloris results for the modified traffic flow
pattern.

Position First 100 Probability Occurrence % AUROC
3 2 7.12E-06 0.752554059 0.92927
62 4 8.25E-06 0.436317896 0.97269
3 1 6.78E-06 0.407834793 0.97041
4 2 7.22E-06 0.512330365 0.97414
3 5 6.74E-06 0.668097628 0.96869
3 3 7.44E-06 0.578707049 0.97531
2 6 5.06E-06 0.788402504 0.93475
132 0 1.50E-05 0.754733042 0.94012
66 3 7.38E-06 0.584756899 0.95739
3 4 5.32E-06 0.710545745 0.96549

Average 7.63E-06 0.619427998 0.958827
Variance 7.64E-12 0.01865386 0.000309

Figure 10: Probability metric for the Slowloris attack,
initial vs. modified traffic flow pattern.

Figure 11: Probability metric for normal and attack traffic
for the Slowloris attack, modified traffic flow pattern.

4 CONCLUSIONS
In this work, the Apache Spot machine learning framework

was deployed and assessed in terms of its performance regarding
the detection of three different attacks, namely Slowloris, UDP
flooding and DNS tunneling. Results show that Apache Spot can
successfully detect attacks such as Slowloris, which generate
small amounts of network traffic and usually evade common
intrusion detection systems (IDS). The results were less
promising in the case of UDP flooding and DNS tunneling. In the

case of UDP flooding, the amount of attack traffic disrupted the
trained model and caused many misclassifications.

Results showed that the velocity and volume of the attack
traffic, with respect to the normal traffic on the network, are
determining factors that affect its detection capabilities. The
machine learning algorithm requires a large amount of normal
traffic to be trained and create a reference model for normal
traffic. As normal traffic increases, true positive rates increase as
well. False positives occurred in all analyses more frequently
than false negatives, although they were ranked with low
probabilities, as top threats. The high false positive rate may
indicate a vulnerability that can lead to the exploitation of ML-
based systems to induce a Denial-of-Service by misclassifying
legitimate traffic as anomalous and applying remediation
measures against it.

The results were positively affected by the increase in normal
traffic and the decrease of the attack traffic which lead to a lower
occurrence of the attack. Based on these conclusions, our future
work is steered towards estimating how the ML algorithms
would be vulnerable to poisoning attacks that would cause the
training model to be compromised and cause misclassifications,
in the form of false positives and false negatives.

ACKNOWLEDGMENTS
This work was partially supported by the SHIELD Project
(“SHIELD: Securing against intruders and other threats through
a NFV-enabled environment”) funded under the European
Union’s Horizon 2020 Research and Innovation Programme,
under Grant Agreement No. 700199. This work was performed in
the context of the diploma thesis: Christos M. Mathas,
“Evaluation of Apache Spot by using penetration testing
techniques” (Supervisor: Costas Vassilakis, 2018, original text in
Greek) that was completed in the Department of Informatics and
Telecommunications of the University of Peloponnese (Tripolis,
Greece) and the Media Networks Laboratory, National Centre for
Scientific Research “Demokritos” (Athens, Greece), accessible at
https://soda.dit.uop.gr/sites/soda.dit.uop.gr/files/mathas-bsc-
thesis-final.pdf .

REFERENCES
[1] H Kim and N Feamster, 2013, "Improving network management with

software defined networking," IEEE Communications Magazine, vol. 51, no. 2,
pp. 114-119.

[2] ETSI, 2014, "Network Functions Virtualisation (NFV); Virtual Network
Functions Architecture," ETSI GS NFV-SWA 001 V1.1.1 (2014-12).

[3] BusinessWire, 2013, Research and Markets: The Network Functions
Virtualization (NFV) Market: Business Case, Market Analysis & Forecasts 2014 -
2019.

[4] Symantec Security Center, 2018, "Internet Security Threat Report,".

[5] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan
Tung, 2013, "Intrusion detection system: A comprehensive review," Elsevier
Journal of Network and Computer Applications, vol. 36, no. 1, pp. 16-24.

[6] P.García-Teodoro, J.Díaz-Verdejo, G.Maciá-Fernándeza, and E.Vázquez, 2009,
"Anomaly-based network intrusion detection: Techniques, systems and
challenges," Elsevier Computers & Security, vol. 28, no. 1-2, pp. 18-28.

[7] Arindam Banerjee, Vipin Kumar Varun Chandola, 2009 "Anomaly Detection:

https://soda.dit.uop.gr/sites/soda.dit.uop.gr/files/mathas-bsc-thesis-final.pdf
https://soda.dit.uop.gr/sites/soda.dit.uop.gr/files/mathas-bsc-thesis-final.pdf

CyberTIM Workshop, ARES Conference 2018, August 2018,
Hamburg, Germany

C. M. Mathas et al.

10

A Survey," ACM Computing Surveys, vol. 41, no. 3, July 2009.

[8] D. K. Bhattacharyya, J. K. Kalita Monowar H. Bhuyan, 2014, "Network
Anomaly Detection: Methods, Systems and Tools," IEEE Communications
Surveys & Tutorials , vol. 16, no. 1, pp. 303-336, First Quarter 2014.

[9] Erhan Guven Anna L. Buczak, 2016, "A Survey of Data Mining and Machine
Learning Methods for Cyber Security Intrusion Detection," IEEE
Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1153 - 1176, First
Quarter 2016.

[10] Chandrika Palagiri, Rasheda Smith, Boleslaw Szymanski, Mark Embrechts
Alan Bivens, 2002, "Network-Based Intrusion Detection Using Neural
Networks," in Intelligent Engineering Systems through Artificial Neural
Networks ANNIE-2002, New York, pp. 1-6.

[11] D. Mutz, W. Robertson, F. Valeur C. Kruegel, 2003, "Bayesian event
classification for intrusion detection," in 19th Annual Computer Security
Applications Conference, Las Vegas.

[12] E. Kirda, C. Kruegel, M. Balduzzi L. Bilge, 2011, "EXPOSURE: Finding
malicious domains using passive DNS analysis," in 18th Annual Network and
Distributed System Security Symposium, San Diego.

[13] Mohammad Zulkernine, Anwar Haque Jiong Zhang, 2008, "Random-Forests-
Based Network Intrusion Detection Systems," IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Application and Reviews), vol. 38, no. 5, pp. 649-
659, September 2008.

[14] M. R. Patra M. Panda, 2007, "Network intrusion detection using Naive Bayes,"
IJCSNS International Journal of Computer Science and Network Security, vol. 7,
no. 12, pp. 258-263, December 2007.

[15] Apache Spot. [Online]. http://spot.incubator.apache.org/

[16] David M. Blei, Andrew Y. Ng, and Michael I. Jordan, 2003 "Latent Diriclet
Allocation," Journal of Machine Learning Research, vol. 3, no. 4-5, pp. 993-
1022.

[17] Sqrrl. [Online]. https://sqrrl.com/

[18] Apache Metron: Real-time big data security. [Online].
http://metron.apache.org/

[19] G. Gardikis and et al., 2017, "SHIELD: A Novel NFV-based Cybersecurity
Framework ," in IEEE NetSoft, Bologna.

[20] The SHIELD Project: Securing against intruders and other threats through a
NFV-enabled environment. [Online]. https://torsec.github.io/shield-h2020/

[21] Tasnuva Mahjabin, Yang Xiao, Guang Sun, and Wangdong Jiang, 2017, "A
survey of distributed denial-of-service attack, prevention, and mitigation
techniques," SAGE International Journal of Distributed Sensor Networks.

[22] Ahmed Almusawi and Haleh Amintoosi, 2018, "DNS Tunneling detection
method based on multilabel support vector machine," Hindawi Security and
Communication Networks.

[23] The SHIELD Consortium, 2018, "D3.2 Updated specifications, design and
architecture for the vNSF ecosystem,".

[24] The SHIELD Consortium, 2018, "D4.2 Updated specifications, design and
architecture for the usable information-driven engine,".

[25] ETSI OSM. Open Source MANO. [Online]. https://osm.etsi.org/

[26] ETSI, 2014, "ETSI GS NFV-MAN 001 v1.1.1 Network functions
Virtualisation(NFV); Management and Orchestration,".

[27] The Linux Foundation. OpenDaylight Carbon. [Online].
https://www.opendaylight.org/what-we-do/current-release/carbon

[28] Ludovic Jacquin, Adrian L. Shaw, and Chris Dalton, 2015, "Towards trusted
software-defined networks using a hardware-based Integrity Measurement
Architecture," in 2015 1st IEEE Conference on Network Softwarization (NetSoft),
London, UK. [Online]. http://ieeexplore.ieee.org/document/7116186/

[29] Cataldo Basile, Antonio Lioy, Christian Pitscheider, Fulvio Valenza, and
Marco Vallini, 2015, "A novel approach for integrating security policy
enforcement with dynamic network virtualization," in 1st IEEE Conference on
Network Softwarization (NetSoft), London, UK.

[30] The Apache Software Foundation. Spark MLlib. [Online].
https://spark.apache.org/mllib/

[31] SlowLoris GitHub page. [Online]. https://github.com/gkbrk/slowloris

[32] BoNeSi GitHub page. [Online]. https://github.com/Markus-Go/bonesi

[33] Iodine GitHub page. [Online]. https://github.com/yarrick/iodine

[34] PhantomJS website. [Online]. http://phantomjs.org/

[35] Alexa Top 500. [Online]. https://www.alexa.com/topsites

[36] iPerf - The ultimate speed test pool for TCP, UDP and SCTP. [Online].
https://iperf.fr/

[37] Natacha Turck, Alexandre Hainard Xavier Robin, Natalia Tiberti, Frédérique
Lisacek, Jean-Charles Sanchez, and Markus Müller, 2011, "pROC: an open-
source package for R and S+ to analyze and compare ROC curves," BMC
Bioinformatics.

[38] John W. Tukey, 1977, Exploratory Data Analysis.: Addison-Wesley.

http://spot.incubator.apache.org/
https://sqrrl.com/
http://metron.apache.org/
https://torsec.github.io/shield-h2020/
https://osm.etsi.org/
https://www.opendaylight.org/what-we-do/current-release/carbon
http://ieeexplore.ieee.org/document/7116186/
https://spark.apache.org/mllib/
https://github.com/gkbrk/slowloris
https://github.com/Markus-Go/bonesi
https://github.com/yarrick/iodine
http://phantomjs.org/
https://www.alexa.com/topsites
https://iperf.fr/

