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Executive Summary  

This document describes all the activities which were carried out over the last six months of 
the project and focused on the system verification and evaluation, through the various testing, 
demonstration and pilot activities. It also analyses the results which were derived from these 
activities and presents some proposals for the further SHIELD evolution (roadmap). 

Following the implementation activities, which preceded in WP3 and WP4, the integrated 
SHIELD framework was deployed in two separate instances (with slightly different features) at 
the i2CAT (Barcelona) and ORION (Athens) premises. The two testbeds featured, among others, 
an OpenStack-based compute cluster as the main PoP for hosting the vNSF instances, a 
secondary cluster for hosting the SHIELD components, and an SDN-based network backbone, 
which connects to the external networks via a security appliance. 

The system testing activity was executed on the SHIELD instances in the two above-mentioned 
testbeds. Its aim has been to verify the proper functionality of the SHIELD platform on end-to-
end basis, against the envisaged operation as well as the system requirements laid out in D2.2. 
The test plan consists of various discrete test cases, each of which has been appropriately 
defined using a test case template. The tests verified that the SHIELD platform successfully 
implements all the foreseen functionalities, namely service creation and validation, full service 
lifecycle handling, incident detection, classification and mitigation, infrastructure and service 
attestation. These capabilities enable the full realisation of the three key system use cases (UC1, 
UC2 and UC3), as identified in D2.2. 

The tested/verified system was used to implement a set of demonstrations, each of which 
corresponded to a specific usage scenario. The scenarios included detection and automated 
mitigation of several incidents, such as: ransomware propagation, slowloris (slow DoS) attack, 
cryptomining abuse and vNSF/network integrity breach. 

These demos were implemented and showcased at the end of Y2, and further enhanced by the 
end of the project with additional features, such as multi-user support, billing, integrated 
attestation and alternative remediation options. 

In addition to the above mentioned demos, which were carried out using synthetic replayed 
traffic, SHIELD organised also pilot activities, which were conducted on operational networks 
(in SPH and NCSRD premises), in order to assess the operation of the system under realistic 
network topologies and conditions. 

Following the lab testing and the demos/pilots, SHIELD pursued an extensive open 
demonstration campaign, towards reaching out to experts outside the project team. This 
campaign included the following events: 

 Pilot workshops with TID and SPH experts outside the project team (mainly from 
cybersecurity and marketing units) to assess the results of the pilot trials. 

 A pilot workshop with CESICAT (Catalan Cybersecurity Agency), focusing on the usage 
of the SHIELD system by CERTs. 

 The project’s final workshop (“Modern Network-based Security: Softwarized 
Networking, Trusted Computing, and Artificial Intelligence for Cybersecurity”) and 
public demo at ICISSP conference in Prague, Czech republic. 
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 The project’s winter school, as part of the NeCS Cyber Security Winter School 2019, in 
Fai della Paganella near Trento, Italy. 

All these events helped to gather valuable feedback from various stakeholders of the 
cybersecurity community with respect to advantages and shortcomings of the SHIELD 
framework, further activities towards its evolution, as well as exploitation roadmaps. 

This feedback, along with internal evaluations and discussions within the project team, 
contributed to producing a technical roadmap for SHIELD, identifying specific features which 
can be implemented in the short term after the end of the project. Such features were 
identified at component level (NSFO, vNSFs, Dashboard, Attestation framework, DARE), while 
system-wide evolutions are also discussed.  

Judging from the feedback received from all the external experts who were engaged in the final 
evaluation and assessment activities, it can be deduced that SHIELD produced quite impactful 
results, and realised a definitive step towards next-generation managed security services, 
particularly suited for software-based networks (including 5G infrastructures). 
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1. INTRODUCTION  

The SHIELD project aims at delivering a next-generation Security-as-a-Service solution, based 
on virtual security infrastructures, especially tailored for software-driven networks. The SHIELD 
technical framework is quite complex and its successful operation relies on end-to-end 
coordination between the various components, installed in the service provider and customers’ 
premises. 

In this context, towards assessing the value of the SHIELD solution as a whole, the aim of WP5, 
and especially Task 5.2, is to deliver an integrated end-to-end SHIELD Demonstrator platform 
and evaluate its effectiveness and efficiency against realistic usage scenarios. 

This document describes all the activities which were carried out over the last six months of 
the project and focused on the system verification and evaluation, through the various testing, 
demonstration and pilot activities. It also analyses the results which were derived from these 
activities and presents some proposals for the further SHIELD evolution (roadmap). 

D5.2 draws inputs from the following deliverables: 

 D2.2 “Updated requirements, KPIs, design and architecture” (work in progress) is the 
final, updated version of D2.2, which was drafted concurrently with this document. D5.1 
maintains its alignment with D2.2., which currently under preparation. 

 D5.1 “Integration results of SHIELD HW-SW modules” presents the early integrated 
prototype of the SHIELD framework as well as the initial demo activities achieved at the 
end of the first year of the project. 

 D3.3 “vNSF framework ready for experiments” is the final prototype of the vNSF 
framework and the trust framework. 

 D4.3 “Information-driven engine ready for experiments” is the final prototype of the 
Data Analysis and Remediation Engine, and the SHIELD Dashboard. 

This document is organized as follows: 

 Chapter 1 (present chapters) serves as a basic introduction to this document, its scope 
and structure; 

 Chapter 2 provides an overview of the SHIELD technical framework and the main use 
cases behind it; 

 Chapter 3 describes the technical details of the two main lab testbeds which are hosting 
the SHIELD framework; 

 Chapter 4 presents the approach and methodology for the system testing and overviews 
the results of the tests; 

 Chapter 5 presents the demonstration scenarios implemented at the end of the second 
year of the project (shown, among others, in the second year review) 

 Chapter 6 presents the demonstration scenarios implemented at the end of the project 
(to be shown, among others, in the final project review) 

 Chapter 7 describes the two main open demonstration events carried out during the 
final month of the project, i.e. the final workshop and the winter school. 

Last but not least, Annex A includes the details and the results of the various test cases of 
SHIELD. 
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2. THE SHIELD PLATFORM AND USE CASES  

2.1. Platform overview 

The mission of SHIELD is to create a next-generation cybersecurity platform for advanced 
SecaaS offerings tailored for software networks, exploiting state-of-the-art techniques such as 
Big Data analytics and infrastructure/service attestation. 

To that end, the SHIELD platform, whose functional architecture is shown in Figure 1, (described 
in detail in Deliverable D2.2 but also briefly overviewed herein) brings together the following 
components: 

Network infrastructure - The network infrastructure provides a trusted environment for 
supporting the execution of virtual Network Security Functions (vNSFs), implementing a 
Network Functions Virtualisation Infrastructure (NFVI) environment, according to the ETSI NFV 
specifications. 

Virtual Network Security Functions (vNSFs) - vNSFs are software instantiations of security 
appliances that are dynamically deployed into the network infrastructure. vNSFs i) gather 
information about the network traffic and generate events sent to the DARE and ii) prevent 
attacks or mitigate vulnerabilities and threats. 

 

Figure 1. Functional architecture of the SHIELD platform 

vNSF orchestrator (vNSFO) – it is responsible for managing the lifecycle of Network Services 
(NS), which are composed by one or more vNSFs. This allows to onboard packages for vNSFs 
and NSs, deploy (instantiate and place) NSs in specific points of presence within the network 
infrastructure, check the available and running services, execute actions on them, and so on. 

vNSF store - it acts as a nexus between the vNSFO and third-party vNSF providers/developers, 
who can register and manage vNSFs in order to make them available through the SHIELD 
platform. 
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Trust Monitor – it is the component in charge of monitoring the trust of the SHIELD 
infrastructure. Integrity is checked periodically to detect compromised software and/or 
hardware and it is based on the Trusted Computing paradigm and its Remote Attestation 
workflow. 

Data Analysis and Remediation Engine (DARE) – The DARE is an information-driven IDPS 
platform that stores and analyses heterogeneous network information, previously collected via 
vNSFs. It features cognitive and analytical components capable of predicting specific 
vulnerabilities and attacks. The processing and analysis of large amounts of data is carried out 
by using Big Data, data analytics and machine learning techniques. Furthermore, the DARE 
Remediation engine uses the analysis from the data analytics modules and is fed with alerts 
and contextual information to determine a mitigation plan for the existing threats. 

Security dashboard and controller – Using the dashboard, operators have access to monitoring 
information showing an overview of the security status. The dashboard also allows operators 
as well as tenants to take actions and react to any detected vulnerability. 

During Y1, all SHIELD components were hosted in VMs in the Athens testbed (private cloud 
computing infrastructure provided by ORION and hosted in NCSRD), with the exception of the 
attestation components. The attack vectors utilised for the Y1 demonstration activities were 
also hosted in separate VMs and are described in Section 6. In Y2, specified DARE components 
will be migrated to the Barcelona testbed. After initial testing and validation of the remote 
attestation components, the related software will be integrated in the Athens and Barcelona 
(i2CAT) testbed in Y2. Some additional local testbeds by SHIELD partners will be used in Y2, for 
local development, functional and unit tests, such as the vNSF configuration and data 
collectors. One example is TID’s Mouseworld Lab. This environment is responsible to generate 
synthetic network traffic (as close as possible to real traffic) tailored to Machine Learning needs 
in controlled environment (no production environments with privacy restrictions or lack of 
training labels). The Mouseworld Lab include a configurable generator of labelled network 
traffic datasets to be utilised during the training process of ML algorithms, VNFs for traffic 
capture and processing and visual dashboard. TID’s plans for Y2 includes deploy a DARE engine 
based on Apache Spot to make functional and unitary test for ML algorithm in DARE and  for 
vNSFs collector engine development.  

2.2. Use case overview 

Three dominant use cases have been identified for the SHIELD platform. These use cases reflect 
the deployment configurations that are supported by SHIELD and the various end-users. Both 
horizontal and vertical services can be envisioned as part of the three main SHIELD use cases: 

Use Case 1: An ISP using SHIELD to secure their own infrastructure 

In order to protect their own network infrastructure, ISPs have to deploy specific hardware 
which is very expensive since this hardware has to be updated and maintained by very 
specialised operators. The virtualization offered by SHIELD in this use case aims to dramatically 
reduce this cost by replacing specific hardware for vNSFs (virtual Nework Security Functions), 
as well as providing a central interface (dashboard) to understand the gathered information 
and to act in the network. Apart from ISPs, the SHIELD platform can be internally used also by 
large enterprises, which operate NFV-capable corporate networks. 
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Examples of this use case might include DDoS detection and mitigation, blocking known 
malware Command and Control channels across the ISP network, tunneling detection to 
bypass roaming or data charges etc. This work is focused on providing network monitoring 
tools and cybersecurity for the ISP to on-board to their production environment. 

 

Use Case 2: An ISP leveraging SHIELD to provide advanced SecaaS services to customers 

SHIELD provides an ideal foundation for building enhanced SecaaS services, far beyond current 
offerings. Using this SecaaS paradigm, the complexity of the security analysis can be hidden 
from the client (either a company or an SME) who can be freed from the need to acquire, 
deploy, manage and upgrade specialised equipment. 

In this UC, the ISP would be able to insert new security-oriented functionalities directly into the 
local network of the user, through its provided gateway or in the ISP network infrastructure. 

Examples of this use case might include horizontal cybersecurity services (DDoS protection, 
Data exfiltration detection, Malware protection etc.) that can be offered as-a-Service from the 
ISP to their clients. This use case also includes vertical, tailor-made cybersecurity services to a 
variety of industries. Examples can range from IPR protection for streaming services (VPN 
detection, traffic management, etc), eGovernment (detection of comment bots on official 
government websites, phishing attacks etc), and other services.  

 

Use Case 3: Contributing to national, European and global security 

The DARE platform is able to export, upon request, threat models or data regarding acquired 
threat intelligence, to authorised third parties, for instance, public cybersecurity agencies. The 
secure SHIELD framework offers, in this manner, a way of sharing threat information with third-
parties who wish to synchronise information and research on measures to be taken on recent 
attacks, suffered by others. Furthermore, using SHIELD, Cybersecurity agencies can establish 
agreements with the SP and deploy vNSF very fast and without cost in the infrastructure. 
Moreover the data is automatically accessible through the dashboard because the unification 
of the data treatment done in the data engine. 

Examples of this use case might include notifying an authorised party of an identified anomaly 
that might not be classified as an attack indicator but could be suspect as a zero-day exploit, 
notify the authorities of a large scale or coordinated cybersecurity event and allow access to 
important threat information. This use case effectively showcases the scalability of SHIELD’s 
proposed platform as well as the automated mitigation recommendations that can be 
attached to the threat data. 
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3. THE SHIELD SYSTEM DEPLOYMENT 

During the integration, pilots and evaluation phase, the SHIELD system has been deployed into 
two testbeds, hosted by ORION (Athens) and i2CAT (Barcelona). 

3.1. ORION testbed 

3.1.1. Overall architecture 

The ORION testbed is composed of a NFVI-PoP used for the vNSF’s deployment, three ESXi 
servers that host the SHIELD project’s core VMs and the network equipment that interconnects 
them. All of the key components are depicted in the figure below and described in the next 
section. 

 

Figure 2. ORION testbed topology 

3.1.2. Key components 

The key components of ORION testbed could be divided into the following three main 
segments: 

NFVI PoP: 

The NFVΙ Point-of-Presence (PoP) in ORION’s Athens site runs the Openstack Ocata distribution based 
on Centos 7.4.1708. The OpenStack controller and a compute node are situated on a single server, thus 
denoting this an “all-in-one” deployment.  The PoP provides networking to the VNFs through 
Openstack’s Neutron service. All the networking is therefore handled automatically by Openstack, 
provided that the required physical networks are established.  
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Additional networking infrastructure includes a Cisco 5500 Series Adaptive Security Appliance 
(integrating firewall, NAT and Intrusion Detection capabilities), a Cisco 2900 Series Integrated Services 

Router, and two switches, namely an SDN-enabled HPE Aruba 3800 and a Dell Switch. The NAT is 
configured either to be dynamic in order to allow all the hosts to reach internet or public 
addresses, or static NAT to allow also access to specific services from the inside networks to be 
reachable outside the firewall. 

Additionally, all the partners are able to remotely connect to the infrastructure either via 
software SSL clients (Cisco AnyConnect, Openconnect etc). In order to increase security and 
also manage connectivity problems, each partner is provided with separate credentials and 
connection profile. 

ESXi VMs cluster: 

This cluster hosts the SHIELD’s key components (apart from the vNSFs). The VMs are hosted in 
three baremetal servers running ESXi virtualization software. These VMs serve the core 
functionalities to the SHIELD platform. Following is the list of the software hosted by each of 
the VMs: 

-          Cloudera Manager (part of DARE platform) 

-          Cloudera Edge Node (part of DARE platform) 

-          Cloudera Worker (part of DARE platform) 

-          Dashboard 

-          HSPL Policy Engine 

-          Security Analytics Engine 

-          Trust Monitor 

-          Store 

-          NFVO (OSMr2) 

-          SDN Controller (ODL) 

Networking components: 

The network connectivity is supported by two switches (one HP3800 switch and one Dell 
S4048T-ON), one router and a Cisco ASA server. Both SHIELD PoP and ESXi Servers are 
connected to the Aruba switch while the Cisco ISR and the Cisco ASA server provide Internet 
access for the entire Infrastructure. 

3.2. i2CAT testbed 

3.2.1. Overall architecture 

The i2CAT testbed is composed of a couple of computing clusters (hosting VMs for SHIELD logic 
and VNFs) and the network fabric that interconnects them. All of them are depicted in the 
architecture and described in detail in the key components’ section. 
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Figure 3. i2CAT testbed topology 

3.2.2. Key components 

The infrastructure is divided into the following basic segments: 

● NFV PoP: cluster that hosts the OpenStack instance for the SHIELD VNFs. The SHIELD 
services run here and the traffic sent or received from them is isolated from the VMs 
that offer the SHIELD functionality (i.e., belonging to the SHIELD platform). 

● External VM cluster: hosts VMs for specific SHIELD logic; either directly serving 
components belonging to the SHIELD platform or 3rd-party software components 
directly used or needed by them. 

● Switches and routers: intermediate switching equipment providing VLANs to connect 
different services and connecting these between them and to the outer Internet. The 
different clusters (NFV PoP and external VM cluster) are connected by this network 
fabric using a VLAN per type of network and in different modes (trunk or access). 

NFVI PoP 

The OpenStack instance in Barcelona a production-enabled environment that runs the Ocata 
distribution on top of CentOS 7.5.1804. This instance was installed as an All-In-One (AiO) 
Openstack through Ansible scripts. 

Before starting the installation, the partitions for root (“/”), swap, volumes (“/cinder”) and 
other OpenStack data (“/openstack”) must be defined. Then, its mounting point must be set. 

Then, the configuration for OpenStack Ansible starts. Features like VLAN shall be enabled, 
bridges must be created (manually work best), the definition of the Swift and Nova loopback 
disks shall take place, as well as other data such as the bridge to link the virtual interfaces of 
the VMs deployed by OpenStack. 

Finally, run the OpenStack bootstrap script, verify that the environment is according to the 
configuration defined before running such script and run the whole setup via its specific 
playbook. 
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After the deployment, the OpenStack server must be running a total of 23 LXC containers, each 
with its own specific service and have enabled different bridges for the management, storage, 
connectivity (VLAN, VxLAN and/or others, as defined in the previous configuration step). This is 
linked to the HP Aruba (3800) switch and to another switch, which is connected to a router for 
Internet access. Both of them are also connected to the internal servers where the SHIELD-
functionality VMs are hosted. Partners accessing the infrastructure are to given access via their 
OpenVPN client and log-in with their given credentials. 

 

External VM cluster 

The external VM cluster is a group of other OpenStack instances. It is comprised of four 
different bare-metal servers which are hosting, among others, the VMs that serve functionality 
for the SHIELD platform: the SDN controller (OpenDayLight), different versions of the NFVO 
(OSMr2 and OSMr4), the vNSFO API and other ancillary VMs such as a VM to perform attacks 
from outside the infrastructure that supports the NFV environment. 

This is connected to the core network of the i2CAT organisation and is also connected by L2 to 
the SHIELD PoP. This connectivity is achieved through the usage of trunk and access VLANs, one 
per network. 

 

Switches and routers 

The network fabric is made up of two switches and one router. The HPE Aruba is one of those 
two switches and it connects the SDN network of the NFV PoP with the other internal switch. 
On the other hand, the other internal switch connects the external VM cluster (and all other 
SHIELD-specific networks, such as “provider” for vNSF management, “external” for public IP 
assignation, etc) to the Internet. 
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4. SHIELD SYSTEM TESTING  

4.1. Test plan approach 

Following the components’ unit tests which were carried out in the frame of WP3 and WP4, 
the aim of the system testing activity, as part of WP5, is to verify the proper functionality of the 
SHIELD platform on end-to-end basis, against the envisaged operation as well as the system 
requirements laid out in D2.2. 

The test plan consists of various discrete test cases, each of which has been appropriately 
defined using a test case template (see table below). 

The set of test cases has been mainly derived from the D2.2 requirements. Instead of having a 
separate test case for each requirement, the approach has rather been to group requirements 
of similar scope to a smaller set of integrated test cases.  

Key Performance Targets (KPIs) – such as response time, throughput, data volume etc. - related 
to non functional requirements, have been mostly included as metrics in functional tests. 

Table 1 below presents the template for the SHIELD test cases and includes an explanation of 
each field. 

 

Table 1. SHIELD Test case template and explanation 

Test Case ID [Unique ID per test case] 

Description [Brief description of the scope of the test case] 

Executed by [Partner responsible for 
executing] 

Date [Date on which the TC was 
executed] 

Purpose [Justification for the TC, i.e. high-level platform operation to be verified] 

Associated 
Requirements 

[Requirements fulfilled via this TC, from D2.2 (only reference IDs)] 

Components 
involved 

[SHIELD platform components involved in this TC] 

Tools [Auxiliary hardware/software tools used in this TC, such as traffic generators, 
protocol analysers etc]  

Metrics [KPIs to be measured, such as delay, throughput etc.] 

Pre-test 
conditions 

[All the conditions which need to hold true before the TC sequence starts; 
assumptions for the tests] 
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Test Sequence Step Type Description Result 

1 Stimulus [Action/step taken, as many as necessary, to 
invoke an operation] 

 

2 Check [Observation, measurement etc.]  

Evidence [Visualisation of results, e.g. screenshots, responses etc.] 

Verdict [Success/Partial success/Fail] 

Comments [If any] 

 

4.2. Overview of test cases 

Annex A details all the test cases of SHIELD and presents the details about their implementation 
as well as the results. As seen, the test cases have been grouped into two main categories: 

 Platform tests refer to the end-to-end functionality of the SHIELD platform. They 
correspond to the “Platform” requirements, as listed in D2.2. 

 Service tests refer to the security service capabilities, as exposed by the vNSFs. They 
correspond to the “Service” requirements, as listed in D2.2. 

The platform test cases cover all mandatory operations of the platform, namely: 

 Service onboarding and image validation 

 Service lifecycle handling 

 Data ingestion 

 Security incident detection, classification and visualisation 

 Multi-user support and billing 

 Decision support and automatic mitigation 

 Service attestation 

 Infrastructure attestation 

The ethics and regulatory requirements (ERC), which were introduced at a later stage in the 
project and did not correspond to the initial scope of work, were not mapped into specific test 
cases. Some of them were already covered by the existing TCs, while others constitute 
recommendations to be taken into account in a future operational SHIELD deployment – and 
mostly apply to the organisation(s) operating the SHIELD platform, rather than the platform 
itself. 
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4.3. Test case execution summary and requirements fulfillment 

Annex A details the outcome and results of the platform- and service-focused test cases. It can 
be seen that the SHIELD platform successfully implements all the foreseen functionalities, 
namely service creation and validation, full service lifecycle handling, incident detection, 
classification and mitigation, infrastructure and service attestation. These capabilities enable 
the full realisation of the three key system use cases (UC1, UC2 and UC3), as identified in D2.2. 

The following platform requirements were only partially fulfilled, since their full compliance 
was considered to require excessive effort and would deviate from the main targets of the 
project: 

 PF16 (History reports) and PF21 (Operation Traceability): the Dashboard already 
provides access to event logs, especially with respect to attestation and DARE incidents. 
Further work is required to enable full logging of all user and system actions. 

 PF18 (Service composition): it is currently possible to compose a complex vNSF service, 
yet the service chaining process requires several manual interventions. Fully automated 
chaining and deployment of a virtual network function service is currently an open issue 
in the NFV community and out of the scope of SHIELD.  

 PF22 (Management communication security): User access to the Dashboard, vNSFO and 
virtual infrastructure management is already encrypted and performed over TLS. 
Further work is required to secure all the communication channels among the 
management components.  

 NF03 (Scalability) and NF04 (Data volume): There have been no specific tests targeted 
to the scalability of the system. However, the SHIELD platform was observed to scale in 
a satisfactory manner, especially during the two pilot activities (see Chap.8), which 
involved a considerable amount of traffic, compared to the lab trials. In addition, it must 
be noted that SHIELD builds on well-established foundation technologies (OpenStack, 
Hadoop, Kafka, Hive, Spark), whose scalability has been extensively proven over the past 
decade. 

 NF08 (Deployment and support simplicity): Significant effort has been devoted to 
streamline the platform installation procedure, especially during its final release. Yet, it 
is still meant to be installed and configured by an ICT professional. 

 NF09 (vNSF hardening): Several security measures have been applied during vNSF 
implementation, such as e.g. secure management access and configuration of a 
minimum OS distribution, without unnecessary modules which would increase the 
attack surface. However, further hardening and extensive security auditing of vNSFs are 
required prior to their deployment in an operational environment. 

All other platform requirements have been fully complied with. 

In addition to the test cases, which verified step-by-step the proper system functionality, the 
behaviour of SHIELD as an integrated system was also demonstrated and assessed in the demo 
setups (which correspond to realistic usage scenarios), as described in Chap. 5 and 6, as well as 
the pilot deployments in operational networks, as described in Chap. 8. 
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5. YEAR TWO DEMONSTRATIONS  

5.1. A 0-day worm attack 

5.1.1. Scenario motivation 

Wannacry was a nearly 0-day attack using ransomware (i.e. a malware that kidnaps / encrypts 
files and asks for a ransom) in May 2017. A zero day exploit is a cyber attack that occurs on the 
same day a weakness is discovered, at that point, it is exploited before a fix becomes available. 
Wannacry used a known vulnerability to infect around 200.000 computers across 150 countries 
with an expected losses of four billion dollars. The attack was finally stopped when a researcher 
accidentally discovered a hidden pattern. The overall loses were estimated to be around 4 
billion dollars. 

Currently, most of the Intrusion Detection Systems (IDS) are rule/signature based systems. This 
means that they can only stop an attack when there is a specific pattern to look for in the 
network traffic. This means that these kind of systems can not detect and prevent 0-day attacks.  

In SHIELD, we propose an anomaly detection algorithm, using unsupervised learning, able to 
detect wannacry as an anomaly in around one minute. This would had been enough for a 
cybersecurity expert to stop wannacry before it propagated when wannacry was launched. 
Moreover, we have also added a supervised algorithm that works with the detected anomalies 
in order to classify them and hence, identify Wannacry as the correct attack. 

5.1.2. Scenario description 

Due to the high risk and high impact involved with the reproduction of an attack like wannacry 
in a real demo environment (with physical machines in the I2CAT testbed), the consortium 
decided to approach this problem by getting real wannacry data produced outside of the 
environment. This data has been modified to be congruent with the demo scenario (range of 
ips, etc.) and hence, it can be injected it in the network. 

Using this approach, security of the infrastructure is assured (no real wannacry application 
running), but at the same time, the traffic is as real as the one produced by the infection. This 
means that from the data collection to the remediation, all the steps are as real as they should 
have been with a real infection. 

The attack traffic corresponds to 6 machines working in the same LAN. After some normal 
activity, one of them starts sending Wannacry propagation traffic to the other machines. Due 
to this propagation three of the other machines are also infected and start their own process 
of propagation.   

The following picture shows the developed components of the SHIELD framework that have 
been used in this demonstration: 
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Figure 4. SHIELD components involved in the worm scenario 

5.1.3. Scenario setup 

The scenario is shown in the following picture and it is defined as follows: 

 

Figure 5. SHIELD system setup for the worm scenario 

The scenario comprises the following steps: 
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1. A network infection with wannacry is replicated from one of these computers to the 
others (a total of 4 computers will be infected at the end of the demonstration) 

2. Traffic is analysed by the vDPI and sent it to the DARE 

3. The Deep Learning Autoencoder (unsupervised learning) detect the anomalous threats 

4. The Classification algorithm (supervised) classifies them into the Wannacry attack 

5. A recipe is created blocking the involved IPs 

6. The statistics of the attack are shown in the Agency Operation Analytics dashboard 

7. The recipe is shown in the ISP Operation Analytics dashboard and it is applied 

8. The recipe (MSPL) is converted in configuration for the L3 filter vNSF. 

9. The L3 filter blocks the IPs 

10. The traffic of the infected IPs is not longer reaching the network. 

5.1.4. Scenario results 

The resulting outputs of the scenario are: 

1. A classified set of detected IPs infected by Wannacry 

2. A recipe for blocking these IPs 

3. Statistics regarding the infected IPs and their propagation characteristics 

4. A firewall configuration that can stop the attack 

5.2. A hidden type of DDoS – Slowloris 

5.2.1. Scenario motivation 

The security attack that has been selected to be demonstrated at NCSRD-ORION infrastructure 
is Slowloris. Slowloris is a type of denial of service attack that operates at Layer 7 (application 
layer). It exploits a design approach of many web servers, allowing a single machine to take 
down another machine's vulnerable web server with minimal bandwidth. 

In particular, during a Slowloris attack the attacker opens as many connections to the target 
web server as possible. He/she holds the connections open as long as possible by sending a 
partial request and adding to it periodically (to keep the connection alive) but never completing 
it. Usually, servers use threads to handle each concurrent connection and have a limit on the 
total number of threads. Under a Slowloris attack, the pool of threads available to the server is 
consumed by the attacker. Thus, the affected server will deny connection attempts from 
legitimate users until at least some of the held connections are released.  

The motivation behind the selection of Slowloris attack in the SHIELD demonstrations is two-
fold: First, the selected scenario requires an end-to-end integrated run of many of the 
developed SHIELD components, demonstrating the developments within WP3 and WP4. 
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5.2.2. Scenario description 

The scenario involves interactions between the following components:  

a) Two of the developed NSs and vNSFs and in particular the virtualised DPI and the L3 
filter services 

b) The SHIELD vNSF store 
c) The SHILED vNSF orchestrator 
d) The SHIELD Dashboard 
e) The DARE, including the distributed parallelizable ingestion of data (d-collector1) and a 

new threat classification algorithm based on supervised learning (Random Forest2). The 
algorithmic implementation as well as the functionalities of these modules have been 
described thoroughly in D4.3 (sections 3.1, 3.2.1 respectively). 

The following figure shows in detail the SHIELD components that are involved to this 
demonstration: 

 

Figure 6: SHIELD components involved in the Slowloris scenario 

The second motivation behind the selection is relevant to the significance of DDoS attacks 
today. DDoS attacks are amongst the most common and most serious cyber-attacks seen in 
today’s networks. DDoS is an attack that disrupts operations and causes loss of reputation, 
productivity and/or revenue. This particular attack has been used in 2009 Iranian presidential 
election against sites run by the Iranian government and by the spam network River City Media 
to force Gmail servers to send thousands of messages en-bulk, by opening thousands of 
connections to the Gmail API. In addition, Slowloris is applicable against well-known web 
servers. Some versions of Apache (1.x and 2.x), Flask, dhttpd and other commercial servers are 
vulnerable to a Slowloris attack. 

                                                      
1 https://github.com/shield-h2020/vnsfs-collectors/tree/master/distributed 
2 https://github.com/shield-h2020/dare/tree/master/classifier_ml 
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For the affected servers, no reliable configuration exists to prevent Slowloris attack. However, 
there are some measures that someone can take to reduce the impact of the attack. Common 
measures towards this direction are to increase the maximum number of clients the server will 
allow, limit the number of connections a single IP address is allowed to make, impose 
restrictions on the minimum transfer speed a connection is allowed to have, restrict the length 
of time a client is allowed to stay connected, set up reverse proxies, firewalls, load balancers or 
content switches. 

SHIELD, based on the developed ML solution using supervised learning and the Big Data 
processing architecture and also on the NFV technology for monitoring traffic and mitigating 
the attacks, provides a solution on how attacks such as Slowloris could be identified mitigated 
in the future. 

5.2.3. Scenario setup 

The setup we used for this demonstration has 5 main components: 

a) The attacker’s server, which is the machine that performs the Slowloris attack. 

b) The target server, which is the machine to which the attack is targeted to. 

c) The traffic generator server, which is a machine that generates traffic, simulating 
normal traffic that in a real scenario would be sent to the target server. 

d) The NFV Infrastructure Point of Presence (NFVI-PoP), which is the infrastructure in 
which we deploy our network functions, the vDPI and the L3 filter. 

e) The Cloudera Big Data cluster (Cloudera Distribution for Hadoop - CDH) that has been 
used for the deployment of SHIELD’s DARE/Cognitive DA module which incorporates 
the machine-learning algorithms that have been developed as part of the project. 

Figure 7 describes the Infrastructure setup that has been used for the demonstration in detail. 
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Figure 7: Slowloris scenario setup 

The installation of the Cognitive DA module, as part of the DARE was made on a Cloudera 
Cluster version 5.11.1y. A minimum of three Cloudera nodes is required in order to deploy the 
Setup, Ingestion, Machine Learning and Visualisation components of the modulet. Three hosts 
were set up running Ubuntu Trusty 14.04 and the prerequisite components (HDFS, Hive, 
Impala, Kafka, Spark, Yarn, and Zookeeper). Our setup with the 3 Virtual Machines (VMs) was 
the following:  

 Cloudera-host-1.shield.com: Configured as the Machine Learning (ML) Node, includes 
the Yarn Node Manager;  

 Cloudera-host-2.shield.com: Configured as the Setup and Ingest Node, also known as 
the Edge Gateway (GW node), includes Kafka Broker and HDFS NFS Gateway; and  

 Cloudera-manager.shield.com: Operational Analytics (OA) node, includes Cloudera 
Manager.  

For the setup of the target, traffic generator and attacker servers, three virtual machines were 
used.  Specifically, the deployment and configuration for those were as follows:  

 The target server: The victim server towards which the Slowloris attack was performed. 
Apache 2 on Ubuntu 16.04 Server was installed. 
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 The traffic generator: Replays files which contain normal, legitimate traffic. Ubuntu 
16.04 Server was installed.  

 The attacker: A Kali Linux VM, which performs the attacks against the victim webserver. 
Kali Linux 2017.2. An open-source Python implementation of Slowloris3 was used to 
perform the attack. 

For the implementation of the NFVI-PoP, the OpenStack cloud computing software platform 
has been selected and installed on a server, following an “all-in-one” deployment scheme. 
Specifically, OpenStack Ocata release was deployed with the following components: Nova, 
Neutron, Glance, Heat, Horizon and Keystone. Also, RabbitMQ open source message broker 
was installed for communication between the OpenStack components and MariaDB server, as 
the database backend for OpenStack services. The re-direction of traffic through the different 
deployed network services was managed with Openflow rules on the Open VSwitch (OVS) 
internal to OpenStack, that was deployed to implement OpenStack networking. 

The detailed implementation and interfacing of the virtualised DPI and the L3 filter services has 
been described in Deliverable D3.3. A modification that was made to the virtualised DPI for the 
implementation of this scenario was to deploy the developed distributed collector (collect-d) 
to allow the ingestion of the traffic towards the DARE. 

Network traffic was recorded and anonymized from the network of the Media Networks 
Laboratory (at the Institute of Informatics and Telecommunications of NCSR Demokritos) and 
saved in pcap files. For the NetFlow Telemetry, the target server forwards the traffic from its 
network interface, using the fprobe tool, to cloudera-host-2, which is the server responsible for 
the data ingestion function of the Data Acquisition module. Cloudera-host-2 records the traffic 
in nfcapd files. The attacks are deployed through Kali Linux in real time (during the replay of the 
network traffic from the traffic generator). This way, they are also forwarded to cloudera-host-
2 and saved in the aforementioned nfcapd files.  

The sequence of steps that take place during the Slowloris demonstration are the following: 

1. A client (attacker) is performing a Slowloris attack against a web server (target). 

2. Traffic is intercepted within the NFVI-PoP deployment, analysed by the vDPI vNSF and 
sent it to the DARE. 

3. The Classification algorithm (supervised) classifies the traffic into either Slowloris attack 
or background (normal) traffic. 

4. A notification of the occurring attack is shown to the user through SHIELD Dashboard. 

5. A recommendation (MSPL) is created to block the attacker’s IP address. 

6. The user accepts the recommendation through the dashboard and a firewall rule is sent 
to the L3 filter vNSF to block the attacker’s IP address. 

7. The L3 filter vNSF blocks the attacker’s IP address and so the attack is mitigated. 

                                                      
3 https://github.com/gkbrk/slowloris 
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5.2.4. Scenario results 

The Cognitive DA module outputs the results of the analytics procedure in the form of a csv file. 
The csv file contains a list of the malicious traffic flows discovered by the Random Forest model. 
Furthermore, each entry provides extensive information like date and time, source and 
destination IP addresses, source and destination ports, network protocol, packet and byte 
counts, etc, following the netflow (nfcapd) protocol. These results are sent to the Dashboard 
via the RabbitMQ message broker. These results, apart from providing contextual info to the 
Dashboard are leveraged to generate an attack-specific remediation policy (MSLP) that will 
eventually be applied by the user to block the attack.  

5.3. Cryptomining abuse 

5.3.1. Scenario motivation 

Cryptocurrencies [1]are forms of digital currency, that follow a decentralised architecture (as 
opposed to central banking systems). Bitcoin [2] is one of the most well-known decentralised 
cryptocurrencies and is often used as a global online payment system. Bitcoin, as well as other 
cryptocurrencies like Ethercoin (from Ethereum) [3], Monero [4] etc., utilise blockchain [5] 
technology to record transactions. The existence of the blockchain ledger requires a network 
of communicating nodes that maintain and verify the blockchain. Thus, the decentralised 
architecture has led to the development of cryptocurrency mining (also known as 
cryptomining). Users may join the network of communicating nodes to complete tasks relating 
to the blockchain, offering their computational resources for a monetary reward (payable in 
cryptocurrencies). 

Although cryptomining is per se not illegal, there are numerous cases where cryptomining 
abuses have been reported. On Jan 2018, software security firm Check Point issued a report [6] 
about a sharp increase in the prevalence of crypto-mining malware, stating that 55% of 
businesses worldwide are affected by the attacks. The report declared Coinhive [7] to be the 
number 1 “Most Wanted Malware.” Coinhive was used in a large-scale malware campaign [8] 
and has been found on more than 300 academic and government websites, news sites, etc. 
The use of malicious cryptomining software hidden in legitimate websites has also been known 
as “cryptojacking”. A similar case was revealed on YouTube [9]. According to the report, 
anonymous hackers have managed to run ads on YouTube that consumed the visitors’ CPU 
power and electricity in order to mine cryptocurrencies for the attackers. In some cases of 
malware like Loapi [10], mining overheated mobile devices and caused significant damage, 
through the constant use of the device’s processor at maximum load. 

5.3.2. Scenario description 

Cryptocurrency mining is commonly performed via:  

 A solo user downloading the related client software on their systems: This method is 
almost deprecated since the chance of being assigned a block to resolve is very small 
and too random. 
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 A user joining a cryptocurrency mining pool: Mining pools are platforms where miners 
can pool their resources and split the bitcoin reward proportionally. The earnings are 
small but more guaranteed than solo mining, hence it is taking over as the most popular 
means of mining. 

 Mining scripts inserted in webpages and using the (sometimes unsuspecting) visitors’ 
resources to mine bitcoin.  

Although cryptocurrency mining is legal, there exist situations where it is not allowable, i.e. in 
enterprise networks. Malicious scripts/malware can also high-jack a system’s resources while 
the user remains unawares, and cause significant performance loss or in some cases, damage 
to their devices. 

5.3.3. Scenario setup 

Figure 8 illustrates the main SHIELD components4 that are used in this demonstration. The 
security analytics engine is in charge of monitoring network traffic, as shown in Figure 9. If an 
anomaly is detected (Figure 10), its data are relayed to the remediation engine that provides 
remediation suggestions (Figure 11). The remediation options are then sent to the dashboard 
via a RabbitMQ messaging system, where the user may select whether to apply them (Figure 
12). This demonstration also features an additional VNF that is utilised as an intrusion detection 
and prevention (IDPS). 

In the first part of the demo, an employee is using an organisation’s resources to mine 
cryptocurrencies. Although mining itself is not illegal, it can be considered as a misuse of an 
organisation’s assets and may potentially damage them. SHIELD’s DARE (and specifically, the 
security analytics engine) detects the mining traffic as an anomaly (Figure 9). This is a challenge 
as the Stratum [11] protocol that is most commonly utilised for cryptomining operations (i.e. 
communication with the mining pool) is non-standardised and often uses randomised ports. 
Once it is detected, the remediation engine provides a recipe to block outgoing packets towards 
the mining pool. The dashboard receives the remediation recipe and may choose whether to 
enforce it or not. This is a major feature that shows how SHIELD can detect a non-standardised 
protocol like Stratum. 

                                                      
4 The detailed implementation and interfacing of components that are utilised in the demo are included in past 
documents. Specifically, you may refer to SHIELD deliverables D3.3 and D4.3 for a setup and installation guide, 
whereas the technical specifications are provided in SHIELD deliverables D3.2 and D4.2. 
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Figure 8. Main SHIELD components utilised in the cryptomining abuses demonstration. 

 

Figure 9. Setup for the cryptomining detection demonstration. 

 

 
(a) 
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  (b) (c) 
Figure 10. Detection of cryptomining traffic in SHIELD’s DARE. (a) The anomaly is detected, (b) and (c) 

overview of the anomaly characteristics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. The remediation recipe for the cryptomining anomaly. 

 

Figure 12. Cryptomining anomalies shown on the user dashboard. 
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In the second part of the demo, a malicious cryptojacking script is injected in a page (Figure 13). 
Coinhive was selected, specifically due to its popularity in being used maliciously. When a user 
visits the page, the script hijacks CPU resources for mining. A simple user interface is utilised 
for the demo purposes, to show the mining process.  

The vIDPs has been configured to run in an intrusion prevention mode to prevent the users 
from loading the cryptomining script on their browser. Figure 14 illustrates the snort rule 
utilised to block the mining script. An extension of the existing implementation of the vIDS was 
developed to push the Snort alerts to the SHIELD dashboard for notifying the user for identified 
threats and/or mitigation actions. The overall setup for this part of the scenario is illustrated in 
Figure 15. Alerts are logged although they also appear as a pop-up notification, so that the 
dashboard user is always notified (Figure 16). To implement this functionality, the occurring 
Snort alerts were reformatted to an agreed pre-defined JSON format and were sent to through 
an exchange to a RabbitMQ message broker.  

 

Figure 13. A website running a Coinhive script. 

 

Figure 14. The snort rule used to drop traffic towards the cryptomining pool domain. 



SHIELD  D5.2 • Final demonstration, roadmap and validation results 

 

© SHIELD Consortium 
30 

 

Figure 15.  Immediate effects of the cryptojacking mitigation rule. 

 

Figure 16. Demonstration setup for detection of cryptojacking scripts. 

 

 

Figure 17.  vNSF notification and pop-up. 
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5.3.4. Scenario results 

In the first part of the demo, SHIELD showed how to detect and block mining traffic. Network 
traffic to known mining pools and online wallets can be blocked in the service level, based on a 
blocklist. Detection of unknown mining pools can be challenging, as the related protocols (e.g. 
Stratum) are not standardized and often use randomized ports. The SHIELD security analytics 
engine was shown to detect Stratum traffic as an anomaly. This helps an enterprise secure its 
assets and devices against misuse by employees.  

In the second part of the demo, SHIELD showed how to detect and block cryptojacking scripts. 
Using intrusion detection countermeasures deployed as network services, SHIELD blocks a 
malicious javascript that is intended to mine resources from an unsuspecting visitor to a 
website. This service provides an umbrella of protection to all devices in the network 
(computers, laptops, mobile devices, IoT etc.) without the need to configure individual 
protection measures (e.g. antivirus, browser extensions etc.) across all devices. The malicious 
*.js is blocked before it is served to the user and the administrator is notified through a message 
to the Dashboard. Therefore, the remediation does not require the SHIELD DARE components. 
The administrator may choose to roll-back a remediation action if necessary and unblock a 
script, in case of a false detection.  

5.4. Attestation of the vNSFs, their hosts and the network  

5.4.1. Scenario motivation 

The network infrastructure of SHIELD is a critical part of the overall system as it is responsible 
for forwarding the packets and executing the different vNSFs to the traffic. In addition to the 
requirement of having the network infrastructure behave as expected, for evident reasons such 
as quality of service or service level agreement, it is also one of the easiest attack surfaces of 
SHIELD: any traffic flowing needed to be handled by the vNSFs will necessarily go through some 
network elements (e.g. switches) and compute nodes (e.g. servers) in addition to the required 
vNSFs. Ensuring the integrity of the network infrastructure is thus paramount to ensure the 
correctness of SHIELD as a whole. The Trust Monitor is responsible for that verification in 
SHIELD, as illustrated in Figure 18. 
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Figure 18. The Trust Monitor in SHIELD 

5.4.2. Scenario description 

To achieve that, SHIELD relies on the Protect, Detect and Recover approach for the cyber-
resiliency of the network infrastructure: 

 Protect refers to the effort put in place by the SHIELD’s network infrastructure 
stakeholder to harden the different components (e.g. static code analysis of the vNSFs, 
access control management for the servers and switches, etc.); 

 Detect is the ability to identify unauthorized behaviours of the network infrastructure’s 
components, usually due to an attack or to a misconfiguration; 

 Recover is the action of getting back the network infrastructure to a trusted state – that 
is a state where each component behave as expected. 

This demonstration focuses on the detection capability of the Trust Monitor to identify 
misbehaving components of the network infrastructure. It also shows the different 
stakeholders view of the network infrastructure: the network administrator and the end-user 
(vNSF client) views. One of the main addition of this demonstration compared to the previous 
one is the integration of the Trust Monitor with the other components of SHIELD: the Security 
Dashboard, the vNSF Orchestrator, the vNSF Store and the DARE, shown on Figure 19. 
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Figure 19. The interaction of the Trust Monitor with the other SHIELD’s components 

5.4.3. Scenario setup 

The proposed scenario is based on the interaction between the following components: 

 Trust Monitor application running a periodic attestation task on the NFVI infrastructure; 

 NFVI compute host configured to run Docker containers and equipped with a Trusted 
Platform Module (TPM); 

 SDN-enabled switch for forwarding traffic in the NFVI PoP and equipped with a TPM; 

 vNSF Orchestrator, which manages the vNSF lifecycle and provides the list of running 
vNSFs to the TM; 

 vNSF Store, which stores the NS and vNSF descriptors and provides the vNSF Security 
Manifests to the TM; 

 Dashboard, which shows notifications on the trustworthiness of the infrastructure from 
the TM. 

5.4.4. Scenario results 

5.4.4.1.  Infrastructure administrator (ISP) 

The ISP administrator view in the Dashboard shows the attestation result for the NFVI physical 
infrastructure, as shown in Figure 5-13. This includes the trust level for both the NFVI compute 
host and the SDN switch. The TM periodically queries the vNSF Orchestrator to retrieve the list 
of physical nodes belonging to the NFVI, and runs the remote attestation procedure for each 
of them. Whenever a new attestation result is obtained, a notification pops up in the ISP 
administrator Dashboard. The ISP administrator can also browse the history of past attestation, 
illustrated in Figure 20. 
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Regarding the SDN network elements, the ISP can leverage the Trust Monitor to verify that only 
authorised configurations are used by the different switches. The ISP administrator configures 
the authorised configuration for each network element in the Trust Monitor. Whenever a 
different configuration is being used by a network element, the Trust Monitor notifies the ISP 
administrator in the SHIELD dashboard. This capability is particularly useful to detect any insider 
threats and it is worth noting that this covers both the stored configuration as well as the 
current running configuration. 

 

 

Figure 20. ISP administrator attestation view 
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Figure 21. Historical log of attestation results 

5.4.4.2.  Security-as-a-Service client (vNSF user) 

The SecaaS client view in the Dashboard shows the attestation result for each vNSF belonging 
to the tenant, as shown on Figure 22. Once the NS comprising the target vNSF is instantiated 
via the Dashboard, the next attestation result shows that the vNSF is trusted. The TM 
periodically queries the vNSF Orchestrator to retrieve the list of vNSFs running in the NFVI, and 
runs the remote attestation procedure for each of them. At each vNSF attestation, the TM 
queries the vNSF Store to retreive the white-list of reference measurements included in the 
vNSF Security Manifest. Whenever a new attestation result is obtained, a notification pops up 
in the SecaaS client Dashboard view. Once the vNSF image is manipulated by running a binary 
that is not part of the vNSF Security Manifest, the next attestation result shows that the vNSF 
is in an untrusted state. 
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Figure 22. SecaaS client attestation view 
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6. FINAL PROJECT DEMONSTRATIONS  

The demonstrations done at the end of the project are based on the Y2 scenarios (see Chap.5), 
properly enhanced in order i) to assess the senarios under more realistic conditions and ii) to 
showcase the additional features which were implemented. 

6.1.  A 0-day worm attack  

6.1.1. Scenario motivation 

The motivation of the scenario is the same one as explained in subsection 5.1.1. The main 
change is the goal to run the attack and the mitigation in a more close to market scenario, 
under more realistic conditions. 

6.1.2. Scenario description 

The data used for this demo is no longer based on a controlled Lab traffic but based on the 
SHIELD platform behaviour against real traffic. The traffic was captured in the Media Networks 
Laboratory (MNL) of NCSR “Demokritos”, naturally generated during the day-to-day operations 
of the lab, which currently employs 15 full-time researchers (see Section 8.1.1 for details).  

6.1.3. Scenario setup 

The algorithm is trained with the traffic corresponding to 24 hours of the 22th of January 2019. 
During this day, no attack was performed so we consider all the traffic “normal”. This traffic is 
composed by more than 5 million flows and more than 1500 different IPs. 

During the operational hours of the 27th of February 2019, the Wannacry traffic was reinjected 
in the NCSRD network changing the ips from the original ones to ones in the range on the 
NCSRD network.  

The analysis of the traffic corresponds to 5 hours of this day, including the hours when 
Wannacry was launched. 

6.1.4. Scenario results 

The anomaly detection is able to detect the 4 infected IPs together with more than 2251 other 
IPs. Here, we observe a decreasing of the accuracy, precision and recall over the Lab scenario. 
This behaviour is mainly due to the following reasons. Firstly, the algorithm was trained using 
data from a different day, so probably increasing the amount of data used  to train (at least one 
week) could increase these results since the algorithm would be more used to different traffic 
behaviours. Secondly, because we do not control all the elements that are part of this scenario, 
mainly attacks or threats that are not artificially introduced but part of the scenario, and that 
the algorithm is detecting. Thirdly, because the amount of “normal” traffic is much bigger than 
the wannacry one, this unbalanced testing dataset may impact in the result. 
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Nevertheless, the classification algorithm is able to isolate the 4 infected IPs from the anomalies 
detected, which confirms the robustness of the solution. hence, the designed combination of 
anomaly detection plus classification demonstrates its efficiency and good results in different 
situations. 

6.2. Cryptomining abuse 

With respect to the cryptomining abuses there are no changes to this demonstration since Y2 
(as described in subsection 5.3). The Y2.5 demonstration aims to showcase additional SHIELD 
features such as billing, multiple users and the logging/visualisation of threat information on 
the dashboard. 

6.2.1. Scenario description 

In terms of the cryptomining abuses there are no updates since Y2 (please also refer to 
subsection 5.3 for a full description). 

The billing model is a new feature introduced in this demonstration, showcasing different billing 
contexts, according to the user role in the platform. From the SecaaS client perspective, the 
billing panel provides a monthly discrimination of the fees applied to each network service 
instance, including the month usage period and applied fee percentage for that period. From 
the Platform administrator perspective, a more comprehensive monthly billing analysis is 
shown, which includes the network service instances per each SecaaS Client and the used 
vNSFs, including the expense costs towards the Developers.  

Regarding the multi user functionality, each SecaaS Client has a different NS Inventory which 
contains its network services and instances. The NS Inventory view, including the network 
service instances, is segregated and belongs to specific SecaaS Client, whereas only the 
Platform administrator has the ability to see the number of network service instances and the 
relation to their SecaaS Clients.  

The dashboard logs the activity of users. Each task performed by users is registered in the 
activity panel, identifying the date, user, SecaaS Client and task description. 

6.2.2. Scenario setup 

The basic setup of the scenario has not been altered since the Y2 version. Please refer to 
subsection 5.3 for more information. 

6.2.3. Scenario results 

In addition to the detection and mitigation of cryptomining abuses, this demo illustrated how 
billing can be introduced within SHIELD. A simple flat-rate scheme was utilised in this case. The 
granularity of the flat-rate billing model is one day, i.e. each network service instance is charged 
for at least one day since the moment of its instantiation. The same logic applies to the 
expenses towards developer users, inherent to the usage their vNSFs. 
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6.3. Infrastructure and service attestation 

6.3.1. Scenario motivation 

The motivation of the infrastructure and service attestation demonstration is identical to the 
previous attestation demonstrations (see Sec. 5.4): the Trust Monitor should continually 
monitor the integrity of the network infrastructure and notify the SHIELD operator when a 
security breach is detected. 

6.3.2. Scenario description 

For this demonstration, we assume that an attacker managed to compromise an administrator 
laptop, thus having access to the credentials to connect to the different platform of the SHIELD 
network infrastructure. The attacker will use those credentials to hide its use of DNS tunnelling 
for exfiltrating data. 

6.3.3. Scenario setup 

The proposed scenario is based on the interaction between the following components: 

 Trust Monitor application running a periodic attestation task on the NFVI infrastructure; 

 NFVI compute host configured to run Docker containers and equipped with a Trusted 
Platform Module (TPM); 

 SDN-enabled switch for forwarding traffic in the NFVI PoP and equipped with a TPM; 

 vNSF Orchestrator, which manages the vNSF lifecycle and provides the list of running 
vNSFs to the TM; 

 vNSF Store, which stores the NS and vNSF descriptors and provides the vNSF Security 
Manifests to the TM; 

 Dashboard, which shows notifications on the trustworthiness of the infrastructure from 
the TM. 

This demonstration does not require a scenario-specific testbed and was showcased using the 
SHIELD’s testbeds, with their existing topologies. 

6.3.4. Scenario results 

The initial attack, once the administrator credentials have been retrieved, consists of a 
connection to the SDN controller inside the vNSF Orchestrator, in order to inject SDN rules and 
bypass the DNS capturing vNSF. This is detected by the Trust Monitor, which also recommends 
to push the correct rules to the vNSF Orchestrator; once the correct SDN rules are put back in 
place, the attestation succeeds again. 

Given the failure to reroute its DNS traffic, the attacker then tries to replace the DNS capturing 
vNSF by a custom vNSF that does not capture DNS traffic. He connects to a NFVI node and 
modify the vNSF image; then he tries to instantiate the vNSF through the Dashboard. Since the 
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Trust Monitor attests the vNSFs before they are used, the vNSF Orchestrator is notified of the 
unknown vNSF and terminates it; a notification is sent to the Dashboard. 

Finally, the attacker wants to deploy a vulnerable software on the NFVI node in order to get a 
permanent access. The Trust Monitor detects the modification during the next periodic 
attestation and the Dashboard can be used to inspect the attestation audit trail. 
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7. OPEN DEMONSTRATION EVENTS  

7.1. Final workshop  

7.1.1. Event details 

The SHIELD consortium has organised a tutorial entitled “Modern Network-based Security: 
Softwarized Networking, Trusted Computing, and Artificial Intelligence for Cybersecurity” on 
February 24, 2019 in Prague (Czech Republic) as a final workshop. This has been realised as part 
of the  5th International Conference on Information Systems Security and Privacy (ICISSP 2019), 
held in Prague from February 23rd to February 25th. 

The workshop has introduced to the audience the key pillars of the SHIELD platform, comprising 
modern network technologies (SDN, Software Defined Networking, and NFV, Network Function 
Virtualization), Trusted Computing (TC), Machine Learning (ML), and Artificial Intelligence (AI) 
techniques. The workshop has focused on describing how the conjunct use of these 
technologies can effectively counter cyberattacks in a trusted softwarised domain. The 
technical aspects have be complemented by a market and economical analysis, to evaluate 
benefits versus costs of the SHIELD approach. 

Finally, the SHIELD consortium has held a booth during the three days of the event to present 
the project mission and achievements to the conference’s attendees. 

7.1.2. Demo setup / ETSI ENI PoC  

Experiential Networked Intelligence Industry Specification Group (ENI ISG [13]) is defining a 
Cognitive Management architecture for the network, using Artificial Intelligence (AI) 
techniques, such as machine learning, and context-aware policies to adjust network based on 
user needs, environmental conditions and business goals.  

The ETSI ENI PoC [14]  had the objective to demonstrate how the DARE component developed 
in  SHIELD, can cover some of the functionalities of the ENI system, including some external 
interfaces still in definition by ETSI ENI. 

 The PoC called “Securing against Intruders and other threats through a NFV-enabled 
Environment” was presented during the ICISSP event and next figure shows the global scheme. 
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Figure 23. SHIELD instantiation as an ETSI ENI PoC 

   

The DARE components and interfaces needed for the ETSI ENI PoC were : 

● Data acquisition and storage: Using apache spot d-collector capacity, network traffic 
including malware (wannacry) was captured and stored in netflow format within the 
distributed Hadoop system. This module correspond with “Ingestion and 

Normalization” ENI functional block using the Einf-eni-dat interface.  

● Data analytics engine: Serialisation of two machine Learning algorithms was 
demonstrated. First the anomaly detection, that filters out normal traffic and, at second 
stage, the classification algorithm, pre-trained in wannacry traffic, which identifies the 
malicious flows. These modules correspond to the “Cognition Framework” ENI 
functional block. 

● Remediation engine and Query API: The cyber topology engine was able to identify the 
threats, derive the correct recipe to mitigate the attack, and finally  provide an intent-
based security  policy, presented as a suggestion to the Human operator. This module 
corresponds to the “Denormalisation and Output generation” ENI functional block using 

some of the external interfaces available ( Eoss-eni-cmd , Ebss-eni-cmd , Eusr-eni-cmd ).  

  

Additionally, as part of the PoC goals, an additional demonstration related to remote 
attestation technology was shown. It presented the idea of how to avoid the tampering of VNFs 
monitoring and data collecting processes, that could affect the ENI system reliability. 
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7.1.3. Assessment and feedback 

The workshop (organized under ICISSP as a dedicated, 3-hour tutorial session) had a total of 26 
attendees, which provided valuable feedback on the project proposal, current status and future 
iterations of the platform. With respect to anomaly detection, the audience proposed to focus 
on Layer 7 information in the DARE (e.g. Web logs) in order to better detect application-layer 
incidents, and stated the need to benchmark and compare the SHIELD Machine Learning 
performance with commercial closed-source solutions. Moreover, the audience stressed the 
importance of retraining of ML algorithms and questioned whether the SHIELD platform could 
be extended to provide automated (and periodic) retraining through Apache Spot. With respect 
to privacy, GDPR compliance was discussed as a crucial issue for the viability of the service. 
Regarding platform trust, the runtime attestation (already part of the Trust Monitor workflow) 
is considered particularly relevant to protect the whole life-cycle of VNFs. Finally, the audience 
proposed to consider alternative SDN deployments with SDN controller redundancy to avoid 
having a single point of failure at the network control. 

 

 

Figure 24. SHIELD final workshop (tutorial session) 

7.2. Winter school  

7.2.1. Event details 

SHIELD has co-organised the NeCS Cyber Security Winter School 2019, held in cooperation with 
the C3ISP EU project, AEGIS, and the CINI Cyber Security National Lab, from 18th to 22nd 
February 2019 in Fai della Paganella near Trento, Italy. 

The European Network for Cybersecurity (NeCS) was formed in response to the increased need 
for highly qualified experts. It addresses the issues of training and development of talented 
junior researchers as indicated in the European Cyber-security strategy and highlighted in the 
EC’s Digital Agenda. 
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In the scope of this event, the SHIELD consortium has held several courses related to the 
project’s activities in the following lectures: 

● “SDN, NFV and AI: the SHIELD approach to network-based cybersecurity” by prof. 
Antonio Lioy (Politecnico di Torino); 

● “Verifying the integrity of software-defined infrastructures” by Ludovic Jacquin (Hewlett 
Packard Enterprise Labs); 

● “Machine learning for cybersecurity” by Bernat Gaston (i2CAT foundation). 

Moreover, a live showcase of Y2 demonstrations as described in Section 5.1 and 5.4 has been 
performed in a session of the Winter School. 

7.2.2. Hands-on session description 

In the context of the lecture “Machine learning for cybersecurity”, a one-hour coding session 
was also scheduled by Dimitris Papadopoulos (Infili Technologies PC), aiming at demonstrating 
how scalable analytics can exploited in the cybersecurity domain. During this hands-on session, 
attendees were introduced to one of DARE’s underlying distributed computing frameworks, 
namely Apache Spark. The session’s objectives were to provide a high-level understanding of 
Spark’s basic components and functionalities, to explore its advantages for production-level 
analytics tasks over other commonly used frameworks and finally to implement a machine-
learning model (Random Forest classifier) in PySpark, that assigns threat labels to network 
traffic records. The code presented to the audience was a slightly modified version of the 
(supervised) classification algorithm used in Y2 demonstrations for the detection of worm and 
DDoS attacks.  

The audience had the option to code along with the presenter, by downloading a pre-
configured virtual machine that contained all the necessary prerequisites to train a classifier 
model using a publicly available dataset. 

7.2.3. Assessment and feedback 

The audience from the Winter School was mainly composed by PhD students, young 
researchers and by experts in cybersecurity. Questions have addressed the scalability of the 
attestation framework and the protection of the Whitelist Database by insider threats. In this 
regard, the Trust Monitor is designed as a stateless application, whose only stateful sub-
component is represented by the Whitelist Database. Because of this, replicas could be 
instantiated to scale up in case of several target nodes for attestation. With respect to the 
Whitelist Database, the audience has commented that it should be protected against insider 
threats to not invalidate the integrity verification phase. Moreover, the audience has suggested 
to include attestation logs as part of the anomaly detection logic in the DARE in a future 
iteration of the platform, so that they can be leveraged to identify certain type of attacks in the 
ISP infrastructure. Regarding the machine-learning models that were introduced as part of the 
DARE predictive analytics capabilities, most of the questions were targeted at the utilized 
technologies and frameworks, the detection efficiency of the implemented algorithms, as well 
as the availability of public datasets to be used for training similar models.  
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Figure 25. Winter school – course on SHIELD integrity verification mechanisms 

 

 

Figure 26. Winter school – attendees 
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8. SHIELD PILOTS  

The aim of the SHIELD pilot activities have been to assess the efficiency of the SHIELD solution 
under near-operational conditions, as well as to engage stakeholders from outside the project 
team. Three pilot workshops were organised, corresponding to the three basic use cases of the 
system (see Chap. 2) 

8.1. ISP pilot – UC1 

8.1.1. Data collection and pilot setup  

The data used for the ISP pilot were based on the SHIELD platform behaviour against real traffic. 
The traffic was captured in the Media Networks Laboratory (MNL) of NCSR “Demokritos”, 
naturally generated during the day-to-day operations of the lab, which currently employs 15 
full-time researchers. In this manner, the project technical partners were offered the 
opportunity to assess SHIELD under real usage conditions, rather than using replays of synthetic 
traffic. 

The setup of the SHIELD pilot deployment at NCSRD is depicted in Figure 27 below. The traffic 
information (in NetFlow v.9) format was captured from the Lab’s central firewall, which 
connects the researchers’ PCs with the lab computing infrastructure and to the backbone 
network of NCSR “Demokritos” – and from there to the Internet. The firewall was configured 
to send the traffic information in real time to a NetFlow collector vNSF, which in turn fed the 
DARE storage using the distributed collector pipeline.  

To preserve the anonymity of the personnel and, more importantly, allow the usage of the 
generated dataset outside NCSRD premises by third parties without severe GDPR implications, 
the collected information was anonymised. For this purpose, an anonymiser component was 
introduced in the ingest chain, exploiting the CryptoPAN library5 developed by GeorgiaTech in 
order to convert the lab’s internal IP addresses into other ones, in an 1-to-1 manner. The 
external IP addresses were not affected.  

A dedicated PC was installed outside the lab’s perimeter to periodically launch targeted attacks 
against the lab devices. Depending on their nature, some of these attacks were blocked by the 
firewall, others were not. Yet all traffic in any case (either blocked or allowed) was reported to 
the DARE. 

The incident detection and classification results, as well as the mitigation proposal, was 
visualised in the SHIELD dashboard. 

The pilot operated for two whole weeks (21/1/2019 – 4/2/2019), capturing and processing 
traffic without interruption, on 24/7 basis. 

                                                      
5 https://www.cc.gatech.edu/computing/Networking/projects/cryptopan/  

https://www.cc.gatech.edu/computing/Networking/projects/cryptopan/
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Figure 27. SHIELD pilot deployment at NCSRD lab 

 

8.1.2. Presentation and stakeholders engagement 

TID held an internal workshop on 7th March 2019, in their main premises (District T, Madrid) 
during a morning session (10h-13h CET). The workshop was presented by TID’s personnel 
involved in SHIELD project (A. Pastor, J. Nuñez). 

A total of 10 people attended to the workshop coming from different departments and 
business units not involved in SHIELD project. People were carefully selected, to cover different 
point of view: 

● Digital security Telefonica Spain, in charge of developing internal ISP security services 
for Spain business units. 

● Security Operational staff in Spain, that manage day by day security threats. 
● GCTIO (Global Chief Technical and Information Office) department in charge of the 

network technical evolution at Telefonica worldwide, including techno-economics 
analysis. 

The goal of the workshop was to present the SHIELD Project results and run a real exercise, 
based on data collection and demo setup executed in NCSRD, to demonstrate the performance 
and main functionalities of the SHIELD framework. Additionally, the workshop included a 
general description of the project SHIELD and their main components, the standardization 
activities in progress and other demonstrations, such as attestation capacity from Trust 
Monitoring module.  
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Figure 28. ISP pilot workshop 

8.1.3. Assessment and feedback 

The last part of the workshop included a round of questions from the attendees and an open 
debate, as evaluation/assessment. As a summary, the feedback received from technical and 
operational staff was positive, especially in how we are able to combine different ML algorithms 
in DARE to improve the performance, or the selection of standards protocols such as Netflow 
or DNS, widely used by ISPs and supported by vendors, to obtain the data needed. The 
findings/recommendations can be summarized as follows: 

● NFV technology is in process of adoption by Telefónica and its use by SHIELD for security 
solutions is very relevant and aligned to the company’s commercial roadmap. 

● Related to the use cases presented, Telefonica sees two main exploitation scenarios. 
First, for its own infrastructure protection (UC1). Second, SME security services through 
the deployment in the customer premises or inside its own network (UC2). 

● Telefonica prefers a recommendation dashboard (using MSPL), instead of automatic 
response, especially from operational staff point of view. Present audience highlighted 
the capacity of SHIELD to offer alternatives instead of only one mitigation recipe 
(feature available in last version of SHIELD). 

● A recommendation was made related to investigate how it can affect in the DARE 
analytics and detections when ISP works with “Netflow sampling”. Netflow sampling is 
commonly applied by network nodes with high throughput, processing only one 
randomly selected packet out of n sequential packets to generate the flows statistics. 
Distributed collector (d-collector) developed in SHIELD was mentioned as an alternative 
when NFV technology is available. 

● The DARE performance demonstrated with NCSRD data was positively evaluated, 
especially if SHIELD focuses in customers’ routers or if SHIELD supports netflow 
sampling. 
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● The capability of integrating with existing security appliances deployed by Telefonica 
could be a valuable feature. For example, with an anti-DDoS high performance 
appliance. The OSM community is in process of incorporating PNFs (physical Network 
Functions), so it can be adopted by vNSFO in the future. 

● Another additional feature suggested is the integration in the DARE of information from 
external security feeds, also commonly known as IOC (Indicators of Compromise), to 
improve the detection accuracy with publicly available data. 

● Standardization efforts done in SHIELD are very important for Telefonica to integrate 
vendors, including the DARE interfaces for security policy enforcement and remote 
attestation extension in virtualized environments. 

● It would be interesting to extend the Trust Monitoring module to update and track 
“golden” measurements in the verifier, beyond the vNSF descriptor content, for 
instance using API interfaces, decoupling from the onboarding process. 

8.2. Enteprise pilot – UC2  

8.2.1. Data collection and pilot setup 

The data used for the enterprise pilot were captured under real conditions from inside the SPH 
corporate network, naturally generated during the day-to-day operations of the company 
personnel (~300 employees). This fully corresponds to the TSS scenario, where the traffic of a 
medium-size enterprise is analysed –and responded to- in real time.  

The setup of the SHIELD pilot deployment at SPH is depicted in Figure 29 below. Similarly to the 
NCSRD pilot deployment (see Sec. 8.1.1), the traffic information (in NetFlow v.9) format was 
captured from the company’s central firewall, which interconnects the company internal 
network with the DMZ and also to the Internet. The firewall was configured to send the traffic 
information in real time to a NetFlow collector vNSF, which in turn fed the DARE storage using 
the distributed collector pipeline.  

Unlike the NCSRD case, no anonymization procedure was applied in the SPH pilot, as the traffic 
was analysed strictly within the company by the IT and security personnel, who are already 
authorised to inspect and analyse the company’s traffic. 

The incident detection and classification results, as well as the mitigation proposal, was 
visualised in the SHIELD dashboard. 

The pilot operated for one whole week (14/2/2019 – 21/2/2019), capturing and processing 
traffic without interruption, on 24/7 basis, in an average of ~300 new network flows per second. 
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Figure 29. SHIELD pilot deployment at SPH corporate network 

 

8.2.2. Presentation and stakeholders engagement 

The internal pilot workshop was held on Monday, 4/3/2019, 09.30 – 11.00 EET. The meeting 
was organized in a dedicated meeting room and included the following: 

i)                    general introduction to the SHIELD project and discussion about its objectives, 

ii)                  technical description of the pilot setup, 

iii)                overview of the detection results in the Dashboard, 

iv)                hands-on session and 

v)                  Q&As and discussion. 

The presentation was given by two persons from the SHIELD project team (G. Gardikis, A. 
Kapodistria), while the evaluation panel consisted of seven experts outside the project team, 
with no previous involvement in the project, including Security engineers, Big Data & Machine 
Learning engineers, as well as representatives from the company management, with special 
emphasis on commercialization aspects. 

8.2.3. Assessment and feedback 

The assessment and discussion was mostly focused on the DARE part and the incident detection 
capabilities. 
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From the technical point of view, it was observed that, indeed, many of the traffic flows which 
were detected by DARE as suspicious, diverted from the normal network behavior and were 
deserving further investigation (yet not necessarily corresponding to security incidents). 

Overall, it was agreed that the DARE part consists a very useful tool, which can be exploited in 
the short term (only a few months time-to-market) and can assist network administrators and 
security engineers in their daily activities, always acting complementarily with traditional 
existing network security appliances (firewalls, IDS/IPSs, content filters etc.). Apart from the in-
house deployment and the telco-driven (TSS) model, DARE service could be outsourced as a 
managed security service from the enterprise to a trusted security provider/data analyst. In this 
case, though, legal and GDPR issues need to be carefully taken into account. 

The following specific recommendations for the further evolution of SHIELD were recorded: 

● The processing time window (default was one day for the LDA algorithm) should be 
configurable. The system should be able to work with microbatches (especially for pre-
trained algorithms) in order to improve the response time. 

● The detection threshold should be configured and fine-tuned per customer during 
operation. 

● Flows with zero byte count have been probably already dropped/filtered by the firewall, 
so they should be excluded from suspicious connects analysis. 

● We should investigate cluster management solutions other than Cloudera – e.g. Ambari 
[14] in order not to depend on a commercial solution and overcome licensing issues. 

● IP addresses should be explicitly marked as internal or external in the Dashboard view. 

● The incident/suspicious flows view should have more capabilities of sorting and filtering 
out information. 

● The output of the ML algorithms, in addition to be visualized in the Dashboard, can be 
fed to a third-party data indexing and analytics system, such as Splunk[15] or the Elastic 
stack[16]. This would allow better visualization, data aggregation and correlation from 
multiple sources (also outside SHIELD feeds) and also faster and more advanced 
querying. 

● In an operational environment, depending on the deployment scenario, the integrity of 
the data collection and DARE modules should be also verified, in order to prevent 
attacks against the analytics subsystem. 

In must be noted that items (3), (4) and (7) have been identified as of prime importance, and 
SPH personnel are already working on these extensions, beyond the duration and the scope of 
the project. 

8.3. CERT pilot – UC3  

8.3.1. Data collection and pilot setup  

The data used for the CERT pilot was derived from the pilot deployment at NCSRD, as described 
in Sec. 8.1.1. 
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8.3.2. Presentation and stakeholders engagement 

The cybersecurity agency pilot of SHIELD has been carried out for CESICAT, the centre for 
Cybersecurity of the Catalan Government, in charge of the private network and applications of 
the Government. 

I2CAT is the technical partner leading the Pilot while CESICAT evaluated the performance and 
features of the project, and provided feedback that can harmonise the outcomes with their 
needs, in order to better direct the project towards an envisioned real deployment in CESICAT 
facilities. 

The pilot session has involved three i2CAT employees. Two technical persons that will 
presented the pilot, and one business development person that helped to identify possible 
opportunities for SHIELD as well as main needs from the stakeholder. 

CESICAT was represented by 3 persons, the Director of Strategy, one member of the technical 
team (Security Operations Control - SOC) and the Head of the innovation office from the 
business perspective. 

The pilot workshop had the following schedule: 

● SHIELD Introduction – 20 min 
● Architecture & components – 20 min 
● SHIELD demos – 20 min 
● SHIELD pilot – 15 min 
● Round table & questions -  40 min 
● Close & next – 5 min 

8.3.3. Assessment and feedback 

Several feedback was produced during the presentations, the piloting and the discussion. This 
feedback can be summarized in the following aspects: 

8.3.3.1.  Technical features 

The trusted computing part is quite impressing, maybe we should consider to add the 0-trusted 
concept in SHIELD. In 0-trusted environments, you consider any device to be malicious by 
default, and you must consider protocols to trust the messages that they sent. 

One main technical issue is the need to train with a dataset that represents the normal 
behaviour of the network. This involves considering that the training traffic, which corresponds 
to day-to-day operation, is clean (which is not the case on most of the networks and may lead 
to false negatives). An important feature will be the possibility that the expert behind the 
solution is able to mark a detected anomaly as normal, and so the solution does not show 
further alarms for that anomaly (reduce false positives). In the same way, a feature that allows 
the solution to retrain when an attack that was not detected by the solution is found to be a 
threat (false negative reduction) would be important. 

In general we have to take into account that most of the failures in a Security Operations 
Control (SOC) are human errors, so we have to be tolerant to these and permit the undoing of 
operations. 
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8.3.3.2.  Business features 

In order to commercialize the solution, we need to show an operator use-case, so that we can 
show the added value of the solution. In addition, we should prepare a protocol to manage the 
change i.e. how the organization is going to manage the adoption of this solution across all the 
departments (specially operations and security). 

Maybe we should focus the product as a solution for autonomous decision systems or even 
better, for automatization engineers (a role that does not currently exist in CERTs but that are 
completely necessary) 

8.3.3.3.  CERT specific features 

The provided features with the dashboard are interesting. Nevertheless, we have to take into 
account that a security manager is basically a risk manager. Hence, we should be able to share 
information with the current software platforms that they use (i.e. Mitre) that basically use STIX 
as data sharing protocol. If we can use these protocols to share information that is able to be 
added in the risk management system, we will provide a very valuable information for CERTs. 
For example, taking into account metrics as the propagation time, damage of the attack or 
frequency of occurrence provide a risk factor indicator.   

 

 

Figure 30. Pilot workshop with CESICAT 
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9. SHIELD TECHNOLOGY ROADMAP 

9.1. Methodology 

A technology roadmap (also known as TRM) can be thought of as a methodical approach to the 
analysis and projections of future developments and outcomes, leading to improved or new 
products or environments [12] 

Most roadmapping approaches follow similar structured phases, that include collection of 
information, synthesis and validation or the final roadmap. There is no single, standardised 
approach to providing a TRM, since its creation is inherently needs-driven. A TRM is therefore 
created to serve a specific purpose and fulfil different needs. Key decisions that need to be 
addressed prior to the definition of a roadmapping methodology include: 

 The definition of its purpose: A scientific roadmap might target to unearth and fill 
specific research gaps whereas a technical roadmap might target outcomes of higher 
TRL levels. 

 The definition of a timeline: i.e. if a medium- or long-term TRM is needed. 

 The definition of a starting/ending point: Exploratory approaches (Figure 31) try to 
foresee different future outcomes based on an extensive analysis of the current state. 
Normative roadmaps (Figure 32) explore possible known/desirable future outcomes 
and trace back to the current state. 

According to JRC [12]: 

“Exploratory methods are outward bound. They begin with the present as the starting point, 
and move forward to the future, either on the basis of extrapolating past trends or causal 

dynamics, or else by asking "what if?" questions about the implications of possible 
developments or events that may lie outside of these familiar trends.” 

In SHIELD this would apply by analyzing SoA & Known gaps in SHIELD technical areas based on 
our experience, as well as on current trends to synthesize new use cases & developments for 
future research.  

 

Figure 31. Exploratory roadmap overview. 

On the other hand, normative approaches follow a different path [12]: 

“Normative methods are, by contrast, inward bound. They start with a preliminary view of a 
possible (often a desirable) future or set of futures that are of particular interest. They then 
work backwards to see if and how these might futures might or might not grow out of the 
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present – hot they might be achieved, or avoided, given the existing constraints, resources and 
technologies.” 

This would be an appropriate methodology for studies on how SHIELD can apply to different 
verticals, or future use cases (e.g. 5G, MEC, IoT etc.), by first analysing the desired future states 
and tracing back to how the SHIELD components (and platform as a whole) can be improved. 

 

Figure 32. Normative roadmap overview. 

Normative approaches are usually more effective when a common shared vision or common 
goal exists (e.g. when considering 5G) and when foresight helps construct a viable vision of the 
future. In other cases, however, normative approaches can be considered as inadequate and 
subjective, not allowing for a “bigger picture”. Hence, SHIELD has selected the exploratory 
approach, as it allows more flexibility with respect to future goals.  

In any case, the roadmapping methodology needs to integrate the view of multiple 
stakeholders in order to be credible. Sufficient documentation and comprehensive analysis are 
cornerstones of the roadmapping process. As discussed in the following subsections, SHIELD 
applies the roadmapping methodology to analyse short-term to long-term plans for the further 
development of both individual products and SHIELD as a whole. This work complements the 
evolution of business and exploitation plans provided by WP6. 

9.2. vNSF ecosystem evolutions  

9.2.1. Lessons learned and gap analysis 

9.2.1.1.  NFVO  

In the early phases of the development we assumed, and later learned, that developing a layer 
on top of the NFVO (OSM) was more adequate for us than directly modifying the component's 
code. There are some reasons for this: 

1. Less complexity. A development from scratch and the limited set of features at such 
layer greatly simplifies the work. 

2. Better maintainability. A smaller and less complex project requires less effort for further 
troubleshooting and addition of new features. Furthermore, and even more important 
for the project, separating the SHIELD-specific logic from that of the NFVO makes it 
considerably easier to upgrade the NFVO over time -- where we were concerned with 
the backwards compatibility they offer to the external developers rather than also 
merging our previous work into newer versions. 
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3. More modular. The new functionality is separated from the core of the service (here, 
the NFVO). Identifying where each feature or service is running is easier this way. 

4. More tailored configuration. The development can benefit from its isolation due to the 
fact that specific SHIELD configuration or features can be directly integrated. 

Therefore, the original plan of directly modifying the code of the NFVO was discarded and we 
provided an extra logic instead for SHIELD purposes. We noticed one possible drawback; as the 
new features are not directly available in the NFVO and any possible integration into the 
upstream code (i.e., for collaboration within the project) must be done as a separate work. 
Nevertheless that is not a blocker; given that it is feasible and even more adequate to cherry-
pick specific changes in the code prior to contributing to the community. 

On the other hand, some of the initial planned developments and integrations were not carried 
out in the end within the orchestration side: 

● Verification of policies (MSPL) sent for the vNSF configuration -- as this is typically 
generated by the Trust Monitor, trusted and inside the SHIELD platform; 

● Built-in NS/vNSF catalogue -- as that is already available in the store  (keeping also 
SHIELD-specific information) and in the NFVO itself; 

● Providing network topology information to the DARE; where such component would be 
aware of the topology and therefore would suggest placement of specific NSs at specific 
locations. This was changed and only the vNSFO and NFVO have idea of the locations -- 
as otherwise there would be duplication of information and logic across components 
whose function might be less related 

Whilst others were incorporated later on: 

● Secure communication with its clients -- as the HTTPS-based communication is 
expected for the different components in the project; 

● Endpoints to interact with the Trust Monitor for manual or automatic registration of 
physical and virtual nodes (to add the physical nodes from the infrastructure and those 
virtual services added on-the-fly, respectively) -- as the vNSFO API is the one that 
intercepts the requests for instantiating the virtual nodes; 

● VDU registration from the vNSFO API -- even though not required, it was understood as 
a nice-to-have feature to upload the VDU image from the same IP, prior to the vNSF 
instantiation 

● Endpoints to provide granular information on the status of the attested physical & 
virtual nodes 

9.2.1.2.  vNSF Store  

The Store module was designed to be agnostic to any type of Orchestrator, supporting multiple 
types of descriptors with respect to different types of Orchestrators. The underling architecture 
of this component supports the onboarding of different types of descriptors by abstracting the 
validation and extraction of descriptors through a generic adaptor which routes the descriptor 
analysis to the specific Orchestrator processor. Given the time and resource constraints of the 



SHIELD  D5.2 • Final demonstration, roadmap and validation results 

 

© SHIELD Consortium 

57 

project, a specific Orchestrator had to be chosen, namely the OSM. As a result, the gap of using 
the Store module with promiscuous packages for different types of Orchestrators was not filled. 

9.2.1.3.  Attestation framework  

As soon as SHIELD started, the partners involved in the Trust Monitor identified a couple of 
technical risks associated with the underlying technologies used: 

1.      The mainstream open-source vTPM implementation was found out to be bugged, 
which rendered it unusable. Furthermore, the community supporting the 
implementation decided not to fix the issue. This meant that SHIELD would not be 
able to support the attestation of multiple VMs and the host platform, thus the 
consortium decided to focus on attestation container-based vNSFs. 

2.      OpenAttestation6 and OpenCIT7 : SECURED project was based on OpenAttestation, 
which uses TPM1.28. Early in SHIELD, the partners considered a migration to 
OpenCIT, which can be seen as the evolution of OpenAttestation and that relies on 
TPM2.09 . It turned out that OpenCIT and OpenAttestation were too different and 
the consortium could not migrate to OpenCIT. 

Those two risks, related to open-source components outside of SHIELD, led to the following to 
task being reduced: 

1.      Between the unavailability of a vTPM and the immaturity of container support in 
the NFVO, only prototype container-based vNSFs have been implemented, 
deployed and tested in SHIELD. 

2.   SHIELD stuck to using TPM1.2 instead of TPM2.0 for the testbeds, the 
demonstrations and the pilots. Some design and proof-of-concept work has been 
carried out with TPM2.0. 

9.2.1.4.  NSs and vNSFs  

The encapsulation of NSs and vNSFs in SHIELD packages allows additional information to be 
provided to the Store module, the entity that is responsible to onboard the “striped” packages 
to the appropriate Orchestrator. As a consequence of the gap identified in the previous Store 
section, the possibility of having packages driven to multiple Orchestrator types was not 
implemented. 

9.2.2. Future activities and required resources 

9.2.2.1.  NFVO  

Possible improvements on the NFVO and network side relate to: 

                                                      
6 https://01.org/openattestation  
7 https://01.org/opencit  
8 https://trustedcomputinggroup.org/resource/tpm-main-specification/  
9 https://trustedcomputinggroup.org/resource/tpm-library-specification/  

https://01.org/openattestation
https://01.org/opencit
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
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- The integration of the service chaining as implemented in the NFVO (OSMr4) 
- The network slice features implemented in newer versions (OSMr5) 

Each of the improvements might take around 2 months of work (2 PMs), considering the proper 
configuration of the infrastructure and the integration of such features with the vNSFO API. 

On the security side, for NFVO, some other improvements are: 

- Provide basic auth security for the northbound API; if requested from a client outside 
the SHIELD platform 

- Implement authentication through certificates for the northbound API, when used 
internally to the platform (that is, communicating with other SHIELD components) 

These efforts require days and weeks, respectively. 

Finally, some other enhancements relate to providing more granular data on the instantiation 
and configuration of NSs, filtering of specific data and other modifications of the northbound 
API to make it even more useful by external clients. That kind of work typically would take days 
up to a week. 

9.2.2.2.  Store  

Regarding the current developed billing model, it can be considered rather simplistic as it may 
come insufficient to deal with complex rating contracts. For instance, the flat-rate model limits 
the possibility of specifying different rates to date intervals or even provide benefits associated 
with usage volumes. To develop this feature, a comprehensive study of the market would be 
mandatory and would also require the design and implementation of a complex model. For the 
analysis and implementation of this project it is estimated 4 months of work (6 PMs). 

9.2.2.3.  Attestation framework evolutions  

Given the gap in a vTPM implementation and the new features of TPM2.0 versus TPM1.2, 
POLITO and HPELB identified the need for a vTPM2.0. Although it was not planned in SHIELD, 
both partners started a collaboration on researching and designing a secure vTPM2.0. Given 
the complexity of the new TPM2.0 features, this task is estimated  to require at least one year 
of development, with an estimated effort of 18 PMs. 

9.2.2.4.  NSs and vNSFs  

Concerning the significant effort related to the development of NSs and respective vNSFs, a 
modeling tool to perform the implementation and offline testing of these descriptors would 
ease and expedite the whole process. Therefore, a descriptor composer tool, such as a Service 
Development Kit (SDK) to help the development of NSs and vNSFs, would be an important 
addition to the project. To implement this module at least 3 months (2 PMs) of work are 
estimated.  
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9.3. DARE evolutions  

9.3.1. Lessons learned and gap analysis 

The development of a successful, information-driven cybersecurity engine that aims at 
providing Security-as-a-Service functionalities even at ISP-level workloads, requires a holistic 
mindset shift from traditional IDS/IDPS systems, not only in terms of architectural design, but 
also in terms of hardware infrastructure and specifications. The DARE, as one of the three 
central innovation pillars of SHIELD along with the vNSF ecosystem and the hardware 
attestation, materialises this shift by combining state-of-the-art security analytics techniques, 
in order to produce useful inference and exchange that information with all the other 
components of the solution. 

When properly leveraged, security analytics can offer a significant boost in securing network 
environments, usually higher than most legacy/local services can currently provide. A 
framework that combines a set of such services, should ideally be designed with scalability and 
fault-tolerance in mind, while also taking efficiency and real-time performance into 
consideration, terms which can often be contradictory. It is thus evident that many important 
decisions had to be taken early in the development process in order to ensure that the optimal 
trade-off between these contrasting notions would be selected. From a technical perspective, 
the following decisions played a major role in the development process: 

Multi-layer architecture: An analytics-based cybersecurity engine that handles network traffic 
should be considered as an integrated system. This system has layers, components, interfaces 
and interactions, which can be thought as interconnected parts of a unified central design. To 
this end, the DARE has implemented a 3-layer architectural approach, starting from data 
acquisition to data analysis and finally to threat remediation. As data is passed from one layer 
to another, it is being further processed and enriched, ultimately leading to the accumulation 
of the necessary information to mitigate a network threat. 

Distributed computing: The aforementioned multi-layer design facilitates the implementation 
of a multi-node system as well, with each node serving a discrete role. This configuration is 
indeed considered as the best practice for every computationally intensive application, since 
the processing needs for cybersecurity analytics at scale impose the use of distributed 
computing architectures that can balance the workload, while adding to the fault-tolerance of 
the overall infrastructure. The DARE has exploited the functionalities of an open-source 
distributed computing framework (Apache Spark) to be able to train machine-learning and 
deep-learning models using large network datasets, without suffering from the shortcomings 
of other popular frameworks (e.g. out-of-memory errors, limitations in workload balancing, 
latency in disk I/O).  

Data availability: One of the most crucial decisions of every information-driven solution is 
related to the way it stores and transfers the data to the processing stage(s). Data needs to be 
considered in all its elemental forms (at rest, in motion and in use) and must be available at all 
times. That implies that, although a distributed architecture approach has been implemented, 
each node of the DARE should have access to all of the accumulated traffic, otherwise any 
inference produced by the analytics components will be limited by the latent information that 
resides only in the portion of data provided to it, severely reducing the efficiency of the 
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implemented machine-learning and deep-learning models. To solve this issue, the DARE has 
exploited a popular distributed filesystem (HDFS) that is designed to simulate centralised 
storage by providing high throughput access to application data and is suitable for applications 
that process large datasets.  

Cluster configuration: While it is possible to install and configure all the prerequisite services 
related to storage, communication and processing of data to each node individually, this can 
be achieved far more easily and more efficiently with the help of a centralized interface. In this 
context, CDH (Cloudera Distribution for Hadoop) was leveraged as a bundle of open-source 
services, specifically optimised for end-to-end Big Data workflows. CDH can be considered as a 
superset of the DARE’s prerequisite software specifications, as it includes a set of storage, 
processing, analytics, load-balancing and messaging features that can be configured and 
controlled with the help of a convenient web interface.  

Efficiency of cybersecurity analytics: The analytics stage of the DARE leverages two different ML-
based modules (the Cognitive DA module and the Security DA module) as a means of 
maximising the detection efficiency of the SHIELD solution. In each module, a two-stage 
approach has been implemented, following the basic principles of anomaly detection and 
threat classification. During the last two years, we experimented with a large number of 
different machine-learning and deep-learning models, evaluating them in terms of detection 
efficiency, scalability, speed and ease of training. We derived that it is possible to create an 
analytics-based solution that offers detection capabilities equivalent of or even superior to 
traditional rule-based IDSs, however not without any limitations. These limitations stem mainly 
from the fact that there is a lack of publicly available, representative network traffic which is 
necessary for training our models. This, along with the fundamental limitations inherent in 
machine learning techniques -which are mainly probabilistic in nature and thus can be prone 
to false positives/negatives under certain conditions- led us to the conclusion that a hybrid 
solution, combining rule-based and analytics-based detection can yield the optimal results. This 
approach is indeed followed by SHIELD, as the NS Store offers a set of rule-based monitoring 
and actuating vNSFs to enhance the security of the protected infrastructure. 

9.3.2. Future activities and required resources  

The DARE is a complex analytics engine, offering a multitude of different services for 
accumulating network traffic, predicting malicious attacks and mitigating detected threats. It 
implements a multi-layer cybersecurity solution based on Big Data infrastructure and scalable 
analytics. The emergence of these technologies as core business disruptors in the digital age 
has led to the existence of a plethora of different approaches, models and tools, which we could 
not have possibly exhausted over the 30-month span of this project. However, there are 
activities for improvement that we would prioritise over others:  

 Both the Cognitive DA module and the Security DA module of the DARE support the 
netflow traffic protocol (with some early models of the former also supporting packet 
captures). This was a conscious decision, since netflow provides a metadata-based view 
of the network activity which is far more manageable in terms of storage compared to 
full packet capture, which continuously records a complete record of all network 
activity, including the actual data (packet payload). However, packet capture is 
encapsulating information that netflow is lacking. Therefore, analysing actual packets 
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may offer a significant improvement in the efficiency of our analytics models, which can 
be converted to handle this type of traffic relatively easily. This improvement would not 
require more than 5 months of work (5 PMs). 

 The aforementioned DARE modules are currently providing their findings in an 
aggregated manner, which is visualised via the Dashboard. A potential improvement 
would be to merge these findings to single combined result, based on the confidence 
level of each module (which can be also communicated in the same dashboard view). 
This work should be feasible, given that both modules exploit similar analytics 
techniques and would require approximately 6 months of work (6 PMs). 

 In its current form, the DARE relies on the iterative analysis of network logs which occurs 
automatically in time intervals. Recent advancements in data accumulation and 
processing have enabled the further exploitation of data streaming techniques, allowing 
the analysis of each network log individually (almost upon arrival), thus significantly 
reducing detection times. The current underlying framework supports this 
improvement and it is estimated that it would require 12 months of work (12 PMs) to 
implement it. 

9.4. System-wide evolutions 

The exploitation of SHIELD (as a whole) requires its evolution to fit the needs of the current 
market towards 2030. For example, the IHS Cyber Security Market study [18] for the Europe, 
Middle East and Africa (EMEA) region for 2016-2020 reports that although standalone products 
hold the biggest share in the current market, Managed Security Services (MSS) in Europe show 
the most growth with an 8.8% CAGR (growing from $9.2 Billion in 2015 to $14.2 Billion in 2020), 
which is an appropriate model for the evolution and exploitation of SHIELD as a whole. On the 
technical side, it is important to predict what kind of system-wide evolutions will help SHIELD 
reach this potential.  

As also defined in WP6 deliverable D6.2, Ovum [19] and Forrester [20] have defined the 
important characteristics of Managed Security Services as:  

 protecting the business, instead of solving network point of view problem, adding 
consulting, analytics, data science, threat hunting, incidents response, and remediation: 
SHIELD can focus on improving the performance and scalability of current components 
(data science, incidents response, remediation) and develop additional mechanisms to 
improve billing and provide mechanisms that monitor for service-level agreement (SLA) 
breaches. This would be an important aspect towards protecting businesses. 

 featuring autonomic cyberhealth through integration and automatic orchestration of 
customers’ security tools: A future evolution would enable the DARE to work together 
with customers’ existing cybersecurity tools. This requires the use of common APIs or 
data formats that can easily be ingested by DARE. Another future development would 
be to automate the instantiation/placement of cybersecurity services with minimal 
input from the human operator. Proper interfaces should still be developed, so as to 
keep the dashboard user properly informed in a highly dynamic service ecosystem. 

 Bear weight in prevention and detection solutions rather than focus solely in mitigation 
with special interest in the analytics: SHIELD takes into account preventative/mitigation 
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measures on the level of the network, as cybersecurity vNSFs. One such case was also 
demonstrated with the IDPS where detection and mitigation of the malicious script was 
instantaneous. Further work could focus on enhancing the performance and scalability 
of SHIELD services. Dedicated rulesets for SHIELD vNSFs (e.g. IDPS, DPI, firewalls etc.) 
can be developed and even monetised (per client, per vertical etc.).  

 use augmented technology as a complement to technical staff expert in cybersecurity: 
SHIELD uses powerful Machine Learning algorithms in its DARE, that show how 
advanced technologies can complement the work of a dedicated technical staff. 
Additional work should provide a better understanding of the limitations of ML (with 
respect to false positive/negative detections), the improvement of its detection 
capabilities as well as the study of ML behaviours under adversarial conditions (e.g. 
when a cybercriminal is attacking the ML itself).  

Gartner10 has gone further to define the integrated threat intelligence and response capabilities 
in a single flow, as SOAR (Security Orchestration, Automation and Response). According to 
Gartner, the share of organizations with security teams larger than five people will turn to 
integrated SOAR frameworks rather than individual products, for orchestration and 
automation. Gartner states that “most of the drivers have existed for as long as enterprise and 
government SOCs have existed — for decades, not years. However, SOAR tools only appeared 
in mid-2010s” and estimates that the market share for SOAR will rise from 1% to 15% by 2020. 
It also states that “as the security skills shortage persists, alert numbers and attack vectors 
grow, and product proliferation continues, more complex organizations will consider SOAR 
solutions to unlock the full potential of both their analysts and security product suite”.    

In order to evolve SHIELD towards a SOAR solution, it is necessary not only to consider 
performance and scalability (also addressed in D2.2), but also focus on usability and the 
development of the user interfaces to combat gaps in emergency response that are related to 
the quality and quantity of information that reaches their security teams. In the case of a SHIELD 
evolution towards SOAR, the dashboard as well as the individual DARE and vNSF user interfaces 
need to be improved to provide concise information and combat “alert fatigue”. Based on 
ENISA’s report on “Exploring the opportunities and limitations of current Threat Intelligence 
Platforms”[21]  some of the limitations of current systems that SHIELD should overcome are: 

 Time-to-live for shared intelligence: Apart from UI improvements to enhance the 
responders’ capacity to handle a cyber incident, there is a need to report time-to-live 
information for shared intelligence. This added feature will help responders prioritise 
remediation based on the time window as well as the severity of the incident.  

 Limited technology enablement in threat triage and relevancy determination: SHIELD’s 
classification algorithms and security analytics perform a basic “triage” in the sense that 
they assign a severity level to the detected threats. This work should be prioritised to 
ensure that the information that reaches the dashboard is critical, actionable and 
relevant.  

 Diverse data models and formats used: Multiple standards are being currently used to 
share threat information, like STIX 1.x/2.x, MISP JSON and others, although there are 

                                                      
10 Anton Chuvakin, Augusto Barros, “Preparing your security operations for Orchestration and Automation tools”, Gartner, 
February 2018.  
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concerns that they are being underutilized and threat information are not properly 
conveyed. SHIELD has adopted MSPL/HSPL as it enabled the project to include 
information fields not available in other formats (e.g. the type of vNSF that should 
handle a remediation recommendation). While this functionality was important for 
SHIELD, it can still improve its support for well-known standards.   
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10. CONCLUSIONS  

D5.2 marks the completion of the technical work of the SHIELD project. Judging from the 
feedback received from all the external experts who were engaged in the final evaluation and 
assessment activities, it can be deduced that SHIELD produced quite impactful results, and 
realised a definitive step towards next-generation managed security services, particularly 
suited for software-based networks (including 5G infrastructures). 

The fact that most project deliverables were publicly released and most software was open-
sources further contributes to reinforce the impact of SHIELD in the cybersecurity landscape. It 
is worth to mention that 5G Americas, the leading 5G industry coalition for the whole American 
continent, in its February 2019 white paper (“The status of open-source for 5G”)11 lists SHIELD 
as the only open-source cybersecurity framework currently available, tailored for 5G networks. 

Following the official ending of the project, most SHIELD partners already continue the 
technical work, either on external or even own funding, towards further enhancing the project 
results and exploiting the SHIELD components in next-generation cybersecurity solutions and 
services. 

                                                      
11 
http://www.5gamericas.org/files/9815/5189/9562/5G_Americas_White_Paper_The_Status_of_Open_Source_for_5G_Feb_2
019.pdf  

http://www.5gamericas.org/files/9815/5189/9562/5G_Americas_White_Paper_The_Status_of_Open_Source_for_5G_Feb_2019.pdf
http://www.5gamericas.org/files/9815/5189/9562/5G_Americas_White_Paper_The_Status_of_Open_Source_for_5G_Feb_2019.pdf
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11. ANNEX A: SHIELD TEST CASES AND RESULTS  

11.1. Platform tests 

Test Case ID TC_P01 

Description NS/vNSF onboarding (image& descriptor) 

Executed by UBI Date 10/3/2019 

Purpose Establish the ability of the SHIELD platform to allow and enable users under the 
“developer” role to submit and onboard vNSF packages. 

Associated 
Requirements 

PF01, PF02, PF08, PF15 

Components 
involved 

Dashboard, Store, NFVO 

Tools None 

Metrics None 

Pre-test 
conditions 

SHIELD packages are generated 

The VM images used by the onboarded vNSFs are registered and stored in the VIM.  

Test Sequence Step Type Description Result 

1 Stimulus As a Developer, onboard a vNSF package using 
the Dashboard interface 

 

2 Check The package is correctly onboarded and it 
becomes available in the “NS Catalogue”section 

OK 

 3 Stimulus As the SHIELD platform administrator, verify if I 
have access to the onboarded vNSF 

 

 4 Check The package is available in the “NS Catalogue” 
section of the platform administrator. 

OK 

Evidence #1 Onboard a vNSF package 



SHIELD  D5.2 • Final demonstration, roadmap and validation results 

 

© SHIELD Consortium 
66 

 

 

#2 Check that the package is available from the NS Catalogue 

 

#3 As platform administrator verify that the onboarded vNSF is available from the NS 
Catalogue 
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Verdict Success 

Comments The onboarding process of a SHIELD package involves the opening and validation of 
the SHIELD package itself as well as the validation of the underlying orchestrator 
package (in this case OSM), and finally the submission of the nested orchestrator 
package to the orchestrator itself. These tasks are mainly handled by the Store 
component which also communicates with other components to complete all these 
tasks. A slight delay was observed but it is negligible and does not affect the user 
experience. 

 

 

Test Case ID TC_P02 

Description NS/vNSF control and lifecycle management 

Executed by I2CAT Date 20/2/2019 

Purpose The user-facing components of the SHIELD platform are capable of providing the 
basic management operations so that a developer can upload its service to the 
platform and an operator can deploy or remove it, acting as a response to mitigate a 
threat in the network. 

Associated 
Requirements 

PF02, PF03, PF15, NF05, NF06 

Components 
involved 

NFVO, Store, Dashboard 

Tools None 

Metrics Response time 

Impact on user traffic (additional delay by vNSF) 
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Pre-test 
conditions 

Packages are generated for the correct version of OSM (here, R4). 

Packages are wrapped for SHIELD. 

The vNSF images are properly registered in the VIM. 

Test Sequence Step Type Description Result 

1 Stimulus Onboard vNSF and NS packages from the Store  

2 Check Both packages are correctly onboarded and are 
available for instantiation via the Dashboard 

OK 

3 Stimulus Instantiate NS from the Dashboard as a reaction 
to the perceived threat by the DARE 

 

4 Check NS is properly instantiated in OSM, vNSFs run as 
expected in the VIM, vNSFs are configured as 
expected by the MSPL 

OK 

5 Stimulus Remove NS via the Dashboard  

6 Check NS and corresponding VMs are deleted from 
OSM and the VIM 

OK 

Evidence #1 Enroll a Network Service in the “NS Inventory” view (as shield.client.admin) 

 

#2 Onboard the vNSF and NS from the “vNSF Catalogue” and “NS Catalogue”, 
respectively (as admin) 
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#3 Instantiate the NS from the “NS Inventory” view (as shield.client.admin) 

 

#4 Verify that the NS is instantiated at the NFVO (OSMr4) 
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#5 Terminate the NS from the “NS Inventory” view (as shield.client.admin) 

 

#6 Verify that the NS is terminated at the NFVO (OSMr4) 

 

Verdict Success 

Comments The time taken for onboarding does introduce a slight delay to the end-user when 
comparing to the onboarding time directly to the NFVO. This is expected, as SHIELD-
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specific operations are performed during the onboarding and different endpoints 
must be contacted. Such delay is minimum and does not affect the user experience. 

 

 

Test Case ID TC_P03 

Description Security data monitoring 

Executed by SPH Date 12/2/2019 

Purpose To verify the proper collection and ingestion of network data to the DARE. 

Associated 
Requirements 

PF04, NF01, NF07, NF02 

Components 
involved 

vNSF (flow collector), DARE 

Tools Tcpreplay (https://tcpreplay.appneta.com/ ) 

Metrics Delay from capture to storage 

Pre-test 
conditions 

The flow collector vNSF has been deployed and the user traffic is directed through it. 

The DARE is up and running and ingest engine initialised. 

Test Sequence Step Type Description Result 

1 Stimulus Activate the distributed 
collector (d-collector) in the 
vNSF 

 

2 Stimulus Replay a previously captured 
traffic dump using tcpreplay, via 
the vNSF 

 

3 Check Verify that the traffic flows have 
been properly recorded in the 
Hive table in the DARE 

Success 

Flow data were 
communicated and 
recorded within ~15 sec 
from the replay time 

https://tcpreplay.appneta.com/
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Evidence Collector initialisation and operation: 

2019-02-12 17:53:42,373 INFO     SHIELD.DC.COLLECTOR              

Initializing Distributed Collector process... 

2019-02-12 17:53:42,373 INFO     SHIELD.DC.FILE_WATCHER           

Schedule watching "/home/spotuser/incubator-spot/traffic/flow" 

directory. 

2019-02-12 17:53:42,374 INFO     SHIELD.DC.FILE_WATCHER           

Supported filenames: "nfcapd.*" 

2019-02-12 17:53:42,374 INFO     SHIELD.DC.FILE_WATCHER           

The search in sub-directories is enabled. 

2019-02-12 17:53:42,374 INFO     SHIELD.DC.COLLECTOR              

Use directory "/tmp/_DC.SgIM7E" as local staging area. 

2019-02-12 17:53:42,380 INFO     SHIELD.DC.COLLECTOR              

Master Collector will use 4 parallel processes. 

2019-02-12 17:53:42,380 INFO     SHIELD.DC.COLLECTOR              

Initialization completed successfully! 

2019-02-12 17:53:42,380 INFO     SHIELD.DC.COLLECTOR              

Start "Flow" Collector! 

2019-02-12 17:53:42,382 INFO     SHIELD.DC.COLLECTOR              

Signal the "FileWatcher(Thread-1)" thread to start. 

2019-02-12 17:53:58,749 INFO     SHIELD.DC.FILE_WATCHER            

-------- New File Detected! -------- 

2019-02-12 17:53:58,749 INFO     SHIELD.DC.FILE_WATCHER           

File "/home/spotuser/incubator-

spot/traffic/flow/nfcapd.201901101046" added to the queue. 

 
 

Overview of data in Hadoop: 

 

Verdict Success 

Comments - 

 

 

Test Case ID TC_P04 

Description Security incident detection, classification and visualization. 



SHIELD  D5.2 • Final demonstration, roadmap and validation results 

 

© SHIELD Consortium 
73 

 

Executed by INFILI Date 20/2/2019 

Purpose The DARE is capable of identifying network anomalies, classifying them as specific 
threats and communicating with the Dashboard to report that issue to the user. 

Associated 
Requirements 

PF05, NF01 

Components 
involved 

 vDPI, DARE (Cognitive DA module), Dashboard 

Tools - 

Metrics Cognitive DA module (two-stage ML) performance 
Detection speed 

Pre-test 
conditions 

Packet capture (.pcap) containing wannacry worm acquired from publicly available 
sources. 

Test Sequence Step Type Description Result 

1 Stimulus A packet capture (.pcap) containing 
worm traffic is being replayed, 
simulating a wannacry attack. 

 

2 Check This traffic is being converted to 
netflow logs and is being ingested by 
the DARE. 

The vDPI displays relevant 
network activity. 

3 Stimulus The anomaly detection procedure of 
the Cognitive DA module is initialized. 

 

4 Check DARE logs are being displayed, as the 
ML procedure analyses the ingested 
logs. 

The anomaly detection 
procedure reports a 
number of malicious logs. 

5 Stimulus The threat classification procedure of 
the Cognitive DA module, analyses 
the malicious logs to assign threat 
labels. 

 

6 Check DARE logs are being displayed, as the 
ML procedure analyses the malicious 
logs. 

The threat classification 
procedure reports a 
number of flows with the 
label “wannacry” 

7 Stimulus The reported threats are being 
forwarded to the dashboard via the 
RabbitMQ message broker. 

 

8 Check The Dashboard receives the reported 
threats. 

The threats are displayed 
on the Dashboard and a 
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mitigation action is 
proposed. 

Evidence 1. The vDPI displays relevant network activity. 

 

2. The anomaly detection procedure reports a number of malicious logs. 

 

3.The threat classification procedure reports a number of flows with the label 
“wannacry” 
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4. The threats are displayed on the Dashboard and a mitigation action is proposed. 
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Verdict The DARE was able to ingest a batch of network traffic, detect and label any included 
malicious activity and report the attacker IPs to the user via the Dashboard, in an 
automated manner and in near-real-time (few minutes).  
The two-stage ML procedure of the Cognitive DA module was capable of detecting all 
the malicious IPs involved in the wannacry attack. 

Comments During this demonstration, the Cognitive DA module presented optimal detection 
results. In general, detection efficiency depends on the type of attacks, as well as on 
the amount and quality of the ingested traffic.  
The small time delay between ingestion and reporting is introduced by the 
automated network transmission and data processing, and is considered normal in 
scalable distributed computing frameworks. 

 

 

Test Case ID TC_P05 

Description Access control and multi-role support 

Executed by UBI Date 5/3/2019 

Purpose Verify that the SHIELD Dashboard allows the creation of multiple SecaaS Clients and 
multiple users with different roles for each SecaaS Client. Ensure that each user has 
the proper functionalities available and scoped authorization for its role. 

Associated 
Requirements 

PF06, PF09 

Components 
involved 

Dashboard 

Tools - 

Metrics - 

Pre-test 
conditions 

The Dashboard is running after a clean setup, no SecaaS Clients or users are available. 
The only user available is the platform administrator. 

Test Sequence Step Type Description Result 
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1 Stimulus Create a new SecaaS Client  

2 Check Verify that a new SecaaS client is listed.  OK 

 3 Stimulus Impersonate the created SecaaS client 
administrator by signing in as such. 

 

 4 Check Verify that the SecaaS client has the proper 
authorization to access all the features meant 
for its role. 

OK 

Evidence #1 Create a new SecaaS Client 

 
 

 
 
#2 Verification that the new SecaaS Client is created as well as its administration user 
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#3-4 Login as administrator of the new SecaaS Client and verify that the left panel 
contains all the required functionalities for its role 
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Verdict Success 

Comments - 

 

 

Test Case ID TC_P06 

Description vNSF attestation 

Executed by POLITO Date 20/2/2019 

Purpose The Trust Monitor is capable of detecting a manipulation on a running vNSF. The 
manipulation is represented by a custom application which is not part of the vNSF 
Security Manifest. 

Associated 
Requirements 

PF10. PF11 

Components 
involved 

Trust Monitor, Dashboard, NFVO, NFVI compute host 

Tools None 

Metrics Attestation delay 

Pre-test 
conditions 

vNSF and NS packages are correctly onboarded in the vNSF Store and the vNSF image 
has not been tampered beforehand. 

Test Sequence Step Type Description Result 

1 Stimulus Instantiate NS including the vNSF from 
Dashboard by selecting it from the NS catalogue 

 

2 Check The vNSF is correctly instantiated by the NFVO 
on the NFVI compute host 

OK 
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3 Stimulus Run attestation check on the Dashboard from 
the ISP client view 

 

4 Check The Dashboard shows a notification on the 
attestation check, with successful result 

OK 

5 Stimulus The vNSF is tampered by loading a custom 
application (e.g. Bash script) that is not part of 
the vNSF Security Manifest, by manually 
accessing the NFVI compute host 

 

6 Check The vNSF runs the custom application, and its 
output is shown on the NFVI compute host 
console 

OK 

7 Stimulus Run attestation check on the vNSF from the ISP 
client view 

 

8 Check The Dashboard shows a notification on the 
attestation check, with failure 

OK 

9 Stimulus The ISP client checks the attestation result from 
the Dashboard view 

 

10 Check The Dashboard view shows that the custom 
application was launched in the tampered vNSF 

OK 

Evidence #1 Enroll a Network Service in the SecaaS client view 

 

#2 Run the Network Service in the SecaaS client view 
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#3 Verify that the NS is trusted in the Attestation view  

 

#4 Inject a script in the vNSF by manipulating the container 
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#5 Verify that  the vNSF is untrusted at the next attestation refresh 

 

#6 Show details of failed attestation in the Dashboard 
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Trust Monitor API to attest the vNSF 

REQUEST:  curl -X GET -k 
https://<TRUST_MONITOR_BASE_URL>/nfvi_pop_attestation_info/?node_id=nfvi-
node 
RESPONSE: {"hosts":[{"node":"nfvi-node","status":0,"time":"2019-02-08 
10:47:24.218939 +0000 
UTC","remediation":{"terminate":false,"isolate":false},"vnsfs":[],"trust":true,"driver":"
OAT","extra_info":{"n_digests_valid":465,"n_packages_valid":135,"list_digests_fake_l
ib":[],"n_packages_not_security":0,"n_packages_unknown":1,"n_packages_security":
0,"list_digests_not_found":[],"n_digests_not_found":0,"n_digests_fake_lib":0}}],"sdn
":[],"trust":true,"vtime":"2019-02-08 10:47:24.219215 +0000 UTC"} 
 
The attestation delay to verify the vNSF (which comprises underlying NFVI compute 
host attestation) is 12,231s seconds. 

Verdict Success 

Comments The delay to attest a vNSF includes the delay to attest the underlying NFVI compute 
host, as the vNSF attestation process is part of the host integrity verification 
workflow. 

 

 

Test Case ID TC_P07 

Description Threat data sharing 

Executed by I2CAT Date 15/3/2019 

Purpose Share statistic data regarding incidents with CERTs so that they can have visibility on 
aspects like number of malicious devices, blocked devices and propagation speed.  
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Associated 
Requirements 

PF12, PF17, PF22 (encryption) 

Components 
involved 

DARE, dashboard 

Tools None 

Metrics Visualization delay 

Pre-test 
conditions 

Run one or more attack that generates reports 

Test Sequence Step Type Description Result 

1 Stimulus  Run an attack that generates an alert Alert 

2 Check  Check if the Dashboard shows the metrics True  

Evidence Pilots and year 2.5 demo. The following picture shows the result of the dashboard after 
the wannacry attack 

 

Verdict Success 

Comments - 

 

Test Case ID TC_P08 

Description Automatic Incident Mitigation 

Executed by POLITO Date 20/2/2019 

Purpose The Recommendation and Remediation Engine of the DARE correctly parses an 
anomaly report (generated by the Data Analytics engine in the DARE) and creates a 
mitigation proposal starting from one or more pre-defined recipes for the specific 
type of attack 

Associated 
Requirements 

PF13 
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Components 
involved 

DARE, Dashboard 

Tools None 

Metrics MSPL creation latency. 

Pre-test 
conditions 

An incident has been detected, so that the Data Analytics engine in the DARE can 
generate an incident report 

Test Sequence Step Type Description Result 

1 Stimulus The Data Analytics engine pushes an incident 
report to the Recommendation and Remediation 
engine 

 

2 Check The Recommendation and Remediation engine 
logs the incoming incident report entries 

OK 

3 Stimulus The Recommendation and Remediation engine 
parses the incident report, selects the pre-
defined recipes depending on the type of attack 
and generates the high-level policies in the HSPL 
languge. 

The Recommendation and Remediation engine 
translates the HSPL policies of each recipe into 
MSPL policies. 

 

4 Check The Recommendation and Remediation engine 
logs the HSPL and MSPL policies for each recipe. 

OK 

5 Stimulus The Recommendation and Remediation engine 
forwards the MSPL policies to the Dashboard 

 

6 Check The Dashboard shows a notification regarding a 
new mitigation proposal to address an incoming 
security threat 

OK 

7 Stimulus The Dashboard user applies one of the 
presented mitigation proposals to address the 
incoming security threat 

 

8 Check The Dashboard shows that the mitigation has 
been pushed to the NFVO so that it will be 
applied by a running vNSF 

OK 

Evidence #1 Configuration of recipe for DoS attack (packet filtering, rate limiting) 
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#2 Begin of incident report parsing (total of 1000 lines) 

 

#3 End of MSPL generation for DoS incident 
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#4 Security incident entry on Dashboard (logged as ISP admin) 

 

#5 MSPL-based recommendation action details on the Dashboard (logged as ISP admin) 
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The MSPL creation latency, when parsing an incident report of type DoS comprising 
1000 lines in order to create a recommendation based on two recipes (packet 
filtering, rate limiting) is 1,881 seconds. 

Verdict Success 

Comments None 

 

Test Case ID TC_P09 

Description Multi-user 

Executed by UBI Date 2/3/2019 

Purpose Establish a separate visualization of Network Services and related securty incidents 
between different SecaaS Clients. 

Associated 
Requirements 

PF14 

Components 
involved 

Dashboard 

Tools - 

Metrics Separation of authorization between SecaaS Client users 

Pre-test 
conditions 

A Network Service instantiated by a SecaaS Client administrator will trigger security 
incidents which will not be visible by an administrator of a distinct SecaaS Client 

Test Sequence Step Type Description Result 
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1 Stimulus A SecaaS Client administrator enrolls/adds a 
Network Service to its NS Inventory. The added 
Network Service is instantiated. 

 

2 Check The instantiated Network Service gets 
instantiated, after a while, showing the Instance 
ID and its status marked as as “running”. 

OK 

 3 Stimulus The SecaaS Client will view the list of Security 
Incidents related to the instantiated Network 
Service. 

 

 4 Check A list of Security Incidents related to the 
instantiated Network Service is shown. 

OK 

 5 Stimulus As SHIELD platform administrator, a new SecaaS 
Client is created, as well as its administrator 
user. 

 

 6 Check Verify that the new SecaaS Client is available, its 
administrator user is available and that the 
platform allows its login. 

OK 

 7 Stimulus Access the NS Inventory of the new SecaaS Client 
to verify it doesn’t have any enrolled Network 
Services nor any instantiated Network Service. 

 

 8 Check The NS Inventory should be empty. OK 

 9 Stimulus Access the Security Incidents  

 10 Check The Security Incidents should be empty. OK 

Evidence #1 Enrollment and instantiation of a Network Service 
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#2 Instantiation was successful and Instance details are shown 

 

 

#3-4 List of Security Incidents related to the instantiated Network Service. 

 

#5 The platform administrator creates a new SecaaS Client as well as its administrator 
user. 
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#6 The new SecaaS Client is available, its administrator user is available and that the 
platform allows its login. 
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#7-8 The NS Inventory of the new SecaaS Client doesn’t have any enrolled Network 
Services nor any instantiated Network Service. 

 

#9-10 The Security Incidents of the new SecaaS client is empty 
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Verdict Success 

Comments This test was intented to show the clear separation of the owned Network Service 
instances between SecaaS Clients as well as the related Security Incidents and 
Attestations performed by their running services. 

 

Test Case ID TC_P10 

Description Network infrastructure attestation and remediation 

Executed by HPE Date 26/02/2019 

Purpose The Trust Monitor is capable of detecting a manipulation on a NFVI network 
element. The manipulation is represented by the use of an unauthorised 
configuration, which is not part of the Trust Monitor Whitelist Database. 

Associated 
Requirements 

PF19 

Components 
involved 

Trust Monitor, Dashboard, Network Infrastructure 

Tools None 

Metrics Attestation delay 

Pre-test 
conditions 

The NFVI network elements are running and its configuration has not been tampered 
beforehand. 

Test Sequence Step Type Description Result 

1 Stimulus Run attestation check on the Dashboard from 
the ISP admin view. 

 

2 Check The Dashboard shows a notification on the 
attestation check, with successful result. 

OK 

3 Stimulus One attacker (or unauthorised administrator) 
modifies the running configuration of one 
network element. 

 

4 Check The Dashboard shows a notification on the 
attestation check, with a failure result and a 
remediation recommendation of re-configuring 
the network element. 

OK 

5 Stimulus One authorised administrator restores the 
correct running configuration of the untrusted 
network element. 
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6 Check The Dashboard shows a notification on the 
attestation check, with successful result. 

OK 

Evidence #1 Attestation view in Dashboard (logged as ISP admin user) 

 

#2 Attestation details for NFVI network element 

#3 Manual modification of the network element configuration 
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#4 Notification of subsequent periodic attestation in Dashboard (logged as ISP admin 
user) 

#5 Detailed of attestation result, including the remediation recommendation (logged as 
ISP admin user) 
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#6 Manual modification of the network element configuration 
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#7 Detailed of new attestation result (logged as ISP admin user)

 

Verdict Success 

Comments For the final validation, only the configuration modification has been tested; 
modification of the firmware, software, SDN rules and SDN controller has been 
demonstrated during the year 1 review and the test sequence is similar. 
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Test Case ID TC_P11 

Description Compute infrastructure attestation  

Executed by POLITO Date 20/2/2019 

Purpose The Trust Monitor is capable of detecting a manipulation on a NFVI compute host. 
The manipulation is represented by a custom application which is not part of the 
Trust Monitor Whitelist Database. 

Associated 
Requirements 

PF19 

Components 
involved 

Trust Monitor, Dashboard 

Tools None 

Metrics Attestation delay 

Pre-test 
conditions 

The NFVI compute host is running and its configuration has not been tampered 
beforehand. 

Test Sequence Step Type Description Result 

 1 Stimulus Run attestation check on the Dashboard from 
the ISP admin view 

 

 2 Check The Dashboard shows a notification on the 
attestation check, with successful result 

OK 

 3 Stimulus The NFVI compute host is manually tampered by 
loading a custom application (e.g. Bash script) 
that is not part of the Trust Monitor Whitelist 
Database 

 

 4 Check The NFVI compute host runs the custom 
application, and its output is captured 

OK 

 5 Stimulus Run attestation check on the NFVI infrastructure 
from the ISP admin view 

 

 6 Check The Dashboard shows a notification on the 
attestation check, with failure 

OK 

 7 Stimulus The ISP client checks the attestation result from 
the Dashboard view 

 

 8 Check The Dashboard view shows that the custom 
application was launched in the NFVI compute 
host 

OK 

Evidence #1 Attestation view in Dashboard (logged as ISP admin user) 
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#2 Attestation details for NFVI compute host 

 

#3 Manual execution of unmeasured script in NFVI compute host 
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#4 Notification of subsequent periodic attestation in Dashboard (logged as ISP admin 
user) 

 

Trust Monitor API to attest the NFVI compute host 

REQUEST:  curl -X GET -k 

https://<TRUST_MONITOR_BASE_URL>/nfvi_pop_attestation_info/?nod

e_id=nfvi-node 

 

RESPONSE: {"hosts":[{"node":"nfvi-

node","status":0,"time":"2019-02-08 10:47:24.218939 +0000 

UTC","remediation":{"terminate":false,"isolate":false},"vnsfs":

[],"trust":true,"driver":"OAT","extra_info":{"n_digests_valid":

465,"n_packages_valid":135,"list_digests_fake_lib":[],"n_packag

es_not_security":0,"n_packages_unknown":1,"n_packages_security"

:0,"list_digests_not_found":[],"n_digests_not_found":0,"n_diges

ts_fake_lib":0}}],"sdn":[],"trust":true,"vtime":"2019-02-08 

10:47:24.219215 +0000 UTC"} 

 

The attestation delay to verify the NFVI compute host is 11,567s seconds. 
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Verdict Success 

Comments None 

 

 

Test Case ID TC_P12 

Description Billing 

Executed by UBI Date 16/3/2019 

Purpose Analyse the billing model flow by defining billing fees for vNSFs (provided by 
Developers), Network Services (provided by Platform administrators, e.g. ISP). The 
billing costs of Network Service instantiations should be supported by SecaaS Clients, 
whereas the billing costs of the vNSFs should be supported by the Platform/ISP. 

Associated 
Requirements 

PF20 

Components 
involved 

Dashboard 

Tools - 

Metrics Billing fee of a vNSF, Billing fee of a Network Service instance, Overall profit by the 
Platform/ISP 

Pre-test 
conditions 

A vNSF is already onboarded. A Network Service is also already onboarded, which is 
constituted with the former onboarded vNSF. 

Test Sequence Step Type Description Result 

1 Stimulus [As a Developer user] Having an onboarded vNSF 
in place, define its monthly billing fee. 

 

2 Check Check that the established billing fee is defined 
correctly. 

OK 

 3 Stimulus [As Platform Administrator] Having  an 
onboarded NS which uses/references the 
previous vNSF, define its monthly billing fee. 

 

 4 Check During the definition of the NS billing fee it is 
possible to use a simple billing simulator to 
provide a general idea of potential profits. 
Establish that the NS billing fee is correclty 
defined. 

OK 

 5 Stimulus [As SecaaS Client] Add/Enroll the Network 
Service to the client catalogue (NS Inventory) 
and trigger the creation of a new instance. 

 



SHIELD  D5.2 • Final demonstration, roadmap and validation results 

 

© SHIELD Consortium 
102 

 6 Check The Billing panel should provide a resume on a 
monthly basis of the billable costs inherent to its 
Network Service instances. Particularly on this 
test, the details of the current month should  
report the usage of the new Network Service 
instance and display its associated costs, for the 
usage period, according to the established billing 
fees of the Platform/ISP.  

OK 

 7 Stimulus [As Platform Administrator] The billing panel 
should have a resume on a monthly basis of the 
profits or losses obtained by Network Service 
instantiatations. The details of each month 
should specify the details of all Network Service 
instantations profits as well as the details of all  
vNSFs expenses, translating the overall 
profit/expense balance. 

 

 8 Check Regarding this particular test case, the Network 
Service instance billing fee as well as the used 
vNSF fee should be discriminated along with 
their usage dates and billing fees. 

OK 

 9 Stimulus [As Developer user] Verify the billing information 
about the usage of its vNSF 

 

 10 Check Establish that the profits obtained resulting from 
the Network Service instantiation of the SecaaS 
client are accurate. 

OK 

Evidence #1-2 Specification of a vNSF billing fee  
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#3-4 Specification of a NS billing fee, which references the previous vNSF, using the 
simulator tool assistent 
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#5 Create a new Network Service instance 
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#6 As the SecaaS Client, show the monthly summary of the billing fee as well as the 
details for a particular month 
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#7-8 As the Platform administrator, show the monthly summary of the billing fee as 
well as the details for a particular month 

 

 

#9-10 As a Developer, show the monthly summary of billing fee as well as the details 
for a particular month 
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Verdict Success 

Comments The ecosystem provided by the SHIELD billing model provides both a contextual view 
according to the user role and an overall picture dedicated to the Platform 
administrator. Considering the segmentation on a monthly basis, it allows the 
financial department of the Platform/ISP to obtain an accurate perspective of the 
imputed costs, therefore facilitating not only the cost/benefit of the provided 
Network Services but also the most important SecaaS Clients using the SHIELD 
platform. 
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11.2. Service tests 

Test Case ID TC_S01 

Description Application of traffic rules 

Executed by ORION, NCSRD, POLITO, 
I2CAT, INFILI, TALAIA 

Date 22/2/2019 

Purpose To show that remediation actions that control network traffic reach the vNSFs 
and they in turn apply appropriate blocking or rate limiting rules to selected 
traffic. 

Associated 
Requirements 

SF01, SF02, SF04, SF08, SF09 

Components 
involved 

The SHIELD DARE is in charge of detecting anomalies and providing a remediation 
recipe. The SHIELD dashboard shows the remediation options to the user, who 
selects a specific measure to be applied. The appropriate rules are relayed to a 
specified SHIELD vNSF through the security orchestrator and then applied to the 
vNSF. In some cases, such as the IDPS vNSF, the rule may be applied directly 
through the vNSF’s user interface (without need for the DARE to intervene); in 
this case, the dashboard user is promptly notified. Multiple remediation options 
may be possibly sent to the dashboard. 

Tools tcpreplay to create traffic mixes ingested by the DARE to trigger the remediation, 
traffic captures. 

Metrics Deployment time of the vNSF. 

Time elapsed from ingestion of traffic to generation of remediation action in the 
DARE. 

Time elapsed from the selection of a remediation rule to the application on the 
vNSF. 

Pre-test conditions Ensure that vNSFs, MANO and DARE components are running. 

Test Sequence Step Type Description Result 
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1 Stimulus Replay a copy of normal 
traffic and start the attack 
tool 

A mix of normal and attack 
traffic is ingested by 
DARE’s Apache Spot or 
Security Analytics engine. 

2 Check The DARE component has 
successfully detected the 
anomaly 

A csv file with contextual 
information is sent to the 
remediation engine 

3 Check The remediation engine 
received the csv file on the 
anomaly 

The remediation engine 
provides a recommended 
remediation recipe 

4 Check The dashboard receives the 
remediation recipe 

The recipe is visualised in 
the dashboard 

5 Stimulus The dashboard user selects 
the remediation option 

The option is sent to the 
appropriate vNSF 

6 Check The vNSFS receive and apply 
the recommendation 

The results are observed in 
the network traffic. 

Evidence 

 

Blocking rules on NSCRD FW. 



SHIELD  D5.2 • Final demonstration, roadmap and validation results 

 

© SHIELD Consortium 
110 

 

Classification per protocol and domain in ORION vDPI 

 

 

Recipe for rate limiting. 
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Application of block rule for DNS traffic in NCSRD IDPS. 

 

Verdict The SHIELD vNSFs managed to apply the necessary rules. Traffic monitoring 
showed that the traffic output had the desired characteristics. 

Comments The completion of this test is verifiable since blocking and rate limiting have been 
shown in multiple SHIELD demonstrations. 

 

Test Case ID TC_S02 

Description DoS protection 

Executed by ORION, NCSRD, TALAIA, 
INFILI, POLITO 

Date 20/2/2019 

Purpose The SHIELD systems detect and mitigate different types of DoS/DDoS attacks. 

Associated 
Requirements 

SF04, SF05, SF08 

Components 
involved 

SHIELD vNSFs, SHIELD DARE (SA/CA engines and remediation engine) 

Tools The following tools were used to simulate a variety of (D)DoS attacks, ranging 
from flood-based to protocol-based attacks. 

 BoNeSi (to launch TCP & UDP floods) 

 HULK (HTTP flood) 

 Slowloris (Partial POST requests) 
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Captures of normal, non-offending traffic and tcpreplay are used to simulate 
normal conditions in the network prior to and during the attack. 

Metrics Response time 

Detection rate 

ROC/AUROC curves 

Pre-test conditions Ensure that vNSFs, MANO and DARE components are running. 

Test Sequence Step Type Description Result 

1 Stimulus Replay a copy of normal 
traffic and start the attack 
tool 

A mix of normal and attack 
traffic is ingested by 
DARE’s Apache Spot or 
Security Analytics engine. 

2 Check The DARE component has 
successfully detected the 
anomaly 

A csv file with contextual 
information is sent to the 
remediation engine 

3 Check The remediation engine 
received the csv file on the 
anomaly 

The remediation engine 
provides a recommended 
remediation recipe 

4 Check The dashboard receives the 
remediation recipe 

The recipe is visualised in 
the dashboard 

5 Stimulus The dashboard user selects 
the remediation option 

The option is sent to the 
appropriate vNSF 

6 Check The vNSFS receive and apply 
the recommendation. 

The results are observed 
in the network traffic. 

Evidence SHIELD Y1/Y2 demos. 

Results are documented in the paper: 

C. M. Mathas, O. Segou, G. Xylouris, D. Christinakis, M. A. Kourtis, C. Vassilakis and 
A. Kourtis. 2018. In SIG Proceedings of CyberTIM Workshop, ARES conference, 
Hamburg, Germany, August 2018 (CyberTIM Workshop, ARES Conference 2018), 
9 pages. 
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Verdict (D)DoS attacks are detected and mitigated in a timely manner with sufficient 
detection rate. False positive detection occurs more commonly that false 
negatives. 

Comments This is verifiable through the DDoS Y1 demo and Slowloris Y2 demo. 

 

 

Test Case ID TC_S03 

Description Protection from vulnerability exploitations 

Executed by NCSRD, ORION Date 10/2/2019 

Purpose To test Apache Spot’s detection capabilities against popular tools that scan for 
vulnerabilities or exploit frameworks. 

Associated 
Requirements 

SF03, SF05 

Components 
involved 

A clean, baseline version of Apache Spot, attack tools etc. set up in a VM, a VM 
replaying normal traffic within the network. Further analysis using Python, Excel and 
Matlab. 

Tools The following tools were used to simulate scanning and vulnerabity exploitations: 

 Nmap 

 Nexus 

 Ncrack 

 T50 

 Armitage 

 Metasploit framework 

Metrics Response time, Detection rate, ROC/AUROC curves, Apache Spot threat index 
(probability) 

Pre-test 
conditions 

A testing framework to launch scanning attacks etc. mixed with normal traffic, a 
functioning “clean” version of Spot. 

Test Sequence Step Type Description Result 

1 Stimulus Replay normal traffic and start the 
attack simulation tools 

A mix of normal and attack 
traffic is ingested in Spot 
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2 Check Spot threat index results Export to timestamped csv 
files for further analysis 

Evidence Threat Index (Probability) 

 

Average AUROC value 

 

Verdict Partial – detection characteristics can be improved, boxplots indicate highly 
asymmetrical PDFs. 

Comments None 

 

Test Case ID TC_S04 

Description Malware protection 

Executed by I2CAT, TID Date   22/2/2019 

Purpose Verify and assess SHIELD capabilities to identify and mitigate malware activity 

Associated 
Requirements 

 SF06 
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Components 
involved 

vDPI vNSF, DARE, Dashboard 

Tools  The following tools have been used: 

1. TCPReplay 
2. vDPI 
3. OSM 
4. Anomaly detection: Autoencoder 
5. Classification: Random forest 
6. Recipe generation 
7. Dashboard 

Metrics Accuracy 

Precision 

Recall 

Response time 

Pre-test conditions  Ensure that the whole infrastructure and components are up and running 

Test Sequence Step Type Description Result 

1 Stimulus  Collect network traffic  Netflow 
ingested 

2 Stimulus Run anomaly detection and classifies Threats 
classified 

3 Check  No malware detected true 

 4 Stimulus Reproduce and collect malware in the 
network 

Netflow 
ingested 

 5 Stimulus Run anomaly detection and classifies Threats 
classified 

 3 Check  Malware detected true 

Evidence Evidence of working is the year two demo and the pilots (year 2.5 demo) 

Also the following screenshots show the process. Firstly the launching of the 
anomaly detection + classification + recipe generation 
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Secondly, the recipes shown in the dashboard 

 

Verdict Success. The 5 IPs corresponding to wannacry are detected and no other IP is 
classified as wannacry 

Comments  - 

 

Test Case ID TC_S05 

Description Protection from data exfiltration 

Executed by ORION, NCSRD, TALAIA, 
INFILI, POLITO 

Date 15/1/2019 

Purpose The SHIELD systems detect and mitigate a DNS tunneling attack, which is a 
common data exfiltration method. 

Associated 
Requirements 

SF02,  SF04, SF05 

Components 
involved 

SHIELD DARE (CA engine and remediation engine) 
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Tools The following tools were used to simulate scanning and vulnerability exploitations 

 Iodine was used to create the tunnel to the client 

 iPerf was used to generate “malicious” traffic between the server and the 
endpoint. 

 A traffic generator that loads webpages has been used to create “normal” 
DNS traffic. 

 Tshark was used to capture all the traffic in .pcap files in order to have 
them ingested by the DARE. 

Metrics Response time 

Detection rate 

ROC/AUROC curves 

Pre-test conditions  Ensure that the DARE components are running. 

Test Sequence Step Type Description Result 

1 Stimulus Iodine sets a tunnel between 
the compromised client and a 
malicious authoritative DNS 
server. 

 The tunnel is set. 

2 Stimulus iPerf generates traffic 
between the server and the 
client representing malicious 
commands. 
 

The traffic is 
successfully received 
and decrypted by the 
malicious server. 

 3 Stimulus Benign traffic is being 
simulated by a traffic 
generator that loads 
webpages. 

The traffic is 
successfully received 
and decrypted by the 
malicious server. 

 4 Stimulus Tshark is used to capture all 
the traffic packets (.pcap) and 
sent to the DARE for 
ingestion. 
 

Traffic is successfully 
ingested in the DARE 
Hadoop filesystem 
(HDFS). 

 5 Stimulus The anomaly detection 
module of the DARE is 
performing a suspicious 
connects analysis to detect 

The DARE successfully 
detects the attack. 
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the attack and provide a 
visual representation.  

 6 Check The DARE component has 
successfully detected the 
anomaly 

A csv file with 
contextual information 
is sent to the 
Dashboard and to the 
Remediation engine. 

 7 Check The Dashboard is used to 
present the detection results.  

A list of the malicious 
packets is shown in the 
Dashboard. 

 

 8 Stimulus The Remediation Engine 
receives the analysis’ results 
to create a mitigation policy. 
that will block the connection 
between the server and the 
endpoint.  

The HSPL rule is 
translated down to a 
set of machine-
readable policies 
(MSPL) and is 
forwarded to actuating 
vNSFs. 

 9 Check The Remediation Engine has 
created a mitigation policy for 
the threat. 

An MSPL rule has been 
successfully created 
and can be used as 
input from an actuating 
vNSF. 

Evidence SHIELD Y1 demo. 

Results are documented in the paper: 

C. M. Mathas, O. Segou, G. Xylouris, D. Christinakis, M. A. Kourtis, C. Vassilakis and 
A. Kourtis. 2018. In SIG Proceedings of CyberTIM Workshop, ARES conference, 
Hamburg, Germany, August 2018 (CyberTIM Workshop, ARES Conference 2018), 
9 pages. 

Verdict The results were successful in the case of DNS tunnelling as the attack was 
detected by the DARE. It should be noted that the engine produced a significant 
number of false-positives, which can be partially attributed to the fact that the 
utilised machine learning algorithm (based on Apache Spot) required a large 
amount of normal traffic to be trained and create a reference model for it, which 
could not be simulated in lab conditions. As normal traffic increases, true positive 
rates increase as well. 

Comments This is verifiable through the DNS Tunnelling Attack Y1 demo. 
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Test Case ID TC_S06 

Description Protection from malicious web scripts 

Executed by NCSRD, ORION, UBI Date 10/1/2019 

Purpose Blocking of malicious scripts should be done on network level, before they reach the 
user, even without intervention from the SHIELD DARE.  

Associated 
Requirements 

SF06, SF07, SF09 

Components 
involved 

The IDPS vNSF, the SHIELD dashboard. 

Tools A page infected with coinhive cryptominer. 

Metrics Rapid deployment of IDPS service, rapid deployment of IDPS rules. 

Pre-test 
conditions 

A functioning instance of the IDPS service and dashboard. 

Test Sequence Step Type Description Result 

1 Stimulus A user visits the infected 
website 

The malicious script starts 
mining 

2 Check Application of the rule to the 
IDPS service 

The malicious script stops 
working 

Evidence Shown in Y2 Cryptojacking demonstration. 

Verdict Successful. This test shows the capacity of a service to protect against many types of 
malicious scripts, without the need to configure individual devices with protection 
measures (e.g. browser extensions, antivirus software etc.) 

Comments None. 
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LIST OF ACRONYMS 

Acronym Description 

BoNeSi BotNet Simulator 

DDoS Distributed Denial of Service 

DD4BC DDoS for Bitcoin 

DoS  Denial of Service 

DNS Domain Name System 

GUI Graphical User Interface 

HSPL  High-level Security Policy Language 

IMA  Integrity Measurement Architecture 

ISP Internet Service Provider 

MANO Management and Orchestration 

MSPL  Medium-level Security Policy Language 

NFV Network Function Virtualisation 

NFVI Network Function Virtualisation Infrastructure 

NS Network Service 

KVM  Kernel-based Virtual Machine 

OSM Open Source MANO 

SDN Software Defined Networking 

SecaaS Security-as-a-Service 

PCR Platform Configuration Register 

TC  Trusted Computing 

TCP Transmission Control Protocol 

TPM  Trusted Platform Module 

UDP User Datagram Protocol 

URI Uniform Resource Identifier 

URL Uniform Resource Locator 

VNSF Virtual Network Security Function 

VNSFO Virtual Network Security Function Orchestrator 

VIM Virtual Infrastructure Manager 

VM Virtual Machine 

 


