
SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
1

Deliverable D5.1

Integration results of SHIELD HW/SW
modules

Editor O. E. Segou (ORION)

Contributors G. Gardikis, K. Tzoulas, S. Pantazis (SPH), C. Xilouris, D.
Christinakis (ORION), C. Fernandez, B. Gaston (i2Cat), E.
Trouva, I. Angelopoulos, A. Kourtis (NCSRD) L. Jacquin, H.
Attak (HPELB), M. De Benedictis, A. Lioy (POLITO), D.
Papadopoulos, A. Litke (INFILI), F. Ferreira, R. Preto
(Ubiwhere), G. Dimopoulos (TALAIA), A. A. Pastor (TID).

Version 1.0

Date January 31st, 2018

Distribution PUBLIC (PU)

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
2

Executive Summary

The EU-funded SHIELD project (GA 700199) proposes a universal solution for the dynamic
establishment and deployment of virtual security infrastructures into ISP (Internet Service
Provider) and corporate networks.

The multitude of components present in SHIELD’s architecture requires a rigorous integration
and testing process, ensuring that the individual components function correctly and are
organically linked. The consortium employs a number of collaboration tools to test and
integrate all the related software and hardware components. Through frequent test-driven
integration, SHIELD manages to develop and successfully deploy all its related services, across
the vNSF ecosystem, the DARE and the Trust Monitor.

SHIELD showcases some these capabilities developed within Year One of project activities, in
three demonstrations:

 Detection of data exfiltration: SHIELD utilises and contributes to the Apache Spot
analytics framework. This demo showcases how DNS tunneling can be used for data
exfiltration, how it is detected by Spot and how the Recommendation and Remediation
engine produces the rules to block further data exfiltration.

 Detection and mitigation of Distributed Denial of Service attacks: This end-to-end
demonstration showcases how vNSFs can be on-boarded. When a Distributed Denial of
Service attack is detected by DARE, the recommendation engine sends the appropriate
mitigation rules to the user’s dashboard. The rules are then applied by the active vNSF
and the attack traffic is dropped.

 Trust monitor and SDN/NFV attestation: This demonstration shows how SHIELD detects
compromised components of its infrastructure (e.g. SDN switches, the SDN controller,
vNSFs etc.).

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
3

Table of Contents

1. INTRODUCTION ... 5

1.1. The SHIELD Project ... 5

1.2. Scope of this document ... 5

1.3. Organisation of this document .. 6

2. THE SHIELD PLATFORM .. 7

2.1. Platform overview .. 7

2.2. Use case overview .. 8

3. THE SHIELD INTEGRATION APPROACH .. 10

3.1. System Integration and testing ... 10

3.2. Best practices ... 10

3.3. Requirements Traceability ... 11

3.3.1. Test conditions .. 11

3.3.2. Traceability matrix .. 14

4. INTEGRATION AND COLLABORATION TOOLS ... 16

4.1. Software development and deployment tools ... 16

4.1.1. Version Control ... 16

4.1.2. Issue Tracking .. 17

4.1.3. Deployment and integration .. 18

4.2. Description of Workflow Processes .. 19

4.2.1. Development process ... 19

4.3. Other testing suites .. 20

5. FUNCTIONAL CYBERSECURITY TESTING ... 21

5.1. Cybersecurity testing ... 21

5.2. Training of Machine Learning Algorithms ... 23

5.2.1. Cognitive DA module .. 23

5.2.2. Security DA module .. 24

6. YEAR ONE DEMONSTRATION ... 25

6.1. Detection of data exfiltration .. 26

6.1.1. Scenario description ... 26

6.1.2. Scenario motivation .. 27

6.1.3. Scenario setup ... 28

6.1.4. Scenario results ... 29

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
4

6.2. vNSF on-boarding, detection and mitigation of DDoS attacks .. 33

6.2.1. Scenario description ... 33

6.2.2. Scenario motivation .. 34

6.2.3. Scenario setup ... 34

6.2.4. Scenario results ... 35

6.3. NFVI/SDN attestation ... 40

6.3.1. Scenario description ... 40

6.3.2. Scenario motivation .. 40

6.3.3. Scenario setup ... 41

6.3.3.1. Networking infrastructure attestation ... 41

6.3.3.2. Computing infrastructure attestation .. 41

6.3.4. Scenario results ... 42

6.3.4.1. Networking infrastructure attestation ... 42

6.3.4.2. Computing Infrastructure attestation .. 43

7. CONCLUSIONS & PLANNED WORK IN WP5 ... 46

7.1. Conclusions ... 46

7.2. Future demos and plans .. 46

7.3. Calendar of future WP5 activities ... 47

REFERENCES .. 48

LIST OF ACRONYMS ... 50

ANNEX A – PRIVACY AND ETHICS ... 51

ANNEX B – DEFINITION OF TESTS ... 53

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
5

1. INTRODUCTION

1.1. The SHIELD Project

Cybercrime is one of the most relevant and critical threats to both the economy and society in
Europe. Establishing efficient and effective ways to protect services and infrastructures from
ever-evolving cyber threats is crucial for sustaining business integrity and reputation as well as
protecting citizens’ personal and sensitive data.

To that end, the SHIELD project proposes a universal solution for dynamically establishing and
deploying virtual security infrastructures into ISP and corporate networks. SHIELD builds on the
huge momentum of Network Functions Virtualisation (NFV), as currently standardised by ETSI,
in order to virtualise security appliances into virtual Network Security Functions (vNSFs), to be
instantiated within the network infrastructure using NFV technologies and concepts, effectively
monitoring and filtering network traffic in a distributed manner.

Logs and metrics from vNSFs are aggregated into an information-driven Data Analysis and
Remediation Engine (DARE), which leverages state-of-the-art big data storage and analytics in
order to predict specific vulnerabilities and attacks by analysing the network and understanding
the adversary possibilities, behaviour and intent.

The SHIELD virtual security infrastructure can either used by the ISP internally for network
monitoring and protection, but it can also be offered as-a-service to ISP customers; for this
purpose, SHIELD establishes a “vNSF Store”, i.e. a repository of available virtual security
functions (firewalls, DPIs, content filters etc.) from which the ISP customers can select the ones
which best match their needs and deploy them to protect their infrastructure. This approach
promotes openness and interoperability of security functions and offers an affordable, zero-
CAPEX security solution for citizens and SMEs. Moreover, SHIELD services can be easily scaled
up or down, configured and upgraded according to customers’ needs, as opposed to security
solutions based on monolithic hardware.

The SHIELD consortium is composed of 11 partners around Europe, well distributed between
legal bodies, private companies, large corporations, and research and academic partners. The
diversity of expertise within SHIELD is essential in order to achieve the technological challenges
of the project.

1.2. Scope of this document

SHIELD dedicates WP5 (“Integration, development and testing”) to the technical work required
towards the following key goals:

 To create a real environment infrastructure according to the requirements extracted in
T2.1 that will be used to validate the SHIELD platform.

 To integrate the software created in WP3 and WP4 into the infrastructure.
 To test and evaluate the cybersecurity capabilities of the SHIELD platform utilising

multiple attack vectors and exploits
 To evaluate overall performance of each component and of end-to-end functionalities.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
6

 To facilitate the use of the SHIELD platform to interested adopters.

This document (D5.1 “Integration results of SHIELD HW/SW modules”) details the process for
the integration and testing of the various SHIELD components and the preliminary results from
Year One validation activities. During M1-M17, SHIELD has performed end-to-end integration
of the initial versions of all key components of the platform and applied a variety of
optimisations. The results of the first year demonstration and validation activities are also
included in this document. D5.1 draws inputs from the following deliverables:

 D2.1 “Requirements, KPIs, design and architecture” defines high-level requirements for
the SHIELD platform and the overall architecture, including the KPIs to use in evaluation
phase.

 D2.2 “Updated requirements, KPIs, design and architecture” (work in progress) is the
final, updated version of D2.2, which was drafted concurrently with this document. D5.1
maintains its alignment with D2.2., which currently under preparation.

 D3.1 “Specifications, design and architecture for the vNSF ecosystem” contains the
detailed design and specifications for the SHIELD vNSFs, the Orchestrator, Store and
Trust monitor.

 D4.1 “Specifications, design and architecture for the usable information-driven engine”
contains the detailed design and specifications for SHIELD’s DARE components,
including analysis and remediation.

An additional report (D5.2 “Final demonstration, roadmap and validation results”) is expected
in M30, following the Y2-2.5 demonstration activities; it will provide updates to D5.1 and will
conclude WP5 results, including the evaluation of the overall system performance. D2.2 is
expected in M17 and will provide updated requirements for D5.2. Future deliverables D3.2 and
D4.2 will also provide renewed technical specifications to be taken into account in WP5
activities as well as the subsequent D5.2 deliverable. The D5.1 and D5.2 reports will accompany
the related demonstration prototypes of the SHIELD components developed by the partners.

1.3. Organisation of this document

This document is organised as follows:

 Chapter 1 (present chapter) serves as a basic introduction to this document and its
scope;

 Chapter 2 provides an overview of the technical components comprising SHIELD’s
architecture and the related deployment options;

 Chapter 3 provides the SHIELD integration and verification plan;
 Chapter 4 introduces the collaboration tools used for the efficient integration and

testing of all SHIELD components;
 Chapter 5 includes the tools utilised for cybersecurity testing;
 Chapter 6 introduces Year One validation results, presenting the end-to-end

demonstrations.
 Chapter 7 lists important conclusions and discusses how the collected feedback can be

integrated into future demonstrations. It also provides a calendar of key WP5 activities.
 Annex A involves the ethical and privacy monitoring of WP5 activities.
 Annex B contains individual integration and functional verification tests required to

verify if SHIELD’s requirements have been met.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
7

2. THE SHIELD PLATFORM

2.1. Platform overview

The mission of SHIELD is to create a next-generation cybersecurity platform for advanced
SecaaS offerings tailored for software networks, exploiting state-of-the-art techniques such as
Big Data analytics and infrastructure/service attestation.

To that end, the SHIELD platform, whose functional architecture is shown in Figure 2-1,
(described in detail in Deliverable D2.2 but also briefly overviewed herein) brings together the
following components:

Network infrastructure - The network infrastructure provides a trusted environment for
supporting the execution of virtual Network Security Functions (vNSFs), implementing a
Network Functions Virtualisation Infrastructure (NFVI) environment, according to the ETSI NFV
specifications.

Virtual Network Security Functions (vNSFs) - vNSFs are software instantiations of security
appliances that are dynamically deployed into the network infrastructure. vNSFs i) gather
information about the network traffic and generate events sent to the DARE and ii) prevent
attacks or mitigate vulnerabilities and threats.

Figure 2-1 Functional architecture of the SHIELD platform

vNSF orchestrator (vNSFO) – it is responsible for managing the lifecycle of Network Services
(NS), which are composed by one or more vNSFs. This allows to onboard packages for vNSFs
and NSs, deploy (instantiate and place) NSs in specific points of presence within the network
infrastructure, check the available and running services, execute actions on them, and so on.

vNSF store - it acts as a nexus between the vNSFO and third-party vNSF providers/developers,
who can register and manage vNSFs in order to make them available through the SHIELD
platform.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
8

Trust Monitor – it is the component in charge of monitoring the trust of the SHIELD
infrastructure. Integrity is checked periodically to detect compromised software and/or
hardware and it is based on the Trusted Computing paradigm and its Remote Attestation
workflow.

Data Analysis and Remediation Engine (DARE) – The DARE is an information-driven IDPS
platform that stores and analyses heterogeneous network information, previously collected via
vNSFs. It features cognitive and analytical components capable of predicting specific
vulnerabilities and attacks. The processing and analysis of large amounts of data is carried out
by using Big Data, data analytics and machine learning techniques. Furthermore, the DARE
Remediation engine uses the analysis from the data analytics modules and is fed with alerts
and contextual information to determine a mitigation plan for the existing threats.

Security dashboard and controller – Using the dashboard, operators have access to monitoring
information showing an overview of the security status. The dashboard also allows operators
as well as tenants to take actions and react to any detected vulnerability.

During Y1, all SHIELD components were hosted in VMs in the Athens testbed (private cloud
computing infrastructure provided by ORION and hosted in NCSRD), with the exception of the
attestation components. The attack vectors utilised for the Y1 demonstration activities were
also hosted in separate VMs and are described in Section 6. In Y2, specified DARE components
will be migrated to the Barcelona testbed. After initial testing and validation of the remote
attestation components, the related software will be integrated in the Athens and Barcelona
(i2CAT) testbed in Y2. Some additional local testbeds by SHIELD partners will be used in Y2, for
local development, functional and unit tests, such as the vNSF configuration and data
collectors. One example is TID’s Mouseworld Lab. This environment is responsible to generate
synthetic network traffic (as close as possible to real traffic) tailored to Machine Learning needs
in controlled environment (no production environments with privacy restrictions or lack of
training labels). The Mouseworld Lab include a configurable generator of labelled network
traffic datasets to be utilised during the training process of ML algorithms, VNFs for traffic
capture and processing and visual dashboard. TID’s plans for Y2 includes deploy a DARE engine
based on Apache Spot to make functional and unitary test for ML algorithm in DARE and for
vNSFs collector engine development.

2.2. Use case overview

Three dominant use cases have been identified for the SHIELD platform. These use cases reflect
the deployment configurations that are supported by SHIELD and the various end-users. Both
horizontal and vertical services can be envisioned as part of the three main SHIELD use cases:

Use Case 1: An ISP using SHIELD to secure their own infrastructure

In order to protect their own network infrastructure, ISPs have to deploy specific hardware
which is very expensive since this hardware has to be updated and maintained by very
specialised operators. The virtualization offered by SHIELD in this use case aims to dramatically
reduce this cost by replacing specific hardware for vNSFs (virtual Nework Security Functions),
as well as providing a central interface (dashboard) to understand the gathered information
and to act in the network. Apart from ISPs, the SHIELD platform can be internally used also by
large enterprises, which operate NFV-capable corporate networks.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
9

Examples of this use case might include DDoS detection and mitigation, blocking known
malware Command and Control channels across the ISP network, tunneling detection to
bypass roaming or data charges etc. This work is focused on providing network monitoring
tools and cybersecurity for the ISP to on-board to their production environment.

Use Case 2: An ISP leveraging SHIELD to provide advanced SecaaS services to customers

SHIELD provides an ideal foundation for building enhanced SecaaS services, far beyond current
offerings. Using this SecaaS paradigm, the complexity of the security analysis can be hidden
from the client (either a company or an SME) who can be freed from the need to acquire,
deploy, manage and upgrade specialised equipment.

In this UC, the ISP would be able to insert new security-oriented functionalities directly into the
local network of the user, through its provided gateway or in the ISP network infrastructure.

Examples of this use case might include horizontal cybersecurity services (DDoS protection,
Data exfiltration detection, Malware protection etc.) that can be offered as-a-Service from the
ISP to their clients. This use case also includes vertical, tailor-made cybersecurity services to a
variety of industries. Examples can range from IPR protection for streaming services (VPN
detection, traffic management, etc), eGovernment (detection of comment bots on official
government websites, phishing attacks etc), and other services.

Use Case 3: Contributing to national, European and global security

The DARE platform is able to export, upon request, threat models or data regarding acquired
threat intelligence, to authorised third parties, for instance, public cybersecurity agencies. The
secure SHIELD framework offers, in this manner, a way of sharing threat information with third-
parties who wish to synchronise information and research on measures to be taken on recent
attacks, suffered by others. Furthermore, using SHIELD, Cybersecurity agencies can establish
agreements with the SP and deploy vNSF very fast and without cost in the infrastructure.
Moreover the data is automatically accessible through the dashboard because the unification
of the data treatment done in the data engine.

Examples of this use case might include notifying an authorised party of an identified anomaly
that might not be classified as an attack indicator but could be suspect as a zero-day exploit,
notify the authorities of a large scale or coordinated cybersecurity event and allow access to
important threat information. This use case effectively showcases the scalability of SHIELD’s
proposed platform as well as the automated mitigation recommendations that can be
attached to the threat data.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium

10

3. THE SHIELD INTEGRATION APPROACH

3.1. System Integration and testing

WP5 focuses on the overall integration and validation activities performed within SHIELD.
SHIELD distinguishes between the different activities based on their scope (be it functional,
integration or validation testing) and their scale (from unit testing to end-to-end system tests)

System integration1 can be defined as the process of synthesizing individual components into a
complete platform. At the end of the process, all aggregated subsystems should be able to
cooperate together to provide the end-to-end functionalities that are foreseen in WP2, WP3
and WP4. System tests on a wide scale are used to verify correct end-to-end functionality and
ascertain if a viable and stable deployment of the SHIELD platform has been reached.

The process starts with Unit testing2 which involves verifying the correct function of individual
components. Integration tests3 move from local, small tests to a larger scale by combining
different components and testing their interactions. It is different from unit testing in the sense
that it is less contained and broader in scope. Integration tests are usually more complex and
might require additional tools. Discovering why an integration test failed can be a complicated
task as the problem might lie in the configuration of the environment and the related
interfaces, rather than in the individual components. Functional testing4 differs from integration
testing in that it focuses on verifying the intended functionalities of the SHIELD platform,
against the specific requirements they are supposed to fulfill.

Finally, qualification and validation focus not only on verifying the correct functionality, but also
the performance of the platform, the overall satisfaction of the end-users and the fulfillment
of all related functional and non-functional requirements.

3.2. Best practices

The SDN/NFV paradigm that SHIELD adopts brings major advantages to ISPs and telco
operators. Deployment of services and management of their lifecycles is fast and flexible. Thus,
a traditional waterfall model for development and testing creates an unnecessary bottleneck,
as development cycles can be lengthy. A variety of experts advocate in favor of an agile
development process [1], especially in the context of the industries that SHIELD targets [2] [3].
Scrum/Nexus5 and Kanban6 are among the most popular frameworks for agile development.
SHIELD has adopted the Kanban approach, as it is more flexible than Scrum/Nexus that imposes
specific timelines to the development process.

1 CIS 8020 – Systems Integration, Georgia State University OECD
2 Definition of unit testing at Agile Alliance: http://guide.agilealliance.org/guide/unittest.html (Retrieved Jan 2018)
3 Definition at Techopedia: https://www.techopedia.com/definition/7751/integration-testing (Retrieved Jan
2018)
4 Definition at Techopedia: https://www.techopedia.com/definition/19509/functional-testing (Retrieved Jan
2018)
5 Scrum and Nexus: https://www.scrumalliance.org/ (Retrieved Jan 2018)
6 Kanban: https://www.atlassian.com/agile/kanban (Retrieved Jan 2018)

http://guide.agilealliance.org/guide/unittest.html
https://www.techopedia.com/definition/7751/integration-testing
https://www.techopedia.com/definition/19509/functional-testing
https://www.scrumalliance.org/
https://www.atlassian.com/agile/kanban

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
11

The agile development process is an ideal model not only for SDN/NFV but also for multi-entity
consortia, since it improves collaboration across self-organising, cross-functional teams. It
focuses on adaptive planning and continuous evolution, thus facilitating the multiple
development cycles defined in SHIELD and the refinement of requirements and specifications
in the start of Y2. The agile development process, however, should be complemented with a
Continuous Integration/Continuous Delivery approach to automate and facilitate the
integration and deployment of new developments.

Assembling a lean integration plan is an essential part of this work. D5.1 aims to serve as an
appropriate reference for all teams and provide a logical, controlled process for integration and
testing. Fostering a team approach is an important part that requires use of appropriate
information sharing tools among the consortium members. Using testing frameworks and
collaboration platforms provide a unified environment where all test activities can be reported,
tracked and health-checked. Other best practices include [4]:

 Maintaining a single source repository,

 Automating the build,

 Making the build self-testing,

 Committing code daily and building locally,

 Fixing broken builds immediately when they are identified,

 Being transparent so everyone can view recent developments and has access to
binaries,

 Testing in clone environments and automating deployment to the production
environment.

The following subsection provides a preliminary test plan where individual functional and
integration tests are mapped to the related components and SHIELD requirements, while
specific processes and tools are discussed in the following sections. Section 4 focuses on
integration and testing tools, showing how SHIELD implements the agile paradigm and adopts
CI/CD best practices, while section 5 deals with the functional end-to-end cybersecurity testing.

3.3. Requirements Traceability

3.3.1. Test conditions

Individual tests and the associated inputs/outputs have been designed for integration and
functional testing of the platform. Each test is described by the conditions it needs to fulfil, the
required inputs/outputs, its relation to specific requirements in D2.1/D2.2 and any measurable
KPIs. Specifically, each test is defined by:

 A unique identifier: Tests are uniquely numbered. The identifier PLT designates Platform
tests, PUT: Performance and Usability tests, SET: Service Tests, COT: Ethical and
Regulatory Compliance tests.

 A description of the test: What the test entails and what is the expected outcome.

 The related requirement ID: Each test is mapped to the requirements it fulfils.

 The related components: Each test is mapped to the SHIELD components it requires.

 The required Inputs: The inputs required to perform the test (such as network traffic
logs, etc.)

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
12

 The success criteria: A description of non-measurable criteria that define a successful
test.

 The related KPIs: A description of measurable criteria that define a successful test.

Examples of specified tests follow in Tables 3-1 to 3-4.

Table 3-1 Examples of platform tests.

Test ID: PLT01 vNSF deployment: vNSF descriptor

Related req.ID PF01, PF02 Related components vNSFO, Store

Description The vNSFO requests a vNSF descriptor from the Store. The Store responds
and sends the appropriate descriptor. The vNSFO validates the descriptor.

Inputs Valid and invalid vNSF descriptors for each SHIELD vNSF.

Success criteria vNSFO receives the vNSF descriptor from the store. It accepts valid
descriptors and rejects invalid ones.

Measurable KPIs Communication delay, traffic overhead

Test ID: PLT10 Security analytics

Related req.ID PF04 Related components DARE

Description The two data analytics modules of the DARE process monitoring
information from the vNSFs and provide anomaly/attack results

Inputs simulated/generated traffic, valid instances of the data analytics modules

Success criteria Each module generates a file (e.g csv) containing a list of the detected
anomalies. The reported anomalies and their characteristics should match
the ones generated.

Measurable KPIs Detection rate, false positive rate, false negative rate, processing time per
1GB of ingested data, threat severity/threat index whiskers

Table 3-2 Examples of performance and usability tests.

Test ID: PUT04 Effective visualisations

Related req.ID PF05, NF08 Related components all GUI components

Description The GUI design is efficient and intuitive (in the sense it does not create
cognitive load and is easy to use without a lot of instruction)

Inputs Cognitive walkthrough scenarios for every GUI tested

Success criteria A user is able to quickly complete the cognitive walkthrough, the UI
elements perform the expected functionalities, User receives
feedback/notifications in a timely manner, User satisfaction

Measurable KPIs Estimated time to complete cognitive walkthrough with Fitt's Law, Actual
user time to complete walkthrough

Test ID: PUT07 Data volume

Related req.ID NF04, NF06 Related components all

Description The SHIELD platform is able to process the appropriate data volume

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
13

Inputs Simulated continuous traffic with different velocity, volume, variety
characteristics

Success criteria SHIELD components should be able to perform adequately under high data
volumes

Measurable KPIs Processing time per GB of data, network QoS measurements

Table 3-3 Examples of service tests.

Test ID: SET01 Rate-based DoS protection

Related req.ID PF10, SF08, SF09 Related components vNSFO, vNSF, DARE

Description DARE detects rate-based DoS attacks and the offending traffic is limited or
dropped in a related vNSF

Inputs simulated traffic, mitigation recipes

Success criteria The attack is detected in a timely manner. New policies are received,
translated and applied. The rate-based attack is mitigated.

Measurable KPIs Time to detection, time to mitigation, Target downtime

Test ID: SET02 IP/URL/URI blocking

Related req.ID PF10, SF08, SF09 Related components vNSFO, vNSF, DARE

Description vNSFs apply blocking rules

Inputs simulated traffic, test blocklists

Success criteria The SHIELD vNSFs block access to the specified IP/URLs/URIs

Measurable KPIs False negatives, false positives

Table 3-4 Examples of ethical and legal compliance tests.

Test ID: COT02 Traffic Classification Transparency

Related req.ID ERC06, ERC08 Related components DARE, vNSFs, vNSFO,
dashboard

Description Mitigation actions with respect to application types should be justified by
security events and logged.

Inputs None

Success criteria Accountability to ensure net neutrality rules are respected. Application of
traffic classification must be visible and accounted for.

Measurable KPIs Time to discover the appropriate information (through cognitive
walkthrough)

Test ID: COT03 Data Protection Information

Related req.ID ERC03, ERC04 Related req.ID ERC03, ERC04

Description All related GUIs should display information and allow contact with the Data
Controllers and/or Data Protection Officer.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
14

Inputs None

Success criteria Data protection information are clear and easily discoverable, User
satisfaction

Measurable KPIs Time to discover the appropriate information (through cognitive
walkthrough)

A comprehensive list of all specified tests and conditions is contained in Annex B.

3.3.2. Traceability matrix

The following matrix associates the tests in Annex B with the requirements in D2.2 and the
components described in D3.1-D4.1. Hence, each row represents the test conditions that need
to be chained together and fulfilled to verify a specific requirement, while each column
associates the individual components with the tests that need to be performed for this
component.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium

15

Table 3-5 Traceability matrix associating testing conditions to the SHIELD requirements (D2.1/D2.2) and components
(D3.1/D3.4).

Attestation

PF01 vNSF and NS deployment x x x x x x x PLT01-02

PF02 vNSF lifecycle management x x x x x x x x x PLT01-05

PF03 vNSF status management x x x x x x x x PLT01-05

PF04 Security data monitoring & analytics x x x x x x PLT04, 06-07,10-12

PF05 Analytics visualisation x x x PLT04, 10-11

PF06 Ability to offer different mgmt roles to several users x x x x x x x x x PLT19, 21

PF07 Service Elasticity x x PLT24-25

PF08 Platform Expandability x x x PLT24-25, PUT06

PF09 Access Control x x x x PLT19, 21

PF10 vNSF validation x x x x x x x x PLT01-02, all SET

PF11 vNSF attestation x x x x PLT18

PF12 Log Sharing x x x x x x x PLT20

PF13 Mitigation x x x x x x x x x PLT10-12,16

PF14 Multi-tenancy x x x x x x x x PLT24-25

PF15 Service Store x x x x x x x x PLT17, 22, COT01

PF16 History Reports x x x x PLT20, SET12,16

PF17 Interoperability x x x x x PLT13, PUT09

PF18 Service Composition x x x PLT24-25

PF19 Network Infrastructure Attestation x x PLT14,15,18

PF20 Billing Framework x x x x x x x x PLT22

PF21 Operation Traceability x x x x x PLT19, 21

PF22 Communications security x x x x x x x x x x x x x PLT23

NF01 Response time x x x x x x x x x x x x x PUT01

NF02 Availability x x x x x x x x x x x x x PUT05

NF03 Scalability x x x x x x x x x x PUT06

NF04 Data Volume x x PUT02

NF05 Impact on perceived performance x x x x x x x x all PUT

NF06 Performance factors x x x x x x x x x x x x x all PUT

NF07 Compliance to standards x x x x x x x x x x x x x PUT09

NF08 Deployment and support simplicity x x x x x x x PUT04

NF09 vNSF hardening x x x x x x x PUT08

SF01 Content filtering x x x x x x SET01, 11

SF02 Detect/block access to malicious websites x x x x x x x x all SET

SF03 Security assessments x x x SET06, 18, 23, 24

SF04 L4 traffic filtering x x x x SET06

SF05 Central log processing/SIEM x x x x x x x x x x x SET12, 15, 18, 23

SF06 Malware detection x x x x x x x x x SET06-10, 18, 23-24

SF07 Spam protection x x x SET17-18

SF08 DoS protection x x x x x x x SET01-05, 18

SF09 Intrusion Detection/Prevention System x x x x x x x SET01-06, 18, 23

SF10 Honeypots x x x x x SET20

SF11 Sandboxing x x x x SET21

SF12 VPN x x x x SET07,SET22

ERC01 Access to personal data x x x x x x x x x x x COT05

ERC02 Data rectification and erasure x x x x x x x x x x x COT05

ERC03 Access to related Data Protection information x x x COT01, 03

ERC04 Transparency in data processing x x x COT01, 03

ERC05 Data retention x x x x x x x x x x x COT02

ERC06 Transparency in traffic classification x x x x x x x COT06

ERC07 Notification obligation x x x COT07

ERC08 Net Neutrality x x x x x x x COT02

ERC09 Lawful Interception x x x x x x x x x x COT04

PLT01-

02, all

COT

PLT14-

15, 18
D5.1

Test Conditions
Data Intelligence

Acq &

Storage
Analysis

Test ID

L7 filter

vNSFs & lifecycle management

mcTLS
HTTP/S

analyser
vDPI vIDS

NameIDType Trust

monitor

PLT06-12, all PUT/SET/COTPLT01-13, all PUT/SET/COT

D2.1 & D2.2

Se
rv

ic
e

 F
u

n
ct

io
n

a
l

R
e

q
u

ir
e

m
e

n
ts

E
th

ic
a

l
&

 R
e

gu
la

to
ry

C
o

m
p

li
a

n
ce

P
la

tf
o

rm
 N

o
n

-F
u

n
ct

io
n

a
l

R
e

q
u

ir
e

m
e

n
ts

P
la

tf
o

rm
 F

u
n

ct
io

n
a

l
R

e
q

u
ir

e
m

e
n

ts

D3.1

Rec/Mit Dashb.

D4.1

vNSFO StoreL3 filter

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium

16

4. INTEGRATION AND COLLABORATION TOOLS

SHIELD leverages specific tools to manage the software development, testing, integration and
deployment lifecycles. Likewise, examples of the workflow processes that are defined for the
tools that are provided. The tools used in SHIELD are open-source and/or provided free-of-cost
for the project.

4.1. Software development and deployment tools

4.1.1. Version Control

Version control7 refers to the management of revisions and changes in source code. It is a
necessary tool enabling a team of multiple developers to effectively work on a shared project.
Git8 was chosen as the version control to manage the sources related to the SHIELD platform,
since its distributed architecture facilitates coordination of activities across multiple teams.
Each software component is tracked into its own repository. The selection of the branching
schema (either develop/feature/master or feature/master) is delegated to each repository. All
repositories are provided and controlled within the consortium in an internal fashion, using
Bitbucket9. Upon each commit, the content of each repository is directly replicated into their
corresponding repository, under the umbrella of GitHub10.

(a) (b)

Figure 4-1 SHIELD’s (a) Bitbucket and (b) GitHub repositories.

7 Version Control definition: https://www.atlassian.com/git/tutorials/what-is-version-control (Retrieved Jan 2018)
8 Git: https://git-scm.com/ (retrieved Jan 2018)
9 Bitbucket: https://bitbucket.org/ (Retrieved Jan 2018)
10 SHIELD’s public repository in GitHub https://github.com/shield-h2020 (Retrieved Jan 2018)

https://www.atlassian.com/git/tutorials/what-is-version-control
https://git-scm.com/
https://bitbucket.org/
https://github.com/shield-h2020

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
17

Internal repositories are integrated with the Slack11 communication tool, so any contributor
receives the latest software-related contributions in real time. Slack also allows SHIELD to
create channels for discussion on development, integration issues etc. directly. Figure 4-2
shows Slack usage over time.

Figure 4-2 SHIELD Slack usage over time.

4.1.2. Issue Tracking

Issue tracking [5] is the process of recording specific tasks as tickets, which will be carried out
by each partner. Tickets define incremental work per software component as part of their
releases. Reported issues are periodically evaluated and undertaken during the course of the
work. SHIELD uses JIRA12, as part of the Atlassian suite to track issues and tickets related to the
software development and deployment process. JIRA is provided to the consortium by I2CAT.

In any given day, anyone can report a new feature, improvement, task or bugfix in the form of
a ticket. The ticket must contain a useful title and description, one or more components
assigned, a priority evaluation, and releases: which one is affected, which one will contain the
logic defined for the new ticket.

Any specific developer, integrator or deployer is assigned to perform the task ‒ typically
assigned by the Work Package Leaders (WPLs), Technical Coordinator etc.; while one or
multiple collaborators can be set to watch their related issues, e.g. to keep track of the progress
of their team.

11 Slack: https://slack.com (Retrieved Jan 2018)
12 Atlassian JIRA: https://www.atlassian.com/software/jira (Retrieved Jan 2018)

https://slack.com/
https://www.atlassian.com/software/jira

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
18

Figure 4-3 Open tickets in SHIELD’s Kanban board, categorised by their status.

Finally, the integration between JIRA and Bitbucket allows linking any ticket with its
corresponding development work, to better control and document the process.

4.1.3. Deployment and integration

As discussed in the previous section, Continuous Delivery and Continuous Integration refers to
the combined processes of delivery and integration, particularly in an agile production
environment where code commits are very frequent during each day. Tools such as Jenkins13
and Bamboo14, offer means to automate testing, deployment and integration of components
in fast-paced projects. SHIELD utilises the Bamboo platform, which is deployed and maintained
by I2CAT.

Figure 4-4 SHIELD’s Bamboo platform.

Starting with the build phase, the code is checked out from its repository and compiled. Other
tasks can be performed as well, such as analysing the code for quality assurance or any other
ancillary processes.

In the deployment phase, the environment is prepared, and the source is executed in the target
nodes. At the time of writing this deliverable, the deployment phase is not fully implemented
and is instead performed manually, although more automation is the key goal.

13 Jenkins: https://jenkins.io/ (Retrieved Jan 2018)
14 Bamboo: https://www.atlassian.com/software/bamboo (retrieved Jan 2018)

https://jenkins.io/
https://www.atlassian.com/software/bamboo

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
19

The software development process also introduces a stage for code review prior to merge the
source into the stable branch. This step allows to spot specific features missing, possible issues,
point improvements to the committer and perform external testing of the code. Furthermore,
specific unit tests are provided per component. These are first executed locally by the
developer, then can be invoked by the remote integration platform.

4.2. Description of Workflow Processes

Some processes have been defined within the consortium in order to provide a clearer and
easier procedure. For instance, the contribution to the development works or the network
testing are described in this section.

4.2.1. Development process

The development process always starts with the definition of a new ticket in JIRA; where the
work to be done is explained. When the work is to be started, the assignee changes the ticket
status to “In progress”.

After that, a new branch must be created. The specific branching schema is chosen on a per-
repository basis, and thus varies slightly across the software component whose source is to be
modified. Two options to control such flows were considered in SHIELD, namely the:

i) feature/develop/master, and

ii) feature/master.

Both expect the developer to create one feature branch per ticket, develop and test locally.
Changes will be pushed from the local branch to the remote. Once the developer considers the
work is ready, the status of the related ticket is changed to “In review”. In parallel, a Pull Request
(PR) must be created, defining the reviewer (WPL and any other developer related to the
committed work), the source branch and the target branch (in case of feature/develop/master,
the target branch will be “develop”; whereas in case of feature/master, the target branch will
be “master”.

Figure 4-5 An issued pull request.

After the PR is examined by the WPL, any of the following possible outcome may happen:

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium

20

a) The PR will be approved if at least one reviewer will accept the proposed change. WPL
will verify that the destination branch is correct (or otherwise edit it), mark the remote
feature branch for removal, then proceed to merge.

b) The PR will neither be approved, nor denied, if comments and requests for changes are
provided. If at least one reviewer provides comments and clearly indicates these must
be introduced or followed before the PR can be accepted. The developer can discuss
with the reviewer to clarify any issue or to direct the development work to fix
something. Eventually, the outcome of the review should be that of a).

c) The PR will be denied if at least one reviewer declines the change. This is the case when
work is deprecated or no longer required, or when a PR is duplicated. Comments must
be provided to specify why the work has been rejected.

After the PR is approved and the code is merged, its developer must update the status of the
related ticket to “Done”. This enables the consortium to closely monitor the status of
development activities and identify crucial tasks to be prioritised.

4.3. Other testing suites

SHIELD utilises the OpenStack15 software for its cloud computing infrastructure. OpenStack has
defined its own integration test suite, called Tempest16. An isolated testing environment is
necessary to deploy and run Tempest tests although unit tests can also be run independently.
In the case of the OpenDayLight17 SDN controller, its wiki page also provides the repository of
the Integration-Test18 subproject, offering tools specific for ODL.

15 OpenStack: https://www.openstack.org/ (Retrieved Jan 2018)
16 OpenStack Tempest: https://docs.openstack.org/tempest/latest/ (Retrieved Jan 2018)
17 OpenDayLight: https://www.opendaylight.org/ (Retrieved Jan 2018)
18 ODL Integration-Test subproject: https://wiki.opendaylight.org/view/Integration/Test

https://www.openstack.org/
https://docs.openstack.org/tempest/latest/
https://www.opendaylight.org/
https://wiki.opendaylight.org/view/Integration/Test

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
21

5. FUNCTIONAL CYBERSECURITY TESTING

In addition to the integration and code verification tests, SHIELD employs a multitude of
cybersecurity testing tools to assess the cybersecurity capabilities of the vNSF ecosystem and
the Data Analytics and Recommendation Engine (DARE). These tools are therefore used for the
functional testing of the SHIELD platform, i.e. testing “slices” of its functionality. In this section
we provide a quick reference for a variety of open-source tools used to simulate cyberattacks,
generate network traffic and train the machine learning algorithms used in the DARE.

5.1. Cybersecurity testing

There is a multitude of tools available to simulate or launch cyberattacks and monitor their
effects.

Specialised operating system distributions contain pre-packaged and pre-configured
penetration testing tools. Kali Linux is among the most well-known distributions and contains a
variety of penetration testing tools. Furthermore, there are existing OS distributions packaged
with a multitude of known vulnerabilities, that can be setup as “targets”. In SHIELD’s case, a
specialised OS is easily installed as a VM within any testbed and operated to launch attacks or
as a “victim”.

Specialised software frameworks can be used to develop customised cyberattack vectors. The
Metasploit framework is such an example; it provides tools for developing and executing exploit
code against a remote target. Other frameworks provide a way to launch phishing attacks or
use browser exploits.

Online cybersecurity databases often publish threat information or block lists. Block lists are
collections of URL, URI, or IP addresses that are associated with known adware, malware or
ransomware. SHIELD plans to use these online resources to test vNSF functionality,
performance and scaling. Threat information are published by many major cybersecurity
enterprises.

Public, open-source code repositories such as GitHub offer collections of tools to simulate a
variety of attacks (DoS, Phishing, Malware simulation etc). Furthermore, code to live malware,
rootkits, worms etc. has been often released. Therefore, SHIELD can use simulation tools or
adapt existing source code and run malware in isolated forensic envoronments within its
testbeds.

Network monitoring and visualization tools are also utilised to inspect the traffic that passes
through specific SHIELD components. It can be from low level traffic, flows monitoring (netflow,
tstat) or high level dashboards, such the ones offered by Spot.

Traffic generators such as iperf, httpperf, tcpreplay, etc are frequently used by SHIELD to
generate traffic with specific velocity, volume and variety characteristics (e.g. malicious
patterns).

Table 5-1 contains a list of publicly available tools that can be utilised by SHIELD. During the Y1
activities, SHIELD utilised a variety of DDoS, Tunneling and traffic generation and
monitoring/visualisation tools.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
22

Table 5-1 Reference list of cybersecurity functional testing tools publicly available.

Type Tools

Specialised OS

Penetration testing: Kali Linux (Backtrack), WHAX, BlackArch, BackBox,
Pentoo, Parrot Security OS.

Target OS: Damn Vulnerable Linux (DVL), OWASP Web Testing
Environment, Metasploitable

Software
Frameworks

Metasploit, NMap, Burp Suite, BeEF – Browser Exploitation
Framework, OWASP ZAP, w3af, OpenVAS, SpeedPhish, xfltreat,
OWASP Xenotix

DDoS tools

Rate-based, network & transport layer: LOIC, XOIC, UDP Flooder, UDP
Unicorn, hping3, tcpreplay, Dereil, DDOSIM

Rate-based, application layer: OWASP Switchblade, TorsHammer,
HULK, Saphyra, ExoFlood, DoSHTTP, GoldenEye, HOIC,
AnonymousDOS, Dereil, DDOSIM

Reflection/Amplification: XOIC, hping3, UDP Unicorn, arpspoof,
OffensivePython/Saddam, Tsunami

Poisoning: arpspoof, subterfuge, arpoison

Fragmentation: Scapy

Protocol-based, application layer: Slowloris, OWASP Switchblade,
pyLoris, SlowDroid, XSSer, XSSProxy, DAVOSET

Online threat
databases

Malware Information Sharing Platform (MISP), Virustotal,
Ransomware tracker, PhishTank, Malware Domains, Spamhaus
Project

Botnets SlowDroid, BoNeSi, Mirai, BASHLITE

Phishing and
Identity theft

ClickJack (for UI Redress attack), LUCY, GoPhish, KingPhisher,
SpeedPhish framework, Social Engineering Toolkit, BeEF (browser
exploitation), CSRFDemo (Cross Site Request Forgery attack)

Malware source
code

Available in GitHub: theZoo collection, Mirai, Zeus worm, Cypher,
petya, bash-ransomware

Malware simulation Stackhackr, Barkly, LUCY

Tunneling

HTTP: chisel, corkscrew, httptunnel

DNS: iodine, dns2tcp

Other: multitun, proxytunnel, sshtunnel, icmptx, fraud-bridge

Remote execution
& backdoors

Matahari, backdoorme, webshell, chromebackdoor, backdoor-apk,
backdoorppt, BrainDamage

Cross-site scripting Cross, BruteXSS, XSSYA, XSSer, Excess-XSS, OWASP Xenotix, XSSmh

Worms/Rootkits etc
OpenWorm, wormhole, PowerWorm, Wormz, wormbrowser

ZeroAccess v3 (P2P malware), Zeus

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
23

Type Tools

Traffic generation,
Monitoring and
visualization

tcpdump, wireshark, LibreNMS, Grafana, OpenNMS, iperf, httperf,
moongen

5.2. Training of Machine Learning Algorithms

As described in D4.1, the DARE exploits the results of two data analysis modules – the Cognitive
DA module and the Security DA module – that are able to identify network threats by ingesting
a number of different network traffic log formats (.nfcapd, .pcap, proxy logs) and applying
machine-learning algorithms to perform anomaly detection on the ingested datasets. These
modules, currently installed in dedicated VMs in the Athens testbed, were configured, fine-
tuned and tested prior to participating in the data exfiltration and DDoS demonstrations
presented during the Y1 review (please also refer to Section 6 on the demonstration activities).
Next follows a description of all the procedures performed to train and test each module.

5.2.1. Cognitive DA module

The first machine-learning module of the DARE which is based on the Apache Spot framework
and open-source technologies, was installed in the Athens testbed during the two-day technical
workshop, held in the NCSRD premises (28-29/6-2017). During this workshop, the
computational nodes of the engine were setup and configured on a distributed computing
cluster, while all the executed steps were documented on the produced installation manual.
During the follow-up period after installation, several tests were performed by ORION and
INFILI that validated the detection capabilities of the engine as well as its performance
characteristics. Since this module was one of the main SHIELD components necessary to
showcase the mitigation of a data exfiltration attempt, efforts were concentrated on the
consecutive analysis of datasets and the evaluation of the detection results. This required the
establishment of a testbed network, including a malicious DNS server that would extract
information from a compromised, malware-infected machine, as described thoroughly in §6.1.
The network traffic logs produced by this activity were being captured and sent for analysis to
the Cognitive DA module. Since this was the first opportunity for the engine to be tested within
a network, several parameters regarding the functionality of its constituent components
needed to be tweaked before achieving optimal performance.

It should be noted that the machine-learning algorithmic procedure that is implemented in this
module (LDA) was found to rely heavily on the existence of realistic traffic conditions, more
specifically in regard to the ratio between normal and malicious traffic. This dependency comes
as a result of the topic creation method that is used by the LDA algorithm to detect normal
network behaviours so that it can later identify the outliers which have a potential malicious
nature. It implies that, since each network log is correlated with a topic distribution that
represents normal (common) network behaviour, if the traffic profile consists of more
anomalous traffic that benign, it is likely that the created topics will depict a false image of the
network. As a result, the algorithm will distinguish other normal traffic logs as suspicious
outliers (false positives) and at the same time will characterise suspicious behaviour as normal
(false negatives). This is a common weakness of unsupervised learning methods since they are

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
24

by definition not trained with labelled data prior to deployment, as in supervised learning.
However, unsupervised learning methods are widely used in cybersecurity, as they are
considered the sole countermeasure against zero-day exploits for which labelled data cannot
exist. In order to address the traffic ratio issue, the testbed traffic was artificially increased with
the use of a normal traffic generator script that created queries of the most common websites.
This solution significantly improved the simulation conditions, eventually allowing for the
detection of the DNS tunnelling attempt.

As a next step to evaluate and enhance the efficiency of the cognitive DA module, its installation
is planned on POLITO infrastructure in the immediate future. POLITO has agreed to participate
as a data provider, granting access to the campus network traffic that will allow the assessment
of the module’s existing detection capabilities on a realistic network environment. Moreover,
this will cover the needs of training and testing datasets for the development of the module’s
upcoming threat classification functionalities. Since POLITO has been collecting data in real time
from operational networks since 2014, it can provide approximately 300TB of network data -
some of them already labelled by IDS tools- which should suffice to produce the inferred
functions that will enable the accurate assignment of threat class labels to unseen traffic. Since
these datasets cannot escape the campus network, an instance of the cognitive DA module will
have to be installed on testbed infrastructure provided by POLITO. All data involved in this
procedure will be sanitised (IP anonymization, HTTP request anonymization etc.) and a
supervisor from POLITO will ensure that no privacy and legal violations will occur (also see
Annex A – Privacy and Ethics).

5.2.2. Security DA module

The second module of the DARE is based on the network anomaly detector developed by Talaia
Networks, which consists of a combination of machine learning techniques that can process
and analyse network data, discover anomalies and classify them to specific cybersecurity
threats. Since it is based on a mature product, its capabilities were selected to be showcased
in the demonstration of a DDoS mitigation scenario that included an end-to-end run of all
SHIELD components. For this purpose, the analytics module was installed and configured in a
dedicated VM by TALAIA, sharing only the same distributed filesystem with the Cognitive DA
module. The engine ingested and analysed netflow logs, containing a mixture of UDP and TCP
flooding activity generated by the BoNeSi tool, as well as normal netflow traffic. Although it was
able to successfully detect several simulated DDoS attacks, some further modifications were
made to enhance its performance. More specifically, the frequency of the received packet
captures was increased so that each packet contained fewer logs, as a measure to avoid data
overflow. Minor adjustments were also made to the results report so that the association with
the DDoS attack was more evident.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
25

6. YEAR ONE DEMONSTRATION

The early integration activities in Y1 were focused on implementing the configurations needed
for realising the demo scenarios which were targeted for the Y1 review. These demo scenarios,
each of which was built around a specific subset of the features of the SHIELD platform, were:

 Detection and mitigation of data exfiltration with DNS tunneling: Cross-cutting use
cases 1&2.

 vNSF on-boarding and detection and mitigation of DDoS attacks: Cross-cutting use cases
1&2.

 NFVI/SDN attestation: Cross-cutting all use-cases.

The realisation of these scenarios required the integration of the following components of the
SHIELD platform (their current versions):

 The Dashboard with the NFVO for vNSF on-boarding, deployment and status update.

 The vNSFO with the VIM/NFVI for vNSF on-boarding, deployment and status update.

 The vNSF with the DARE ingestion component for feeding the network metrics.

 The Dashboard with the DARE for visualising incidents and mitigation suggestions.

 The DARE (Recommendation and Remediation Engine) with the vNSFs for applying
policy recommendations.

 The Security Data Analytics component with the DARE for detecting DDoS attacks.

 The Trust Monitor with the NFVI and SDN infrastructures for validating the integrity of
compute nodes, vNSFs and SDN rules.

The SHIELD Y1 demos were presented internally during the project’s 4th General Assembly and
the project’s first Review Meeting. They were also presented publicly during:

 the ENISA Bonding EU Cyber Threat Intelligence (CTI – EU)19 workshop that took place in
October 30th -31st 2017 in Rome, Italy.

 the IEEE Conference on Network Function Virtualization and Software Defined Networks
(IEEE NFV/SDN), held November 6-8, 2017 in Berlin, Germany, where they received the
Best Demo Award (Figure 6-1) among 22 other demos. The demo was submitted under
the title “NFV-based network protection: the SHIELD approach”.

The videos presenting the demos are publicly available in the project’s YouTube channel20.

19 CTI EU main page: https://www.enisa.europa.eu/events/cti-eu-event (Retrieved Jan 2017)
20 https://www.shield-h2020.eu/about/social-networks.html

https://www.enisa.europa.eu/events/cti-eu-event
https://www.shield-h2020.eu/about/social-networks.html

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
26

Figure 6-1 Best demo award announced in IEEE NFV-SDN website.

6.1. Detection of data exfiltration

6.1.1. Scenario description

Data exfiltration [6] (also known as data extraction/extrusion) is defined as a security breach
that occurs from the intentional and unauthorised transfer of confidential information from a
system (e.g. illegally copying, transferring or retrieving an individual’s or organization's data
from a computer or server). It is a targeted malicious activity, performed through various
different techniques, typically by cybercriminals over the Internet.

The Domain Name System (DNS) is one of the most prevalent protocols that can be abused to
perform data exfiltration attacks, as it is often less monitored in comparison to other Internet
protocols (e.g. HTTP, FTP, and mail transfer protocols) and users tend to overlook it as a threat
for malicious communication [7]. This results in many organisations focusing on other resources
where attacks take place and completely lacking DNS monitoring. The primary threat actors of
these attacks are:

 Advanced Persistent Threats (APTs) [8], which use multiple phases and attack modalities
to break into a network and covertly exfiltrate valuable information over the long term.
APT groups launch highly sophisticated and targeted attacks against their victims.

 Insider Threats [9] emerging within an organization, which can be intentional (when
information is extracted wilfully) or unintentional (when information is extracted via
phishing, malware etc.).

 Organised Cybercriminals offering cybercrime and cyber espionage as-a-Service (e.g.
CopyKittens) [10].

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium

27

In the demonstrated SHIELD scenario, a data exfiltration method called DNS tunnelling is
leveraged to encapsulate encrypted data in DNS packets, by exploiting a tunnel set between a
malicious authoritative DNS server and a compromised machine that is infected by malware.

Figure 6-2 Data exfiltration through DNS.

6.1.2. Scenario motivation

During the last decade, several malicious software have made use of the DNS protocol for data
exchange; the reasons behind them usually having a financial or espionage motive. In 2016,
Symantec [11] and Kaspersky [12] independently released reports of an APT named Project
Sauron, which utilised DNS Tunnelling to exfiltrate system data from malware infected
machines. The reports traced the malware infections back to 2011, meaning that the malware
was effectively transmitting data through DNS for five years. Other relevant, well-known
malware include Morto21 and FeederBot22 that both utilise DNS tunnelling as a Command and
Control channel and DNSMessenger23 that relies on DNS queries to receive PowerShell
commands.

According to the SHIELD use case survey24, 36% of the stakeholders in “Threats and
vulnerabilities” criterion identify data leaks as the top cybersecurity threat to their
organisations. The problem of detecting DNS exfiltration attempts, however, has not been
studied enough, and hence no mature solutions that can be used to challenge these attacks are

21 C. Mullaney, “Morto worm sets a (dns) record”, 2011, Retrieved from
http://www.symantec.com/connect/blogs/morto-worm-sets-dns-record
22 C Dietrich, “Feederbot - a bot using dns as carrier for its c&c”, 2011, Retrieved from
http://blog.cj2s.de/archives/28-Feederbot-a-bot-using-DNS-ascarrier-for-its-CC.html
23 Infoblox, “DNSMessenger, Fileless Random Access Trojan Opens a Backdoor”, available at:
https://www.infoblox.com/threat-center/dns-messenger/
24 https://www.shield-h2020.eu/shield-h2020/documents/project-
deliverables/SHIELD_D2.1_Requirements_KPIs_Design_and_Architecture_v1.0.pdf

http://www.symantec.com/connect/blogs/morto-worm-sets-dns-record
http://blog.cj2s.de/archives/28-Feederbot-a-bot-using-DNS-ascarrier-for-its-CC.html
https://www.infoblox.com/threat-center/dns-messenger/
https://www.shield-h2020.eu/shield-h2020/documents/project-deliverables/SHIELD_D2.1_Requirements_KPIs_Design_and_Architecture_v1.0.pdf
https://www.shield-h2020.eu/shield-h2020/documents/project-deliverables/SHIELD_D2.1_Requirements_KPIs_Design_and_Architecture_v1.0.pdf

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium

28

available25 (and especially those characterised by low throughput, with short and sporadic
messages).

The SHIELD platform offers data exfiltration detection capabilities as part of the Cognitive Data
Analysis module, based on the Apache Spot engine. This was showcased during the demo, with
the detection of a simulated DNS tunnelling attack, followed by the definition of a high-level
mitigation policy to block the connection between the malicious DNS server and the
compromised machine.

6.1.3. Scenario setup

The scenario involved a number of SHIELD components that were installed in dedicated VMs in
the Athens testbed. The components leveraged for this demonstration were the Data
Acquisition components (Distributed Filesystem, Data Transformation, Streaming Service), the
Cognitive Data Analysis module and the Remediation Engine of the DARE, as well as Apache
Spot’s built-in GUI, serving as the Security Dashboard. The scenario consisted of three distinct
stages, namely Attack Simulation, Anomaly Detection and Response, which are described
below:

In the Attack Simulation stage, we assume a system within an organisation that has been
compromised by an insider that aims to exfiltrate data. This malware creates a tunnel that
allows for remote access and control of the system, by communicating externally with a
malicious DNS server in order to receive encrypted instructions or exfiltrate data in queries. At
the same time, the authoritative DNS server is setup, so that the malware is able to direct
queries to its subdomain. The attacker then can receive and decrypt the data contained in the
query sent from the compromised system to the DNS server. In our demonstration, the
malware that establishes the tunnel is represented by the Iodine tool, while iPerf is being used
to create the extracted traffic between the server and the endpoint. Since the demonstration
takes place inside a testbed network with minimum real traffic, a traffic generator script is being
used to load popular webpages, thus creating the necessary “normal” DNS traffic to ensure
realistic network conditions. All the aforementioned activity is being captured in .pcap files,
using the Tshark tool.

During the Anomaly Detection stage, the data exfiltration attempt is being exposed by the
analysis of the accumulated .pcap files which takes place inside the DARE VMs. Each VM is
configured in a way so that it serves a specific task: data ingestion, analysis or visualisation.
First, the relevant logs are being ingested by the engine’s DNS collectors and are passed to the
distributed filesystem (HDFS) of the cluster. The DNS pipeline gathers traffic in intervals, to be
passed as input to the DARE. When ingestion is concluded, the Cognitive DA module is
responsible to perform the suspicious connects analysis on the ingested data, by exploiting a
machine-learning algorithm (Latent Dirichlet Allocation) to detect outliers of normal network
activity. The module detects and successfully ranks the malicious DNS queries as suspicious.
The analysis output is provided as a visual representation of the results in the Spot GUI, as well
as a .csv file that will be exploited by the Recommendation Engine.

25 R. Rasmussen, “Do you know what your dns resolver is doing right
now?”, 2012.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium

29

The Response stage leverages the Remediation and Recommendation Engine of the DARE to
create a mitigation policy, based on the analysis of the Cognitive DA module. Since the
aforementioned module lacks a threat classifier that would allow the Remediation Engine to
deploy threat-specific countermeasures, a preloaded high-level recipe (HSPL) is selected that
requests the blocking of the most suspicious connection, in our case between the DNS server
and the endpoint. The HSPL rule is then translated down to a set of machine-readable policies
(MSPL) that can be forwarded to actuating vNSFs. The final step of translation from MSPL to
application configuration performed by the relevant vNSF that would actually block the
connection was not showcased, since the required functionality will be developed in the near
future.

In order to create the DNS tunnel, the iodine tool was set up in the Athens testbed. Iodine is an
open-source tool that allows the user to set up both the infected client and the malicious
authoritative DNS server. In our case, the malicious DNS server was “masquerading” as a
popular sports team’s fan club page (t1.olympiakara.com26).

6.1.4. Scenario results

All the procedures that take place during the demo stages are presented in sequence:

The first stage involves the use of Iodine for the establishment of the connection between the
compromised machine and the server via the DNS tunnel (Figure 6-3), the generation of
“malicious” queries using iPerf (Figure 6-3), as well as of normal traffic using a traffic generator
script that queries the 100 most popular websites (as reported by Alexa27). All this network
traffic is being captured by a tshark daemon which creates .pcap files.

Figure 6-3 Iodine used to create a tunnel between the malicious DNS server and the compromised

system

26 The domain olympiakara.com is currently unregistered and unaffiliated with any actual team or fan club website.
Hence, it was used as an example in the cybersecurity scenario that run solely on the Athens testbed.
27 Alexa Top 500 sites on the web: https://www.alexa.com/topsites (Retrieved Jan 2018)

https://www.alexa.com/topsites

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
30

Figure 6-4 Traffic sent from the compromised machine to the server using iPerf, simulating data

exfiltration.

In the second stage, the produced .pcap network logs are inserted to the DARE, where they are
ingested and analysed by the VMs of the Cognitive DA module. The .pcap files are moved inside
a monitored directory of the module. A set of collector-worker daemons is responsible for their
transfer from the local filesystem to the HDFS, their parsing from binary to human-readable
content and the creation of Hive tables containing this information (Figure 6-4). After ingestion,
the machine learning procedure initiates the anomaly detection algorithm (Figure 6-6) that
eventually creates a .csv file to assign a threat index to each connection of the traffic logs. The
results are also represented on a GUI environment, where the DNS tunnelling attack can be
easily distinguished (Figure 6-7).

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
31

Figure 6-5 Ingestion procedure of the captured .pcap network logs to the DARE.

Figure 6-6 Anomaly detection procedure of the Cognitive DA module based on Apache Spot.

Figure 6-7 Visualisation of the anomaly detection results. The DNS tunnelling attempt stands out at the

Network View window as the connection marked with the red line.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
32

Finally, during the third stage, the Remediation Engine forwards the anomaly detection results
to a monitored folder, where a daemon detects and processes the file to correctly parse all
necessary information to create a mitigation policy. A set of HSPL DROP rules are generated
from the DNS tunnelling recipe, including contextual information about the attack (Figure 6-8).
The HSPL rules are then refined to MSPL, where the general protection requirements are
expressed as specific device-independent configurations (e.g. DROP rules for specific source IP
address, protocols and ports used) (Figure 6-9).

Figure 6-8 HSPL rule created after the processing of the Anomaly Detection results file.

Figure 6-9 MSPL rule generated by the translation of the HSPL rule.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium

33

Figure 6-10 depicts some preliminary statistical
findings for this demo in the form of a box-and-
whiskers plot of the measured threat index. The
“box” represents 50% of the measurements in
each data set (the measurements between the
25% and 75% percentiles). The whiskers represent
the range of normal operation for the system. Any
measurement that lies in areas beyond the
whiskers are considered outliers. The threat index
is the probability estimated by Spot’s machine
learning algorithm. A low value means that the
traffic is considered atypical and therefore,
suspicious.

As the figure shows, the DNS tunnel traffic is
consistently given a low threat index, lower than
2% with the exception of very few outliers. These
outliers can contribute to false negatives, meaning
tunneled traffic that can be considered non-
malicious. The normal DNS traffic set is associated
with higher threat index values, with the exception
of some measurements in the lower percentiles
(<25%) where the threat index falls under 2%.

These measurements can contribute to false positives, meaning that normal DNS packets could
be wrongly considered malicious.

6.2. vNSF on-boarding, detection and mitigation of DDoS attacks

6.2.1. Scenario description

Denial of Service28 is a cyberattack that depletes a system’s resources (network, or
memory/processing) and thus prevents legitimate users from accessing it. When the malicious
attacker utilises numerous hosts to perform the attack, e.g. botnets, it is considered as a
Distributed Denial of Service29. The primary threat actors behind these attacks are [13] [14]:

 Organised cybercriminals: Groups (such as DD4BC, the Armada Collective, the Phantom
Squad etc) using DDoS for personal gain by extorting money by threatening DDoS
attacks, offering DDoS as-a-Service to the highest bidder, or trying to create financial
losses for the victim.

 Non-organised cybercriminals: Launching DDoS attacks for their personal gain. Examples
include extortion, or scamming the victim by piggybacking on other cybercriminal
groups’ notoriety.

28 Denial of Service is “an attack that prevents authorized access to resources or delays of time-critical operations.
(Time-critical may be milliseconds or it may be hours, depending upon the service provided.) “SOURCE: CNSSI-
4009/NISTIR 7298 Rev.2
29 Distributed Denial of Service is a “Denial of Service technique that uses numerous hosts to perform the attack.”
SOURCE: CNSSI-4009/NISTIR 7298 Rev.2

Figure 6-10 Preliminary statistical findings
for DNS tunnel detection.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium

34

 Individuals: Individuals launching small scale DDoS/DoS using freely available tools.
Usually for personal gain (e.g. cheating on online gaming) or for experimentation (e.g.
script kiddies)

 Hacktivists: Using DDoS as a means for political protest or “vigilante” justice. Examples
of hacktivist groups include Anonymous, LulzSec etc.

In the demonstrated SHIELD scenario, a malicious attacker has been hired from a company to
attack a rival’s website. The cybercriminal-for-hire used malware to infect a variety of devices
and turn them into a botnet of 1,000 unique IPs. The infected devices then launch a rate-based
DoS attack, that floods the victim website with multiple TCP requests.

6.2.2. Scenario motivation

DDoS is an attack that disrupts operations and causes loss of reputation, productivity and/or
revenue. The Ponemon Institute30 has estimated the average downtime for a DDoS attack at 54
minutes, while the cost of downtime per minute can range from a few dollars up to 100,000$
depending on the type of business affected [15]. In 2016, the Mirai malware was used to launch
the biggest DDoS attack that has been recorded, reportedly over 1Tbps [16]. Mirai was used to
hijack networked devices and IoT and turn them into a massive botnet. The Mirai-based botnet
was used to launch a DNS lookup request flood to DynDNS servers causing a crash. A multitude
of major websites using DynDNS were compromised and were unreachable by legitimate users
(examples include Amazon, Twitter, Netflix, Airbnb, CNN, etc). The financial impact of this
attack has yet to be fully determined, although the total lost revenue for 178,000 domains
hosted by Dyn may be estimated to surpass the billion-dollar mark. The targeted company, Dyn,
reportedly lost 8% of its customer base, owing to the events of the DDoS attack.

The SHIELD use case survey31, also shows that 13.8% stakeholders identify Denial of Service as
the top threat to their infrastructure, while an additional 15.1% consider all sorts of operational
interruption (including DDoS). Depending on the DDoS attack type, operations can be disrupted
for a long time; mitigation and forensics after a successful attack can be very time consuming.

The major negative impacts of DDoS attacks make this scenario a necessity. Furthermore, it is
the first SHIELD scenario that requires an end-to-end integrated run of all SHIELD components.
It involves the use of all major SHIELD components. In this scenario, SHIELD demonstrates how
the engine is able to detect the attacks and provide rules to mitigate them. The use of vNSFs in
SHIELD allows an ISP to cut down on the costs for cybersecurity and be flexible in implementing
new rules and mitigation measures, thus creating additional financial incentives.

6.2.3. Scenario setup

In this scenario, SHIELD components were installed in dedicated VMs in the Athens testbed, as
described in Section 2. Most of SHIELD’s components are part of this scenario, as it requires
end-to-end chaining of all key functionalities. In order to properly address the scenario,
additional components were required:

30 Ponemon Institute: https://www.ponemon.org/ (Retrieved Dec 2017)
31 https://www.shield-h2020.eu/shield-h2020/documents/project-
deliverables/SHIELD_D2.1_Requirements_KPIs_Design_and_Architecture_v1.0.pdf

https://www.ponemon.org/
https://www.shield-h2020.eu/shield-h2020/documents/project-deliverables/SHIELD_D2.1_Requirements_KPIs_Design_and_Architecture_v1.0.pdf
https://www.shield-h2020.eu/shield-h2020/documents/project-deliverables/SHIELD_D2.1_Requirements_KPIs_Design_and_Architecture_v1.0.pdf

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium 35

 A dummy website was created to serve as the “victim”. The website was deployed in an
Apache webserver v2.4.7 installed in the Ubuntu operating system.

 The BotNet Simulator (BoNeSi) tool was used to launch the DDoS attack. BoNeSi is a
network traffic generator that allows a user to generate packets with spoofed IPs,
therefore creating traffic that is similar to a botnet. BoNeSi was used to launch UDP and
TCP floods against the dummy website.

 Tcpdump and LibreNMS32 were used as network monitoring tools.

 httpperf was used to simulate normal HTTP traffic.

6.2.4. Scenario results

Starting the scenario, SHIELD demonstrates how to on-board a new Firewall vNSF (Figure 6-11).
The vNSF at this point is clear of any rules for the mitigation of the attack. During the on-
boarding process, a developer will access the store with its credentials and upload the SHIELD-
formatted package of its specific vNSF and NS. The store performs an initial processing of such
package to validate that the proper structure and data is in place. If the package is properly
formatted, the store contacts the orchestrator and provides it with the OSM-formatted
packages for both the vNSF and NS of the Firewall.

(a)

(b)

32 LibreNMS: https://www.librenms.org/ (Retrieved Dec 2017)

https://www.librenms.org/

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
36

Figure 6-11 Preliminary version of vNSF Store Graphic Interface: (a) On-boarding a vNSF image, (b) the
valid OSM descriptor of the vNSF and pop-up notice of the on-boarding process.

After few seconds, the vNSF and NS will be available in OSM and can be instantiated on any of
the registered VIMs (Figure 6-12). The deployment process would take around one minute,
after which the Firewall vNSF will be running and ready to receive any configuration request.

Figure 6-12 Fast instantiation of a vNSF.

The ingestion service is also operational, so network data are sent to the TALAIA engine every
minute. The ingestion cycle can be configured to longer intervals. The following figure
illustrates the operation of the BoNeSi tool (Figure 6-13). On the right-hand terminal, BoNeSi is
simulating a botnet of 1,000 malware-infected devices, sending up to 80,000 requests per
second to the victim webserver. On the left-hand terminal, the tcpdump tool is set up to
illustrate the packets that arrive in the webserver. If the attack persists, the website is
eventually not able to handle more requests. Thus, requests coming from legitimate users are
denied and the users are not able to browse the website. The incoming TCP flood in this
scenario was able to crash the victim webserver in seconds.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
37

Figure 6-13 Launching the DDoS attack: the left side terminal shows tcpdump traffic monitoring, while
the right side terminal shows the BoNeSi botnet simulator in operation.

Prior to the attack, the analytics engine detects traffic of about 150Kbps. A new ingestion cycle
directs flows from the attack to the engine. Once the analytics engine has finished processing
the ingested data, it classifies the sudden rise in traffic as an anomaly of type DoS. It then
correlates the offending DoS traffic from multiple sources to a single “DDoS” type anomaly. The
outgoing reply traffic is also grouped as a “DDoS Reply” anomaly (Figure 6-14). It creates a csv
log of the identified anomalies that is automatically sent to the recommendation and
remediation engine.

Figure 6-14 The TALAIA engine showing the detected DDoS and correlated reply traffic.

The recommendation and remediation daemon detects the newly received file and parses it to
identify the type of attack and severity. It searches for the appropriate High-level Security Policy
Language (HSPL) remediation recipe (Figure 6-15). The recipe is essentially a template for the
actions that need to be taken. The recipe is translated into an application-independent set of
configuration rules that will be applied by the proper vNSF, specified in the Medium-level
Security Policy Language (MSPL). MSPL is sent as an xml file to the dashboard. In this specific
case, the daemon selected to drop the offending flows.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
38

(a)

(b)

Figure 6-15 Recommendation and remediation daemon showing: (a) identification of attack and sample
HSPL recipe, (b) sample of generated MSPL entries.

The detected attack is then visible in the dashboard, along with the MSPL recommendation
(Figure 6-16). When clicking on the details, the user is presented with the remediation actions.
The user can select to apply this action or dismiss the alert.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
39

Figure 6-16 SHIELD security dashboard, showing reported events and received mitigation
recommendations.

If the remediation action is applied, the dashboard submits the MSPL data and the ID of the
network service (NS) containing the appropriate vNSF towards the vNSFO. The vNSFO identifies
the specific vNSF from the running service and forwards the MSPL data towards its specific
endpoint. The vNSF transforms the received MSPL into a configuration that modifies the state
of the running instance appropriately (Figure 6-17).

Figure 6-17 Firewall vNSF front-end, showing the 1,000 individual IPs used by the attacker and the
resulting DROP rules.

The performance of the system was assessed for a number of 1,000 to 50,000 random unique
IPs. Requests per second ranged from 40,000 to 150,000. The results showed that the data
analysis, recommendation and remediation processes scale well with respect to the number of

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium

40

unique IPs and requests per second although resource management within the virtual (host)
machine was crucial in improving the overall performance and response time.

6.3. NFVI/SDN attestation

6.3.1. Scenario description

Infrastructure trust is one of the key concepts of the SHIELD platform, which is achieved by a
combination of authentication and integrity. Leveraging Trusted Computing33 (TC)
technologies, namely the Remote Attestation workflow, each node in the NFV infrastructure
must provide a proof of integrity of the virtualisation software stack and the vNSFs running on
it. Each attested node is equipped with a Trusted Platform Module (TPM)34 chip that provides
a hardware root of trust, and specific software is installed to measure the software stack
starting from the boot phase up to applications. The integrity report is digitally signed with a
hardware key in the TPM and includes both the values of the TPM secure registers, the PCRs,
as well as measurements of software events tracked by the Integrity Measurement
Architecture (IMA)35 Linux module.

Whilst SHIELD leverages virtualisation technologies for achieving flexible applications (i.e.
vNSFs) orchestration, the project uses Software-Defined Network (SDN) to be able to flexibly
modify the network element’s forwarding tables. In addition to verifying the software stack
running on the network equipment (e.g. switches), the dynamic SDN forwarding rules need to
be attested in order to validate that the network is enforcing the rules configured by the vNSF
orchestrator, more precisely by the SDN controller of the vNSFO. This is achieved by attaching
a TPM to the network elements, implementing remote attestation and extending remote
attestation to support continual SDN rules verification.

The Trust Monitor component oversees the trust of the SHIELD infrastructure periodically, in
order to timely inform the Orchestrator to take appropriate action upon detected misbehaviour
in both the NFV Infrastructure and SDN components, such as the isolation a compromised
node.

6.3.2. Scenario motivation

The use of Software Defined Networking brings many benefits for end-users and operators of
service-oriented infrastructures (mainly composed of cloud/IaaS/PaaS providers, telco
operators, ISPs and organisations that need a low-cost cybersecurity investment to secure their
network or data centre etc.). Before Software Defined Networking and Network Function
Virtualization, IT relied on expensive proprietary hardware and software platforms that were
time consuming to install, configure and maintain. The paradigm of software networking has
shown potential for major CAPEX/OPEX reduction and early Fortune 500 adopters have already

33 Trusted Computing Group: https://trustedcomputinggroup.org/ (Retrieved Dec 2017)
34 Trusted Platform Module: http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
(Retrieved Dec 2017)
35 https://sourceforge.net/p/linux-ima/wiki/Home/

https://trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://sourceforge.net/p/linux-ima/wiki/Home/

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium

41

reported significant cost reduction (up to 95% in many cases) [17]. A great number of market
reports predict a continuous growth of these technologies:

“from the user perspective, 2015 became the year of initial SDN deployments. […] SDN-related inquiry
volume continued at a high rate, with SDN coming up in approximately 70% of DC networking inquiries

largely due to clients looking for more automation.” [18]

“With a promise to drive significant CapEx and OpEx reductions, NFV is poised to transform the entire
telco infrastructure ecosystem. Mind Commerce estimates that global spending on NFV solutions will
grow at a CAGR of 46% between 2014 and 2019. NFV revenues will reach $1.3 Billion by the end of

2019.” [19]

SDN/NFV is expected to transform future networks, although experts warn of the cybersecurity
risks due to the increased attack surface [20] [21]. Built-in infrastructure trust is therefore
considered a necessity. The SHIELD road mapping analysis36 also reveals that stakeholders have
identified Infrastructure and Service attestation as a crucial factor expected to affect the
adoption of SHIELD technology. The goal of this scenario is to demonstrate that the network
infrastructure hosting the vNSFs is trusted and secured by assessing the attestation capability
of the Trust Monitor.

6.3.3. Scenario setup

This scenario involves SHIELD’s network infrastructure, the trust monitor, SHIELD vNSFs and
the SDN Controller. The first part of the demonstration is focused on the attestation of the
networking infrastructure, while the second part focuses on the attestation of the NFVI and
SHIELD vNSFs.

6.3.3.1. Networking infrastructure attestation

The demonstrator of the network infrastructure attestation for the alpha release of SHIELD is
composed of one Aruba physical switch, equipped with a TPM (version 1.2) and a prototype
software stack that implements remote attestation – including SDN rules. The switch is
connected to a server, which hosts virtual machines: one virtual machine executes the SDN
controller, one implements the network verifier of the Trust Monitor and a third one is used to
create a rogue SDN controller taking control over the switch SDN rules configuration.

6.3.3.2. Computing infrastructure attestation

Regarding the NFVI attestation, the demonstration is based on a single machine with two
environments:

 A Host OS that executes the Attestation Agent and the Container environment for the
vNSF.

 A Virtual Machine that executes the Trust Monitor instance.

The single machine runs a CentOS 7 Linux distribution. The NFVI node is equipped with a TPM
1.2 and runs the OpenAttestation37 framework. The container execution environment is

36 https://www.shield-h2020.eu/shield-h2020/documents/project-
deliverables/SHIELD_D6.3_Interim_Report_on_Exploitation_Activities_v.1.0.pdf
37 OpenAttestation: https://01.org/blogs/2014/openattestation-oat-project (Retrieved Jan 2018)

https://01.org/blogs/2014/openattestation-oat-project

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
42

Docker38. The Virtual Machine is run by the Kernel-based Virtual Machine (KVM)39 hypervisor
driver. The Integrity Measurement Architecture (IMA) module is enabled in the host Linux
kernel to collect the runtime measurements of binaries and scripts executed both in the host
platform and the Docker containers.

6.3.4. Scenario results

6.3.4.1. Networking infrastructure attestation

At the start of the scenario, the Trust Monitor is required to detect that the switch software
stack has been tampered with, both at the application and firmware levels, I a three-step
process:

Step 1. The switch is running the correct software stack: When connected directly on the
switch, an operator sees the correct application version and the network verifier of the
Trust Monitor reports a correct software stack.

Step 2. A malicious application layer is deployed on the switch: The malicious application
fakes the command line output to show an application layer version similar to the
correct application layer. When connected directly on the switch, an operator sees the
correct application version. The network verifier of the Trust Monitor reports an
incorrect software stack, based on the unknown Platform Configuration Register (PCR)
value reported by the TPM for the application layer.

Step 3. A malicious firmware layer is deployed: A malicious firmware layer is deployed in
order to hide the malicious application layer by faking the input used for the extension
of the TPM’s PCR. When connected directly on the switch, an operator sees the correct
application version. The network verifier of the Trust Monitor reports an incorrect
software stack, based on the unknown PCR value reported by the TPM for the firmware
layer. The application layer’s PCR is correct but cannot be trusted since a previous
measurement is incorrect.

In the second part of the scenario, SHIELD demonstrates that the Trust Monitor can dynamically
verify the SDN rules in the switch and detects an unauthorised SDN controller taking control
over the switch as well as unauthorised rules on the switch. The SDN switch and genuine SDN
controller are configured to work together.

Step 1. The network verifier of the Trust Monitor is launched periodically: The network
verifier attests the switch every two seconds – this includes retrieving the expected SDN
rules from the genuine SDN controller. The network verifier of the Trust Monitor then
reports correct SDN rules.

Step 2. The SDN controller northbound API is used to mimic the vNSF Orchestrator: The
SDN switch is asked to push new rules. The network verifier of the Trust Monitor reports
correct SDN rules. The rogue SDN controller takes control of the SDN switch. The
network verifier of the Trust Monitor reports incorrect SDN rules.

Step 3. The genuine SDN controller takes back control of the SDN switch. The network
verifier of the Trust Monitor reports correct SDN rules. The genuine SDN controller

38 Docker: https://www.docker.com/ (Retrieved Jan 2018)
39 KVM: https://www.linux-kvm.org/page/Main_Page (Retrieved Jan 2018)

https://www.docker.com/
https://www.linux-kvm.org/page/Main_Page

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
43

pushes an unauthorised SDN rule. The network verifier of the Trust Monitor reports
incorrect SDN rules.

6.3.4.2. Computing Infrastructure attestation

The purpose of this demonstration is to verify that the Trust Monitor can detect a misbehaviour
in both the NFVI node and the vNSF, by means of remote attestation. The Trust Monitor is pre-
configured to periodically attest the NFVI node. The Attestation Agent interacts with the host
TPM to sign the remote attestation quote, containing the IMA integrity report, via a
cryptographic key generated from a non-migratable key installed by the vendor. The NFVI node
does not run any vNSF initially, hence the periodic attestation task only contains the trust status
of the NFVI node itself, as shown on the Trust Monitor GUI (Figure 6-18).

 Figure 6-18 Verifier GUI shows a trusted attestee.

The Trust Monitor verifies successfully the remote attestation quote and the individual
measurements of the binaries running in the NFVI node. The Trust Monitor GUI displays the
measurements and paths of the binaries executed in the host (Figure 6-19).

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
44

Figure 6-19 Verifier GUI showing the paths to the binaries and the related measurements.

A Docker-based vNSF is run within the NFVI node, and it is added to the list of vNSFs (before
empty) to be attested periodically. The integrity report now contains both the measurements
of the NFVI host platform and the vNSF. At this point, a script runs in the vNSF that has not
been measured previously, resulting in an untrusted state of the following remote attestation
(Figure 6-20).

Figure 6-20 Verifier GUI shows untrusted state.

The Trust Monitor GUI displays the unknown measurement in the integrity report, specifying
that the binary was executed in the vNSF (with a specific identifier automatically assigned by
Docker).

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
45

(a) (b)

Figure 6-21 Verifier GUI showing integrity reports for unknown (a) vNSF, (b) NFVI host.

The Docker-based vNSF is then excluded from the remote attestation process and the
trustworthiness of the NFVI node is assessed. The NFVI node is still trusted.
Finally, an unknown binary is executed in the NFVI node host platform itself. The binary is
detected by the next attestation refresh, and the Trust Monitor GUI displays the unknown
measurement in the integrity report as well (Figure 6-21).

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium

46

7. CONCLUSIONS & PLANNED WORK IN WP5

7.1. Conclusions

In the first month of WP5 activities, the consortium was able to run the first end-to-end
functional tests, utilising all prototype components. Random network traffic was generated to
this extent; no online captures or existing data were utilised. The random traffic was designed
with specific characteristics to increase scientific credibility and trust to the research results.

The use of specified code development and integration tools greatly facilitated the integration
process. The existence of specific tickets in the issue tracker helped organise the work and
identify critical risks and bottlenecks as they evolved. At the time of this document’s drafting,
no major risks are foreseen within WP5.

The Y1 demonstration activities of SHIELD showcased basic features such as vNSF onboarding,
remote attestation and anomaly detection. Denial-of-Service and Data exfiltration attacks were
performed in end-to-end scenarios that involved the entire SHIELD architecture. SHIELD was
able to showcase how the attacks would be mitigated. Performance issues were identified with
respect to the machine learning components of the DARE. In most cases, misconfigurations in
terms of the available resources were the root cause.

7.2. Future demos and plans

According to the feedback collected by the consortium during the project review and the public
demo presentations (in CTI EU and IEEE SDN/NFV), there are multiple points that could be taken
into account in the definition of future demonstrations40 within WP5. SHIELD plans at least two
additional demonstrations in Y2 & Y2.5, with a more integrated scope. The next paragraphs
outline some directions for the next demos, as also suggested by the project reviewers during
Y1 review.

SHIELD should showcase business-oriented use cases, such as IPR protection. Based on the
deployment configuration, IPR protection can be considered to apply to Use Case 2, where an
ISP offers SecaaS services to the client. In such a case, the client could be a streaming service
(such as Netflix etc.) that monitors the activity of their users. Specific cybersecurity needs arise
from such a scenario. This would require the composition of a new network service to provide
features such as VPN or proxy connections, IP spoofing detection etc. The as-a-Service
paradigm followed by SHIELD and the flexibility in composing network services with active
vNSFs makes this work technically feasible. The machine learning algorithms featured in the
DARE would need to be trained with appropriate traffic patterns, although the individual
algorithms performance has not yet been ascertained. The composition of services per vertical
can maximise the project’s impact and business potential. Hence, SHIELD can identify additional
vertical cases to be considered, targeting online journalism, online marketing, online gaming

40 The definition of new specifications and requirements based on the collected feedback are not within the scope
of this document. D2.2/D3.2/D4/2 will contain the final iterations of requirements and specifications, also taking
into account the collected feedback. Hence, D5.1 will focus on how feedback can be utilized in the scope of future
demonstrations.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
47

etc. The consortium will take this into account when proposing future demonstration plans.
Furthermore, billing schemes should be clear and visible in the Store for SHIELD cybersecurity
services.

SHIELD should also demonstrate its scaling capabilities. As WP5 work progresses, SHIELD should
test how: (a) to scale up the infrastructure to handle network traffic with varied characteristics
(in terms of volume, variety and velocity), and (b) to improve vNSFs performance without
adding to the network latency. An IoT use case was suggested, especially in terms of Smart
Cities developments. An important aspect would be to integrate more processing capabilities
within the vNSFs, although the trade-off with respect to network QoS should be studied. To
that extent, WP5 will focus future effort on performance optimisation, scaling/resource
management and support for multiple users.

GDPR compliance is a major aspect that needs to be visible in future demonstrations. D3.2/D4.2
will introduce GDPR specifications for the components that store and process data. Such
information should be visible when running a demonstration scenario and appropriate
enhancements should be added (e.g. adding GDPR specifications in the Store, easily
discoverable information for the data subject, adding accountability on who accesses data,
encrypting communications between components to reduce risk of data breaches etc.)

7.3. Calendar of future WP5 activities

This calendar includes the most important WP5 activities.

Table 7-1 Calendar of WP5 activities.

Date Activity Partners involved

M17 Submission of D5.1 All WP5 partners

M17 GA5 – discussion on WP5 future steps All SHIELD partners

M18 Migration of VMs & Spot installation I2CAT

M17 Installation of attestation firmware in Athens HPE, NCSRD, ORION

M18 Training and testing the Cognitive DA module with realistic data INFILI, POLITO

M19 Finalise Y2 demo plan All WP5 partners

M20 Delivery of Y2 vNSFs ORION, NCSRD, POLITO, TID

M21 Installation of attestation firmware in Barcelona HPE, I2CAT

M21 GA6 – discussion on WP5 future steps All SHIELD partners

M21 Finalise Y2.5 demo plan All WP5 partners

M24 Complete end-to-end testing with multiple tenants All SHIELD partners

M24 Complete functional testing of all cybersecurity classification

algorithms

All WP4/WP5 partners

M24 Complete Service Elasticity testing All WP3/WP5 partners

M25 Y2 demonstration All SHIELD partners

M30 Y2.5 demonstration All SHIELD partners

M30 Submission of D5.2 All WP5 partners

M30 Final release of SHIELD platform All SHIELD partners

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
48

REFERENCES

[1] K. Beck, J. Grenning, R. C. Martin, M. Beedle, J. Highsmith, S. Mellor, A. v. Bennekum, A.
Hunt, K. Schwaber, A. Cockburn, R. Jeffries, J. Sutherland, W. Cunningham, J. Kern, D.
Thomas, M. Fowler και B. Marick, «The Manifesto for Agile Software Development,» Agile
Alliance, 2010.

[2] A. e. a. McCormack, «Developing Products on Internet Time: The Anatomy of a Flexible
Development Process.,» Management Science, pp. 133-150, 2001.

[3] J. Vanhanen, J. Jartti και T. Kähkönen, «Practical Experiences of Agility in the Telecom
Industry,» σε International Conference on Extreme Programming and Agile Processes in
Software Engineering, 2003.

[4] M. Fowler, «Continuous Integration,» 2006.

[5] J. Spolsky, «Painless Bug Tracking,» 2000.

[6] A. Giani, V. H. Berk και G. V. Cybenko, «Data exfiltration and covert channels,» σε Proc.
SPIE, vol. 6201, pp. 620103, May 2006.

[7] A. Nadler και A. Aminov, «Introduction to DNS Data exfiltration».

[8] Symantec Online Blog, «Advanced Persisten Threats».

[9] M. Manialawy, «Human Insider Threats in Cybersecurity and the Architecture to
Mitigate,» σε CYBER 2017.

[10] Minerva Labs, «CopyKittens Attack Group».

[11] Response, Symantec Security, «Strider cyberespionage group turns eye of Sauron on
targets,» 2016.

[12] Kaspersky Labs blog report, «ProjectSauron: top level cyber-espionage platform covertly
extracts encrypted government comms,» 2016.

[13] «Internet Organised Crime Threat Assessment,» Europol, 2016.

[14] "International Action against DD4BC Cybercriminal group", Europol Press Release,
January 2016.

[15] «Cyber security on the offense: A study of IT security experts,» Ponemon Institute,
November 2012.

[16] «"Dyn Analysis Summary Of Friday October 21 Attack",» Vantage Point, DynDNS Official
Blog, Oct 2016.

[17] R. Cohen, Software defined Networking: Core of the future data centre, Lens360, 2016.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
49

[18] S. Alexander, 2015: The year SDN and NFV go mainstream., Network World from IDG,
2014.

[19] BusinessWire, Research and Markets: The Network Functions Virtualization (NFV) Market:
Business Case, Market Analysis & Forecasts 2014 - 2019, 2013.

[20] D. B. Hoang και S. Farahmandian, «Security of Software-Defined Infrastructures with SDN,
NFV, and Cloud Computing Technologies,» σε Guide to Security in SDN and NFV , Springer,
2017, pp. 3-32.

[21] ENISA, «Threat Landscape and Good Practice Guide for Software Defined Networks/5G,»
2016.

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
50

LIST OF ACRONYMS

Acronym Description

BoNeSi BotNet Simulator

DDoS Distributed Denial of Service

DD4BC DDoS for Bitcoin

DoS Denial of Service

DNS Domain Name System

GUI Graphical User Interface

HSPL High-level Security Policy Language

IMA Integrity Measurement Architecture

ISP Internet Service Provider

MANO Management and Orchestration

MSPL Medium-level Security Policy Language

NFV Network Function Virtualisation

NFVI Network Function Virtualisation Infrastructure

NS Network Service

KVM Kernel-based Virtual Machine

OSM Open Source MANO

SDN Software Defined Networking

SecaaS Security-as-a-Service

PCR Platform Configuration Register

TC Trusted Computing

TCP Transmission Control Protocol

TPM Trusted Platform Module

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

VNSF Virtual Network Security Function

VNSFO Virtual Network Security Function Orchestrator

VIM Virtual Infrastructure Manager

VM Virtual Machine

XML eXtensible Markup Language

SHIELD D5.1 • Integration
Results of SHIELD HW/SW modules

© SHIELD Consortium 51

ANNEX A – PRIVACY AND ETHICS

Privacy and Data Protection

The work performed in WP5 during M13-M17 did not raise any significant concerns in terms of
privacy and data protection. Functional testing and machine learning training utilised sets of
traffic generated through open-source tools. No existing datasets or captures have been
utilised during this time. If the need arises, the consortium will take the necessary precautions
to ensure that partners utilising existing data sets of network traffic should provide proof of
ownership of the data set (or a valid license) and proof that consent processes have been
followed, and partners that intend to capture network traffic in real operational conditions, can
provide proof that appropriate consent and anonymisation processes have been followed.

No questionnaires were issued to collect feedback for WP5 activities so far. Should the need
arise, questionnaires will include a consent form for personal data collection. Video production
required for the demos does not include any personal identifiable information. IPs are
simulated and do not represent actual user traffic. Should the need arise to capture video,
consent forms will be prepared and identifiable information will be “ghosted out” or blurred in
the video. Any signed consent forms will be relayed to the Project Coordinator and included in
the project periodic reports.

Training of machine learning algorithms with existing POLITO
Data Set

As described in detail in D1.1, the POLITO data set was created by anonymised traffic collected
in POLITO’s premises:

 The data were collected in real time from POLITO’s network infrastructure. That
includes 100GB of net flow data, 100GB of DNS data and 50GB of proxy data.

 The cluster that probes and processes data has implemented security safeguards
against data breaches.

 The data are sanitized/anonymised using CryptoPAn41 and the users don’t have access
to information leading to the identification of users. SHIELD will not have access to
identifiable information

 Although opt-out mechanisms have not been implemented, the POLITO users are
notified of the monitoring capabilities once they request to connect to a network. A
dedicated webpage42 offers the required information.

SHIELD’s external ethical advisor has reviewed this case and concluded that:

41 CryptoPAN: https://www.cc.gatech.edu/computing/Telecomm/projects/cryptopan/ (Retrieved Jan 2018)
42 POLITO webpage on monitoring activities:
https://www.areait.polito.it/servizi/default.asp?id_progetto_servizio=348 (Retrieved Jan 2018)

https://www.cc.gatech.edu/computing/Telecomm/projects/cryptopan/
https://www.areait.polito.it/servizi/default.asp?id_progetto_servizio=348

SHIELD D5.1 • Integration
Results of SHIELD HW/SW modules

© SHIELD Consortium 52

“As such, the conclusion is that the use of the above data does not raise any ethical/privacy
implications during the first year of the project. However, as the actual training of the data has not

started yet (during the first period of the SHIELD reporting), the EA and the consortium will monitor the
situation during the actual training period to ensure that there are no changes to the above conclusion.
In doing so, the consortium has agreed to involve, in all the activities that are related to the processing

of the traces, a person from POLITO. This will ensure that: i) traces are used correctly, ii) no abuse of
the data takes place, iii) any changes to the above conclusion are immediately reported to the EA and

the project coordinator. Updates will be reported on Deliverable D1.2.”

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
53

ANNEX B – DEFINITION OF TESTS

Platform functional and integration tests

ID Name Description
Related
Req. ID

Related
Components

Related inputs Success criteria KPIs

1 PLT01
vNSF

deployment:
vNSF descriptor

vNSFO requests a vNSF
descriptor (vNSFD) from the

Store and the Store
responds and sends the
descriptor. The vNSFO

validates the descriptor

PF01,
PF02

vNSFO, the Store

valid vNSF descriptors
for all tested vNSFs,

invalid descriptors to
test rejection by the

Orchestrator

successful exchange
between the vNSFO and

Store, successful validation
or discarding of a descriptor

Communication delay,
traffic overhead

1 PLT01
vNSF onboarding:
vNSF descriptor

user submits a vNSF and/or
a NS package to the Store.

The store validates the
descriptor and onboards the

package on the vNSFO;
which validates the
descriptor as well

PF02 vNSFO, Store

valid vNSF descriptors
for all tested vNSFs,

invalid descriptors to
test rejection

successful uploading of the
package, successful

validation or discarding of a
descriptor (and thus, the

package)

2 PLT02
vNSF

deployment:
vNSF Image

vNSFO requests a vNSF
image (VDU) from the Store.

The Store responds and
sends the vNSF image to the

Orchestrator

PF01,
PF02

vNSFO, the Store
valid vNSF images for

all tested vNSFs, invalid
images

successful exchange
between the vNSFO and

Store

Communication delay,
traffic overhead

2 PLT02
vNSF onboarding:

vNSF image

user submits a vNSF
package. The store

uncompresses the package
and, if the vNSF image(s)

contained are not
registered into all available
VIMs, it asks the vNSFO to

do so

PF02 vNSFO, Store
valid vNSF images for

all tested vNSFs, invalid
images

successful exchange
between the vNSFO and

Store

3 PLT03

vNSF
deployment:

instantiation and
initialisation

the vNSFO deploys
(instantiates and initialises)
the vNSF, through SWA-3

PF02
vNSFO and the

vNSF to be tested
images/descriptors for

all tested vNSFs
successful instantiation and

initialisation of vNSF
Response time

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
54

ID Name Description
Related
Req. ID

Related
Components

Related inputs Success criteria KPIs

4 PLT04
vNSF lifecycle
management

vNSFO sends specific action
(e.g., "stop") through SWA-3

and vNSF executes the
specific operation

PF02
vNSFO and the

vNSF to be tested
Active vNSF instances

successful execution of
action for vNSF

Response time

5 PLT05
vNSF policy

configuration

The Security Orchestrator
(vNSFO component) sends

policies to the vNSF through
SWA-4

PF02 vNSFO and vNSF
policy test list per vNSF

component
(MSPL/HSPL)

the action and policy are
sent from vNSFO to the
vNSF (e.g., check vNSFO

dashboard); then the policy
is translated to a

configuration

Response time for the
configurations to be

applied, response time w.r.t
to the size of the

HSPL/MSPL policy set

6 PLT06
Data collection

and storage

The vNSFs send monitoring
information to the DARE,

where they are stored
PF04 vNSFs, DARE

simulated/generated
traffic or existing
sanitised data set

Feed vNSFs with artificial
traffic and check that
monitoring data are

properly stored in the DARE
databases (cross-check with

local data and logs at the
vNSFs)

Communication delay,
traffic overhead

7 PLT07
Scalability with
respect to data

volume

The platform handles data
volumes in the order of TBs

NF04 vNSFs, DARE
simulated/generated

traffic or existing
sanitised data set

Feed the DARE with
monitoring information in

the order of Tbs. All traffic is
successfully received and

accounted for.

Delay of the analytics
process as a function of the
stored data. The number of
flows generated equals the

flows processed.

8 PLT08
Network scaling:

scale-out
vNSFO request to add a

vNSF to a running NS
PF07 vNSF, VNSFO

valid Netwok Service
and vNSF images and

descriptors

A vNSF can be added to a
running NS

Response time

9 PLT09
Network scaling:

scale-in
vNSFO request to remove a

VNSF from a running NS
PF07 vNSF, VNSFO valid NS

A vNSF can be removed
from a running NS

Response time

10 PLT10 Security Analytics

The two data analytics
modules of the DARE
process monitoring

information from the vNSFs
and provide anomaly/attack

results

PF04 DARE

simulated/generated
traffic, valid instances
of the data analytics

modules

Each module generates a file
(e.g csv) containing a list of

the detected anomalies. The
reported anomalies and

their characteristics should
match the ones generated.

detection rate, false
positive rate, false negative

rate, processing time per
1GB of ingested data

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
55

ID Name Description
Related
Req. ID

Related
Components

Related inputs Success criteria KPIs

11 PLT11
Visualisation of
analytics results

The data analytics modules
provide GUI(s) that allow for
the interactive visualisation
of the analytics results. The

GUI(s) are fed with
detection results (e.g. those

from PLT12) to check if
they're properly visualised.

PF05 DARE

valid instances of the
two data analytics

modules, results from
a successful

implementation of the
ml-algorithms, a

cognitive walkthrough
scenario

The ml-results are correctly
visualised by the GUI and

the anomalies are properly
identified and assigned an
appropriate severity level

estimated time to complete
a cognitive walkthrough

scenario versus actual user
time

12 PLT12
Anomaly

mitigation

The DARE ingests network
traffic with a predefined set

of anomalies that might
contain possible threats. It

successfully detects the
anomalies and uses policies
to provide info to the acting

vNSFs for mitigation
activities on the possible

threats.

PF13
DARE, acting

vNSFs

simulated traffic with
artificial

anomalies/attacks,
successful

implementation of the
data analytics modules,

remediation policies,
valid acting vNSFs

instances

The DARE successfully
isolates the attacker IPs and
performs mitigation actions
(e.g. blocks network access)

Detection rate, false
positive/negative rate

13 PLT13 Interoperability

All interfaces (vNSFO, Trust
monitor, vNSFs, DARE,

Dashboard) expose openly-
defined APIs and are able to
exchange information with

third parties.

PF17
vNSFO, Trust

monitor, vNSFs,
DARE, Dashboard

test client to retrieve
data via the APIs

The test client successfully
retrieves data from the APIs

Consistency between
retrieved data and actual
data, number of requests

per second, network
performance

14 PLT14
SDN Controller

attestation

Remote attestation should
indicate if an SDN controller

has been compromised.
PF19

SDN controller,
Trust monitor

an instance of a
trusted and untrusted

SDN controller

The trust monitor detects a
compromised SDN

controller in a timely
manner

detection rate, false
positive rate, false negative

rate, response time

15 PLT15
Compute
platform

attestation

Remote attestation should
indicate if the compute

platform has been
compromised.

PF19
Compute

platform, Trust
monitor

an instance of a
trusted and untrusted

compute platform

The trust monitor detects a
compromised module in a

timely manner

detection rate, false
positive rate, false negative

rate, response time

16 PLT16
Recommendation

and mitigation

The recommendation
engine receives a csv file

generated by the Cognitive
or Security DA modules and

provides the
recommendation action.

PF11,
PF12,
PF16,
PF18

Recommendation
and mitigation

daemon,
dashboard,

vNSFO, vNSFs

csv files with known
anomalies

The recommendation
daemon generates the

HSPL/MSPL set with the
mitigation actions. This

information is sent in XML
format to the dashboard

Response time (csv to
HSPL/MSPL

recommendation,
recommendation to

dashboard, and dashboard-
vNSFO-vNSF)

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
56

ID Name Description
Related
Req. ID

Related
Components

Related inputs Success criteria KPIs

This is sent to the
dashboard and can be

visualised by the user and
applied

where the user may view it
and apply it. The vNSFO

applies configuration
changes to the appropriate

vNSFs.

17 PLT17
Network service
deployment &
configuration

The vNSFO deploys and
instantiates a NS comprising

of multiple vNSFs

PF15,
PF18

vNSFO, Store,
vNSFs, dashboard

valid vNSF & NS
descriptors; images for

all tested vNSF

NS is successfully deployed,
vNSFs can be dynamically

added and removed

Response time from the
successful application of a

mitigation action to the
instantiation of a NS

18 PLT18 vNSF attestation
Remote attestation should
indicate if a vNSF has been

compromised.
PF11,PF19

vNSFs, vNSFO,
Store, Trust

monitor

an instance of a
trusted and untrusted

vNSF

The trust monitor detects a
compromised vNSF in a

timely manner; then notifies
the vNSFO in order to

execute some action (e.g.,
stop the vNSF or isolate it)

detection rate, false
positive rate, false negative

rate, response time

19 PLT19 Access control
A SHIELD user should be
able to login and logout.

Login can expire

PF06,
PF09.
PF21

Dashboard a test user account
User accounts are created,
maintained and properly

used

Time to perform
login/logout

20 PLT20
Logging & Log

sharing

Major cybersecurity events
are documented and can be

shared with appropriate
administrators or third

parties (such as law
enforcement)

PF12,
PF16

DARE, vNSF,
Dashboard

simulated traffic with
artificial

anomalies/attacks,
successful

implementation of the
data analytics modules,

remediation policies,
valid acting vNSFs

instances

Major events should be
logged. Persistence of logs

should be ensured.

Size of logs, impact on
computational
performance

21 PLT21 Accountability

Administrative activities
(logins, application of
mitigation actions etc)

should be logged.

PF21,
PF12

all components
with access

control elements
test user accounts

User/Administrator actions
should be logged and

accounted for

Size of logs, impact on
computational
performance

22 PLT22 Billing framework

The user is able to view and
choose the appropriate

subscription model from the
Store

PF20
Store, vNSFs,
Dashboard

test user accounts

The user is able to select an
appropriate billing

framework, depending on
the NS to be instantiated.
Activity must be logged to

ensure proper billing

Size of logs, impact on
computational
performance

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
57

ID Name Description
Related
Req. ID

Related
Components

Related inputs Success criteria KPIs

23 PLT23
Communications

security

The communications
between all SHIELD

components is secure and
encrypted

PF22 all
network monitoring

tools

Traffic between SHIELD
components is secure and
cannot be easily decrypted

Impact to overall latency
and response times (with
and without encryption)

24 PLT24 Multi-user
Create or use multiple users

with isolated services and
secured access to analytics

PF14 all
Instantiated NS for at

least two users

New SecaaS users should be
added, their services and

data should be totally
isolated and secured, with
acceptable performance

Impact on network and
data analysis performance
with the addition of new

tenants

25 PLT25 Service elasticity Adapt resource allocation
PF14,
PF07

vNSFO, vNSFs
Composed network
services for at least

two tenants

Resource allocation across
multiple services

Impact on network and
data analysis performance

Performance and Usability tests

ID Name Description
Related

Requirement
ID

Related
Components

Related inputs Success criteria KPIs

1 PUT01 Response time

The platform ingests traffic,
an attack is artificially

generated, DARE detects
and reports it in a relatively

short time.

NF01, NF06 vNSFs, DARE

Valid Network Service and
vNSF images, simulated traffic
with artificial anomalies, valid

instances of data analytics
module, remediation policies

The generated attack is
detected in a reasonable

time frame.

seconds from the attack
initiation until its

detection

2 PUT02
Analytics impact
on performance

DARE performs a full
ingestion-detection-

visualisation cycle while the
user browses the

Dashboard

NF05, NF06 DARE
simulated/generated traffic,
valid instances of the data

analytics modules

User experience is not
degraded by the traffic

analysis

seconds for GUI query
while DARE performs

analytics / seconds for the
same query while DARE is

idle

3 PUT03
Impact on
perceived

performance

The SHIELD services have
minimal impact on user
perceived performance

NF05, NF06
vNSFs,
VNSFO,
Store

None

Deploy a security service
and verify that user QoE
is not seriously affected.
The network's QoS is not

affected as well.

Decrease in BW / increase
of RTT after service

deployment (compared
to plain network

connectivity). QoS
measurements (latency,
jitter, loss, throughput)

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
58

ID Name Description
Related

Requirement
ID

Related
Components

Related inputs Success criteria KPIs

4 PUT04
Effective

visualisations

The GUI design is efficient
and intuitive (in the sense

it does not create cognitive
load and is easy to use

without a lot of instruction)

PF05, NF08 Dashboard
Cognitive walthrough scenarios

for every GUI tested

user is able to quickly
complete the cognitive

walkthrough, the UI
elements perform the

expected functionalities,
User receives

feedback/notifications in
a timely manner, User

satisfaction

Estimated time to
complete cognitive

walkthrough with Fitt's
Law, Actual user time to
complete walkthrough

5 PUT05 Availability
The SHIELD platform is

continuously up and
running

NF02, NF06 all simulated continuous traffic
SHIELD components

should experience little
to no downtime

Total uptime, time-to-fail
for each component

6 PUT06 Scalability
SHIELD can scale up and

down without major
hindrances to performance

NF03, NF06 all None
Scalability in Network

Service composition and
for multiple users

Decrease in BW / increase
of RTT after service

deployment (compared
to plain network

connectivity). QoS
measurements (latency,
jitter, loss, throughput)

7 PUT07 Data volume
The SHIELD platform is able
to process the appropriate

data volume
NF04, NF06 all

simulated continuous traffic
with different velocity, volume,

variety characteristics

SHIELD components
should be able to

perform adequately
under high data volumes

processing time per GB of
data, network QoS

measurements

8 PUT08 vNSF hardening
The SHIELD vNSFs and their

associated virtual
environments are secured

NF06, NF09 vNSFs None
VM environments must

be hardened against
known cyberattacks

vNSF performance (data
processing and response

time)

9 PUT09
Standards

compliance

SHIELD complies with
industry standards and

data formats
NF06, NF07 all None

SHIELD components
should provide data in
appropriate industry

formats and align with
known standards

None

10 PUT10
Real-time

notifications

A security event must be
reported by a pop up

notification
PF05, NF08 Dashboard HSPL/MSPL set

A timely notification is
presented to the user

Response time

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
59

Service test conditions

ID Name Description
Related

Requirement
ID

Related
Components

Related inputs Success criteria KPIs

1 SET01
Rate-based DoS

protection

DARE detects rate-based DoS
attacks and the offending

traffic is limited or dropped
in a related vNSF

PF10, SF08,
SF09

vNSFO,
vNSF, DARE

simulated traffic, test
policies/rules set

New policies are received,
translated and applied. The rate-

based attack is mitigated

Time to
detection,

time to
mitigation,

Target
downtime

2 SET02 IP/URL/URI blocking vNSFs apply blocking rules
PF10, SF08,

SF09
vNSFO,

vNSF, DARE
simulated traffic, test

blocklists
The SHIELD vNSFs block access to

the specified IP/URLs/URIs

Detection
rate, false
negatives,

false positives

3 SET03 Rate limiting
vNSFs apply rate-limiting

rules
PF10, SF08,

SF09
vNSFO,

vNSF, DARE

simulated traffic, test
policies/rules set, BoNeSi tool

for ICMP/UDP/TCP flood
attack simulation

New policies are received,
translated and applied

Response
time

4 SET04
Application-based

DoS protection

vNSFs apply policies against
application layer attacks (e.g.

xml based attacks)

PF10, SF08,
SF09

vNSFO,
vNSF, DARE

simulated traffic, test
policies/rules set

Application-based DoS attacks
are detected and mitigated

Time to
detection,

time to
mitigation,

Target
downtime

5 SET05
Protocol-based DoS

protection

vNSFs apply polocies against
protocol-based DoS attacks
(e.g. fragmentation attacks,

Slowloris etc)

SF09
vNSFO,

vNSF, DARE

tools to simulate attacks
based on malformed packets

and abuse of protocol
mechanisms

Anomalies in protocol use must
be detected in time

Time to
detection,

time to
mitigation,

Target
downtime

6 SET06 Tunnel detection
DARE detects tunneling

attacks (through e.g. DNS,
ICMP, HTTP etc)

SF06
vNSFO,

vNSF, DARE
tunneling infrastructure set

up

Tunnels used to exfiltrate data or
divert protocol traffic should be

identified

Detection
rate, false
negatives,

false positives

7 SET07 VPN/Proxy detection
SHIELD detects traffic

through proxies or VPN
(under possible conditions)

SF06, SF02
vNSFO,

vNSF, DARE
vpn/proxy infrastructure

VPN/Proxy traffic should be
detected, when feasible

Detection
rate, false
negatives,

false positives

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
60

ID Name Description
Related

Requirement
ID

Related
Components

Related inputs Success criteria KPIs

8 SET08 IP spoofing detection
SHIELD detects spoofed

packets
SF06

vNSFO,
vNSF, DARE

IP spoofing tools
Spoofed traffic should be

detected

Detection
rate, false
negatives,

false positives

9 SET09
Malware C2

detection
Malware C2 traffic is
detected and blocked

SF06, SF02
vNSFO,

vNSF, DARE
simulated malware traffic,

blocklist of known C2s
DARE detects existence of

spreading malware

Time to
detection,

time to
mitigation

10 SET10
Ransomware

C2/payment site
Detect and block malware

CCC over DNS tunnel
SF06, SF02

vNSFO,
vNSF, DARE

simulated malware traffic,
blocklist of known C2s and

payment sites

DARE detects existence of
spreading ransomware

Time to
detection,

time to
mitigation

11 SET11 Content filtering
SHIELD filters available,
unencrypted content

SF01
vNSFO,

vNSF, DARE

simulated traffic, definition of
content types, data

protection specifications

SHIELD filters the appropriate
content types

Response
time

12 SET12 Security assessments
Processed and history data

synthesise a security
assessment

SF02, SF05
vNSFO,

vNSF, DARE
previous logs and simulated

traffic

Security assessments and SIEM-
like reporting is available in an

easy to use GUI

Response
time, overall
network QoS

13 SET13 Traffic filtering L4-L7 traffic filtering SF03
vNSFO,

vNSF, DARE
simulated traffic

Traffic is properly classified,
filtered and/or diverted

Response
time, overall
network QoS

14 SET14 Traffic classification
Traffic classification per

application type
SF04, SF09

vNSFO,
vNSF, DARE

simulated traffic with a lot of
variety (e.g. VoIP, streaming
video, web applications etc)

Traffic is classified according to
known application types

Response
time, overall
network QoS

15 SET15
Central log

processing/SIEM
Central log processing and

visualisation
SF02, SF05

vNSFO,
vNSF, DARE

previous logs and simulated
traffic

Security assessments and SIEM-
like reporting is available in an

easy to use GUI

Response
time, Gui ease
of use through

cognitive
walkthrough

16 SET16 Malware detection
SHIELD detects malware

behavior
SF06, SF02

vNSFO,
vNSF, DARE

malware simulation tools or
malware running in a forensic

environment

SHIELD discovers the existence or
spreading of malware

Response
time,

detection rate

17 SET17 Spam protection
SHIELD protects against

spam and phishing
campaigns

SF07, SF02
vNSFO,

vNSF, DARE
phishing/spam software

frameworks
SHIELD blocks spam

Response
time,

detection rate

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
61

ID Name Description
Related

Requirement
ID

Related
Components

Related inputs Success criteria KPIs

18 SET18 Anomaly detection
Suspicious traffic is detected

in DARE and is easily
discoverable in the GUI

SF08, SF09
vNSFO,

vNSF, DARE
various cyber-attack tools and

exploits

SHIELD identifies anomalies in
network traffic that might

correspond to attacks or zero-
day exploits

Response
time,

detection rate

19 SET19
Intrusion

Detection/Prevention
System

Signature-based detection SF09
vNSFO,

vNSF, DARE
Signature-based rules,

generated traffic
Intrusions are detected in time

and prevented

Response
time,

detection rate

20 SET20 Honeypots
Unsecured targets act as

honeypots and relay data for
analysis to the DARE

SF10
vNSFO,

vNSF, DARE
simulated traffic, honeypot

VMs
SHIELD can create honeypots and

collect network data

Response
time, overall
network QoS

21 SET21 Sandboxing
SHIELD provides a sandbox

environment
SF11

vNSFO,
vNSF, DARE

simulated traffic, VM images
Sandbox environment is
operational and secured

Response
time, overall
network QoS

22 SET22 VPN
SHIELD provides secure VPN

services
SF12

vNSFO,
vNSF, DARE

VPN tools
SHIELD creates a secure VPN

service

Response
time, overall
network QoS

23 SET23 Information entropy
URL/Domains/URI entropy is

measured
SF01, SF06,

SF09
vNSFO,

vNSF, DARE
Randomised URLs

Suspicious domains/URLs etc are
identified through entropy-based

detection

Detection
rate, false
negatives,

false positives

24 SET24 Phishing detection
SHIELD is able to detect

common Phishing attacks
SF03

vNSFO,
vNSF, DARE

tools to simulate phishing
attacks (email spoofing,
watering hole, request

forgery, UI redress attacks,
session highjacking etc)

SHIELD detects phishing attacks
in a timely manner

Response
time,

detection rate

25 SET25 Network monitoring
Overall network monitoring

and training of ML
algorithms

all SF**
vNSFO,

vNSF, DARE
Network monitoring and

visualisation tools

SHIELD monitors activities on the
network and ML algoriths are
trained with appropriate data

Changes in ML
algorithm

performance
and detection

rate

SHIELD D5.1 • Integration Results of SHIELD HW/SW modules

© SHIELD Consortium
62

Ethical and regulatory compliance test conditions

ID Name Description
Related

Requirement
ID

Related
Components

Related inputs Success criteria KPIs

1 COT01
Data Processing
Specifications

Data processing specifications should
be provided for all data processing

components. This information should
be visible in the appropriate UI

ERC03,
ERC04

all data
processing

components

Date processing
specifications

Data processing
specifications are available

in the Store, Dashboard
and DARE graphical

interfaces

User satisfaction
(information

should be clear
and easily

discoverable)

2 COT02
Traffic Classification

Transparency

Mitigation actions with respect to
application types should be justified by

security events and logged

ERC06,
ERC08

DARE,
vNSFs,
vNSFO,

Dashboard

None

Accountability to ensure
net neutrality rules are

respected. Application of
traffic classification must be

visible and accounted for

Time to discover
the appropriate

information

3 COT03
Data Protection

Information

Dashboard should display information
and allow contact with Data Controller

or Data Protection Officers

ERC03,
ERC04

Dashboard None

Data protection
information are clear and
easily discoverable, User

satisfaction

Time to discover
the appropriate

information

4 COT04 Lawful Interception
API access must be ensured to law

enforcement
ERC09 All None

API access is granted and
monitored

API Response
time

5 COT05
Data access and

processing

Identifiable data should be easily
accessed/erased/rectified if necessary.

If data are not identifiable, then the
data subject must provide means of

identification (GDPR article 11)

ERC01,
ERC02

All
Data access

request

Data
access/erasure/rectification
requests are processed and

granted

API Response
time

6 COT06 Data retention
Components should specify data

retention periods
ERC05 All

Data retention
specifications

Components should retain
data only for the

designated period
None

7 COT07 Notifications
Breaches in components must be

reported
ERC07 All

backdoors, data
exfiltration
attacks etc

A breach is identified and
reported in a timely

manner
Response time

