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Executive Summary 

The EU-funded SHIELD project (GA 700199) proposes a universal solution for the dynamic 
establishment and deployment of virtual security infrastructures into ISP (Internet Service 
Provider) and corporate networks.  

The multitude of components present in SHIELD’s architecture requires a rigorous integration 
and testing process, ensuring that the individual components function correctly and are 
organically linked. The consortium employs a number of collaboration tools to test and 
integrate all the related software and hardware components. Through frequent test-driven 
integration, SHIELD manages to develop and successfully deploy all its related services, across 
the vNSF ecosystem, the DARE and the Trust Monitor.  

SHIELD showcases some these capabilities developed within Year One of project activities, in 
three demonstrations:  

 Detection of data exfiltration: SHIELD utilises and contributes to the Apache Spot 
analytics framework. This demo showcases how DNS tunneling can be used for data 
exfiltration, how it is detected by Spot and how the Recommendation and Remediation 
engine produces the rules to block further data exfiltration. 

 Detection and mitigation of Distributed Denial of Service attacks: This end-to-end 
demonstration showcases how vNSFs can be on-boarded. When a Distributed Denial of 
Service attack is detected by DARE, the recommendation engine sends the appropriate 
mitigation rules to the user’s dashboard. The rules are then applied by the active vNSF 
and the attack traffic is dropped. 

 Trust monitor and SDN/NFV attestation: This demonstration shows how SHIELD detects 
compromised components of its infrastructure (e.g. SDN switches, the SDN controller, 
vNSFs etc.). 
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1. INTRODUCTION 

1.1. The SHIELD Project 

Cybercrime is one of the most relevant and critical threats to both the economy and society in 
Europe. Establishing efficient and effective ways to protect services and infrastructures from 
ever-evolving cyber threats is crucial for sustaining business integrity and reputation as well as 
protecting citizens’ personal and sensitive data. 

To that end, the SHIELD project proposes a universal solution for dynamically establishing and 
deploying virtual security infrastructures into ISP and corporate networks. SHIELD builds on the 
huge momentum of Network Functions Virtualisation (NFV), as currently standardised by ETSI, 
in order to virtualise security appliances into virtual Network Security Functions (vNSFs), to be 
instantiated within the network infrastructure using NFV technologies and concepts, effectively 
monitoring and filtering network traffic in a distributed manner. 

Logs and metrics from vNSFs are aggregated into an information-driven Data Analysis and 
Remediation Engine (DARE), which leverages state-of-the-art big data storage and analytics in 
order to predict specific vulnerabilities and attacks by analysing the network and understanding 
the adversary possibilities, behaviour and intent. 

The SHIELD virtual security infrastructure can either used by the ISP internally for network 
monitoring and protection, but it can also be offered as-a-service to ISP customers; for this 
purpose, SHIELD establishes a “vNSF Store”, i.e. a repository of available virtual security 
functions (firewalls, DPIs, content filters etc.) from which the ISP customers can select the ones 
which best match their needs and deploy them to protect their infrastructure. This approach 
promotes openness and interoperability of security functions and offers an affordable, zero-
CAPEX security solution for citizens and SMEs. Moreover, SHIELD services can be easily scaled 
up or down, configured and upgraded according to customers’ needs, as opposed to security 
solutions based on monolithic hardware. 

The SHIELD consortium is composed of 11 partners around Europe, well distributed between 
legal bodies, private companies, large corporations, and research and academic partners. The 
diversity of expertise within SHIELD is essential in order to achieve the technological challenges 
of the project. 

1.2. Scope of this document 

SHIELD dedicates WP5 (“Integration, development and testing”) to the technical work required 
towards the following key goals: 

 To create a real environment infrastructure according to the requirements extracted in 
T2.1 that will be used to validate the SHIELD platform. 

 To integrate the software created in WP3 and WP4 into the infrastructure. 
 To test and evaluate the cybersecurity capabilities of the SHIELD platform utilising 

multiple attack vectors and exploits 
 To evaluate overall performance of each component and of end-to-end functionalities. 



SHIELD                                                          D5.1 • Integration Results of SHIELD HW/SW modules 

 

© SHIELD Consortium 
6 

 To facilitate the use of the SHIELD platform to interested adopters. 

This document (D5.1 “Integration results of SHIELD HW/SW modules”) details the process for 
the integration and testing of the various SHIELD components and the preliminary results from 
Year One validation activities.  During M1-M17, SHIELD has performed end-to-end integration 
of the initial versions of all key components of the platform and applied a variety of 
optimisations. The results of the first year demonstration and validation activities are also 
included in this document. D5.1 draws inputs from the following deliverables: 

 D2.1 “Requirements, KPIs, design and architecture” defines high-level requirements for 
the SHIELD platform and the overall architecture, including the KPIs to use in evaluation 
phase.  

 D2.2 “Updated requirements, KPIs, design and architecture” (work in progress) is the 
final, updated version of D2.2, which was drafted concurrently with this document. D5.1 
maintains its alignment with D2.2., which currently under preparation. 

 D3.1 “Specifications, design and architecture for the vNSF ecosystem” contains the 
detailed design and specifications for the SHIELD vNSFs, the Orchestrator, Store and 
Trust monitor. 

 D4.1 “Specifications, design and architecture for the usable information-driven engine” 
contains the detailed design and specifications for SHIELD’s DARE components, 
including analysis and remediation. 

An additional report (D5.2 “Final demonstration, roadmap and validation results”) is expected 
in M30, following the Y2-2.5 demonstration activities; it will provide updates to D5.1 and will 
conclude WP5 results, including the evaluation of the overall system performance. D2.2 is 
expected in M17 and will provide updated requirements for D5.2. Future deliverables D3.2 and 
D4.2 will also provide renewed technical specifications to be taken into account in WP5 
activities as well as the subsequent D5.2 deliverable. The D5.1 and D5.2 reports will accompany 
the related demonstration prototypes of the SHIELD components developed by the partners. 

1.3. Organisation of this document 

This document is organised as follows: 

 Chapter 1 (present chapter) serves as a basic introduction to this document and its 
scope; 

 Chapter 2 provides an overview of the technical components comprising SHIELD’s 
architecture and the related deployment options; 

 Chapter 3 provides the SHIELD integration and verification plan; 
 Chapter 4 introduces the collaboration tools used for the efficient integration and 

testing of all SHIELD components; 
 Chapter 5 includes the tools utilised for cybersecurity testing; 
 Chapter 6 introduces Year One validation results, presenting the end-to-end 

demonstrations. 
 Chapter 7 lists important conclusions and discusses how the collected feedback can be 

integrated into future demonstrations. It also provides a calendar of key WP5 activities. 
 Annex A involves the ethical and privacy monitoring of WP5 activities. 
 Annex B contains individual integration and functional verification tests required to 

verify if SHIELD’s requirements have been met. 
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2. THE SHIELD PLATFORM 

2.1. Platform overview 

The mission of SHIELD is to create a next-generation cybersecurity platform for advanced 
SecaaS offerings tailored for software networks, exploiting state-of-the-art techniques such as 
Big Data analytics and infrastructure/service attestation. 

To that end, the SHIELD platform, whose functional architecture is shown in Figure 2-1, 
(described in detail in Deliverable D2.2 but also briefly overviewed herein) brings together the 
following components: 

Network infrastructure - The network infrastructure provides a trusted environment for 
supporting the execution of virtual Network Security Functions (vNSFs), implementing a 
Network Functions Virtualisation Infrastructure (NFVI) environment, according to the ETSI NFV 
specifications. 

Virtual Network Security Functions (vNSFs) - vNSFs are software instantiations of security 
appliances that are dynamically deployed into the network infrastructure. vNSFs i) gather 
information about the network traffic and generate events sent to the DARE and ii) prevent 
attacks or mitigate vulnerabilities and threats. 

 

Figure 2-1 Functional architecture of the SHIELD platform 

vNSF orchestrator (vNSFO) – it is responsible for managing the lifecycle of Network Services 
(NS), which are composed by one or more vNSFs. This allows to onboard packages for vNSFs 
and NSs, deploy (instantiate and place) NSs in specific points of presence within the network 
infrastructure, check the available and running services, execute actions on them, and so on. 

vNSF store - it acts as a nexus between the vNSFO and third-party vNSF providers/developers, 
who can register and manage vNSFs in order to make them available through the SHIELD 
platform. 
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Trust Monitor – it is the component in charge of monitoring the trust of the SHIELD 
infrastructure. Integrity is checked periodically to detect compromised software and/or 
hardware and it is based on the Trusted Computing paradigm and its Remote Attestation 
workflow. 

Data Analysis and Remediation Engine (DARE) – The DARE is an information-driven IDPS 
platform that stores and analyses heterogeneous network information, previously collected via 
vNSFs. It features cognitive and analytical components capable of predicting specific 
vulnerabilities and attacks. The processing and analysis of large amounts of data is carried out 
by using Big Data, data analytics and machine learning techniques. Furthermore, the DARE 
Remediation engine uses the analysis from the data analytics modules and is fed with alerts 
and contextual information to determine a mitigation plan for the existing threats. 

Security dashboard and controller – Using the dashboard, operators have access to monitoring 
information showing an overview of the security status. The dashboard also allows operators 
as well as tenants to take actions and react to any detected vulnerability. 

During Y1, all SHIELD components were hosted in VMs in the Athens testbed (private cloud 
computing infrastructure provided by ORION and hosted in NCSRD), with the exception of the 
attestation components. The attack vectors utilised for the Y1 demonstration activities were 
also hosted in separate VMs and are described in Section 6. In Y2, specified DARE components 
will be migrated to the Barcelona testbed. After initial testing and validation of the remote 
attestation components, the related software will be integrated in the Athens and Barcelona 
(i2CAT) testbed in Y2. Some additional local testbeds by SHIELD partners will be used in Y2, for 
local development, functional and unit tests, such as the vNSF configuration and data 
collectors. One example is TID’s Mouseworld Lab. This environment is responsible to generate 
synthetic network traffic (as close as possible to real traffic) tailored to Machine Learning needs 
in controlled environment (no production environments with privacy restrictions or lack of 
training labels). The Mouseworld Lab include a configurable generator of labelled network 
traffic datasets to be utilised during the training process of ML algorithms, VNFs for traffic 
capture and processing and visual dashboard. TID’s plans for Y2 includes deploy a DARE engine 
based on Apache Spot to make functional and unitary test for ML algorithm in DARE and  for 
vNSFs collector engine development.  

2.2. Use case overview 

Three dominant use cases have been identified for the SHIELD platform. These use cases reflect 
the deployment configurations that are supported by SHIELD and the various end-users. Both 
horizontal and vertical services can be envisioned as part of the three main SHIELD use cases: 

Use Case 1: An ISP using SHIELD to secure their own infrastructure 

In order to protect their own network infrastructure, ISPs have to deploy specific hardware 
which is very expensive since this hardware has to be updated and maintained by very 
specialised operators. The virtualization offered by SHIELD in this use case aims to dramatically 
reduce this cost by replacing specific hardware for vNSFs (virtual Nework Security Functions), 
as well as providing a central interface (dashboard) to understand the gathered information 
and to act in the network. Apart from ISPs, the SHIELD platform can be internally used also by 
large enterprises, which operate NFV-capable corporate networks. 
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Examples of this use case might include DDoS detection and mitigation, blocking known 
malware Command and Control channels across the ISP network, tunneling detection to 
bypass roaming or data charges etc. This work is focused on providing network monitoring 
tools and cybersecurity for the ISP to on-board to their production environment. 

 

Use Case 2: An ISP leveraging SHIELD to provide advanced SecaaS services to customers 

SHIELD provides an ideal foundation for building enhanced SecaaS services, far beyond current 
offerings. Using this SecaaS paradigm, the complexity of the security analysis can be hidden 
from the client (either a company or an SME) who can be freed from the need to acquire, 
deploy, manage and upgrade specialised equipment. 

In this UC, the ISP would be able to insert new security-oriented functionalities directly into the 
local network of the user, through its provided gateway or in the ISP network infrastructure. 

Examples of this use case might include horizontal cybersecurity services (DDoS protection, 
Data exfiltration detection, Malware protection etc.) that can be offered as-a-Service from the 
ISP to their clients. This use case also includes vertical, tailor-made cybersecurity services to a 
variety of industries. Examples can range from IPR protection for streaming services (VPN 
detection, traffic management, etc), eGovernment (detection of comment bots on official 
government websites, phishing attacks etc), and other services.  

 

Use Case 3: Contributing to national, European and global security 

The DARE platform is able to export, upon request, threat models or data regarding acquired 
threat intelligence, to authorised third parties, for instance, public cybersecurity agencies. The 
secure SHIELD framework offers, in this manner, a way of sharing threat information with third-
parties who wish to synchronise information and research on measures to be taken on recent 
attacks, suffered by others. Furthermore, using SHIELD, Cybersecurity agencies can establish 
agreements with the SP and deploy vNSF very fast and without cost in the infrastructure. 
Moreover the data is automatically accessible through the dashboard because the unification 
of the data treatment done in the data engine. 

Examples of this use case might include notifying an authorised party of an identified anomaly 
that might not be classified as an attack indicator but could be suspect as a zero-day exploit, 
notify the authorities of a large scale or coordinated cybersecurity event and allow access to 
important threat information. This use case effectively showcases the scalability of SHIELD’s 
proposed platform as well as the automated mitigation recommendations that can be 
attached to the threat data. 
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3. THE SHIELD INTEGRATION APPROACH 

3.1. System Integration and testing 

WP5 focuses on the overall integration and validation activities performed within SHIELD. 
SHIELD distinguishes between the different activities based on their scope (be it functional, 
integration or validation testing) and their scale (from unit testing to end-to-end system tests)  

System integration1 can be defined as the process of synthesizing individual components into a 
complete platform. At the end of the process, all aggregated subsystems should be able to 
cooperate together to provide the end-to-end functionalities that are foreseen in WP2, WP3 
and WP4. System tests on a wide scale are used to verify correct end-to-end functionality and 
ascertain if a viable and stable deployment of the SHIELD platform has been reached. 

The process starts with Unit testing2 which involves verifying the correct function of individual 
components. Integration tests3 move from local, small tests to a larger scale by combining 
different components and testing their interactions. It is different from unit testing in the sense 
that it is less contained and broader in scope. Integration tests are usually more complex and 
might require additional tools. Discovering why an integration test failed can be a complicated 
task as the problem might lie in the configuration of the environment and the related 
interfaces, rather than in the individual components. Functional testing4 differs from integration 
testing in that it focuses on verifying the intended functionalities of the SHIELD platform, 
against the specific requirements they are supposed to fulfill. 

Finally, qualification and validation focus not only on verifying the correct functionality, but also 
the performance of the platform, the overall satisfaction of the end-users and the fulfillment 
of all related functional and non-functional requirements. 

3.2. Best practices 

The SDN/NFV paradigm that SHIELD adopts brings major advantages to ISPs and telco 
operators. Deployment of services and management of their lifecycles is fast and flexible. Thus, 
a traditional waterfall model for development and testing creates an unnecessary bottleneck, 
as development cycles can be lengthy. A variety of experts advocate in favor of an agile 
development process [1], especially in the context of the industries that SHIELD targets [2] [3]. 
Scrum/Nexus5 and Kanban6 are among the most popular frameworks for agile development. 
SHIELD has adopted the Kanban approach, as it is more flexible than Scrum/Nexus that imposes 
specific timelines to the development process. 

                                                      
1 CIS 8020 – Systems Integration, Georgia State University OECD 
2 Definition of unit testing at Agile Alliance: http://guide.agilealliance.org/guide/unittest.html (Retrieved Jan 2018) 
3 Definition at Techopedia: https://www.techopedia.com/definition/7751/integration-testing (Retrieved Jan 
2018) 
4 Definition at Techopedia: https://www.techopedia.com/definition/19509/functional-testing (Retrieved Jan 
2018) 
5 Scrum and Nexus: https://www.scrumalliance.org/ (Retrieved Jan 2018) 
6 Kanban: https://www.atlassian.com/agile/kanban (Retrieved Jan 2018) 

http://guide.agilealliance.org/guide/unittest.html
https://www.techopedia.com/definition/7751/integration-testing
https://www.techopedia.com/definition/19509/functional-testing
https://www.scrumalliance.org/
https://www.atlassian.com/agile/kanban
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The agile development process is an ideal model not only for SDN/NFV but also for multi-entity 
consortia, since it improves collaboration across self-organising, cross-functional teams. It 
focuses on adaptive planning and continuous evolution, thus facilitating the multiple 
development cycles defined in SHIELD and the refinement of requirements and specifications 
in the start of Y2. The agile development process, however, should be complemented with a 
Continuous Integration/Continuous Delivery approach to automate and facilitate the 
integration and deployment of new developments.  

Assembling a lean integration plan is an essential part of this work. D5.1 aims to serve as an 
appropriate reference for all teams and provide a logical, controlled process for integration and 
testing. Fostering a team approach is an important part that requires use of appropriate 
information sharing tools among the consortium members. Using testing frameworks and 
collaboration platforms provide a unified environment where all test activities can be reported, 
tracked and health-checked. Other best practices include [4]: 

 Maintaining a single source repository, 

 Automating the build, 

 Making the build self-testing, 

 Committing code daily and building locally, 

 Fixing broken builds immediately when they are identified, 

 Being transparent so everyone can view recent developments and has access to 
binaries, 

 Testing in clone environments and automating deployment to the production 
environment. 

The following subsection provides a preliminary test plan where individual functional and 
integration tests are mapped to the related components and SHIELD requirements, while 
specific processes and tools are discussed in the following sections. Section 4 focuses on 
integration and testing tools, showing how SHIELD implements the agile paradigm and adopts 
CI/CD best practices, while section 5 deals with the functional end-to-end cybersecurity testing. 

3.3. Requirements Traceability 

3.3.1. Test conditions 

Individual tests and the associated inputs/outputs have been designed for integration and 
functional testing of the platform. Each test is described by the conditions it needs to fulfil, the 
required inputs/outputs, its relation to specific requirements in D2.1/D2.2 and any measurable 
KPIs. Specifically, each test is defined by: 

 A unique identifier: Tests are uniquely numbered. The identifier PLT designates Platform 
tests, PUT: Performance and Usability tests, SET: Service Tests, COT: Ethical and 
Regulatory Compliance tests. 

 A description of the test: What the test entails and what is the expected outcome. 

 The related requirement ID: Each test is mapped to the requirements it fulfils. 

 The related components: Each test is mapped to the SHIELD components it requires. 

 The required Inputs: The inputs required to perform the test (such as network traffic 
logs, etc.) 
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 The success criteria: A description of non-measurable criteria that define a successful 
test. 

 The related KPIs: A description of measurable criteria that define a successful test. 

Examples of specified tests follow in Tables 3-1 to 3-4. 

Table 3-1 Examples of platform tests. 

Test ID: PLT01 vNSF deployment: vNSF descriptor 

Related req.ID PF01, PF02 Related components vNSFO, Store 

Description The vNSFO requests a vNSF descriptor from the Store. The Store responds 
and sends the appropriate descriptor. The vNSFO validates the descriptor. 

Inputs Valid and invalid vNSF descriptors for each SHIELD vNSF.  

Success criteria vNSFO receives the vNSF descriptor from the store. It accepts valid 
descriptors and rejects invalid ones. 

Measurable KPIs Communication delay, traffic overhead 

Test ID: PLT10 Security analytics 

Related req.ID PF04 Related components DARE 

Description The two data analytics modules of the DARE process monitoring 
information from the vNSFs and provide anomaly/attack results 

Inputs simulated/generated traffic, valid instances of the data analytics modules 

Success criteria Each module generates a file (e.g csv) containing a list of the detected 
anomalies. The reported anomalies and their characteristics should match 
the ones generated. 

Measurable KPIs Detection rate, false positive rate, false negative rate, processing time per 
1GB of ingested data, threat severity/threat index whiskers 

 

Table 3-2 Examples of performance and usability tests. 

Test ID: PUT04 Effective visualisations 

Related req.ID PF05, NF08 Related components all GUI components 

Description The GUI design is efficient and intuitive (in the sense it does not create 
cognitive load and is easy to use without a lot of instruction) 

Inputs Cognitive walkthrough scenarios for every GUI tested 

Success criteria A user is able to quickly complete the cognitive walkthrough, the UI 
elements perform the expected functionalities, User receives 
feedback/notifications in a timely manner, User satisfaction 

Measurable KPIs Estimated time to complete cognitive walkthrough with Fitt's Law, Actual 
user time to complete walkthrough 

Test ID: PUT07 Data volume 

Related req.ID NF04, NF06 Related components all 

Description The SHIELD platform is able to process the appropriate data volume 
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Inputs Simulated continuous traffic with different velocity, volume, variety 
characteristics 

Success criteria SHIELD components should be able to perform adequately under high data 
volumes 

Measurable KPIs Processing time per GB of data, network QoS measurements 

 

Table 3-3 Examples of service tests. 

Test ID: SET01 Rate-based DoS protection 

Related req.ID PF10, SF08, SF09 Related components vNSFO, vNSF, DARE 

Description DARE detects rate-based DoS attacks and the offending traffic is limited or 
dropped in a related vNSF 

Inputs simulated traffic, mitigation recipes 

Success criteria The attack is detected in a timely manner. New policies are received, 
translated and applied. The rate-based attack is mitigated. 

Measurable KPIs Time to detection, time to mitigation, Target downtime 

Test ID: SET02 IP/URL/URI blocking 

Related req.ID PF10, SF08, SF09 Related components vNSFO, vNSF, DARE 

Description vNSFs apply blocking rules 

Inputs simulated traffic, test blocklists 

Success criteria The SHIELD vNSFs block access to the specified IP/URLs/URIs 

Measurable KPIs False negatives, false positives 

 

Table 3-4 Examples of ethical and legal compliance tests. 

Test ID: COT02 Traffic Classification Transparency 

Related req.ID ERC06, ERC08 Related components DARE, vNSFs, vNSFO, 
dashboard 

Description Mitigation actions with respect to application types should be justified by 
security events and logged. 

Inputs None 

Success criteria Accountability to ensure net neutrality rules are respected. Application of 
traffic classification must be visible and accounted for. 

Measurable KPIs Time to discover the appropriate information (through cognitive 
walkthrough) 

Test ID: COT03 Data Protection Information 

Related req.ID ERC03, ERC04 Related req.ID ERC03, ERC04 

Description All related GUIs should display information and allow contact with the Data 
Controllers and/or Data Protection Officer. 
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Inputs None 

Success criteria Data protection information are clear and easily discoverable, User 
satisfaction 

Measurable KPIs Time to discover the appropriate information (through cognitive 
walkthrough) 

 

A comprehensive list of all specified tests and conditions is contained in Annex B. 

3.3.2. Traceability matrix 

The following matrix associates the tests in Annex B with the requirements in D2.2 and the 
components described in D3.1-D4.1. Hence, each row represents the test conditions that need 
to be chained together and fulfilled to verify a specific requirement, while each column 
associates the individual components with the tests that need to be performed for this 
component.  
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Table 3-5 Traceability matrix associating testing conditions to the SHIELD requirements (D2.1/D2.2) and components 
(D3.1/D3.4). 

 

  

Attestation

PF01 vNSF and NS deployment x x x x x x x PLT01-02

PF02 vNSF lifecycle management x x x x x x x x x PLT01-05

PF03 vNSF status management x x x x x x x x PLT01-05

PF04 Security data monitoring & analytics x x x x x x PLT04, 06-07,10-12

PF05 Analytics visualisation x x x PLT04, 10-11

PF06 Ability to offer different mgmt roles to several users x x x x x x x x x PLT19, 21

PF07 Service Elasticity x x PLT24-25

PF08 Platform Expandability x x x PLT24-25, PUT06

PF09 Access Control x x x x PLT19, 21

PF10 vNSF validation x x x x x x x x PLT01-02, all SET

PF11 vNSF attestation x x x x PLT18

PF12 Log Sharing x x x x x x x PLT20

PF13 Mitigation x x x x x x x x x PLT10-12,16

PF14 Multi-tenancy x x x x x x x x PLT24-25

PF15 Service Store x x x x x x x x PLT17, 22, COT01

PF16 History Reports x x x x PLT20, SET12,16

PF17 Interoperability x x x x x PLT13, PUT09

PF18 Service Composition x x x PLT24-25

PF19 Network Infrastructure Attestation x x PLT14,15,18

PF20 Billing Framework x x x x x x x x PLT22

PF21 Operation Traceability x x x x x PLT19, 21

PF22 Communications security x x x x x x x x x x x x x PLT23

NF01 Response time x x x x x x x x x x x x x PUT01

NF02 Availability x x x x x x x x x x x x x PUT05

NF03 Scalability x x x x x x x x x x PUT06

NF04 Data Volume x x PUT02

NF05 Impact on perceived performance x x x x x x x x all PUT

NF06 Performance factors x x x x x x x x x x x x x all PUT

NF07 Compliance to standards x x x x x x x x x x x x x PUT09

NF08 Deployment and support simplicity x x x x x x x PUT04

NF09 vNSF hardening x x x x x x x PUT08

SF01 Content filtering x x x x x x SET01, 11

SF02 Detect/block access to malicious websites x x x x x x x x all SET

SF03 Security assessments x x x SET06, 18, 23, 24

SF04 L4 traffic filtering x x x x SET06

SF05 Central log processing/SIEM x x x x x x x x x x x SET12, 15, 18, 23

SF06 Malware detection x x x x x x x x x SET06-10, 18, 23-24

SF07 Spam protection x x x SET17-18

SF08 DoS protection x x x x x x x SET01-05, 18

SF09 Intrusion Detection/Prevention System x x x x x x x SET01-06, 18, 23

SF10 Honeypots x x x x x SET20

SF11 Sandboxing x x x x SET21

SF12 VPN x x x x SET07,SET22

ERC01 Access to personal data x x x x x x x x x x x COT05

ERC02 Data rectification and erasure x x x x x x x x x x x COT05

ERC03 Access to related Data Protection information x x x COT01, 03

ERC04 Transparency in data processing x x x COT01, 03

ERC05 Data retention x x x x x x x x x x x COT02

ERC06 Transparency in traffic classification x x x x x x x COT06

ERC07 Notification obligation x x x COT07

ERC08 Net Neutrality x x x x x x x COT02

ERC09 Lawful Interception x x x x x x x x x x COT04

PLT01-

02, all 

COT

PLT14-

15, 18
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4. INTEGRATION AND COLLABORATION TOOLS 

SHIELD leverages specific tools to manage the software development, testing, integration and 
deployment lifecycles. Likewise, examples of the workflow processes that are defined for the 
tools that are provided. The tools used in SHIELD are open-source and/or provided free-of-cost 
for the project. 

4.1. Software development and deployment tools 

4.1.1. Version Control 

Version control7 refers to the management of revisions and changes in source code. It is a 
necessary tool enabling a team of multiple developers to effectively work on a shared project. 
Git8 was chosen as the version control to manage the sources related to the SHIELD platform, 
since its distributed architecture facilitates coordination of activities across multiple teams. 
Each software component is tracked into its own repository. The selection of the branching 
schema (either develop/feature/master or feature/master) is delegated to each repository. All 
repositories are provided and controlled within the consortium in an internal fashion, using 
Bitbucket9. Upon each commit, the content of each repository is directly replicated into their 
corresponding repository, under the umbrella of GitHub10. 

  
(a) (b) 

Figure 4-1 SHIELD’s (a) Bitbucket and (b) GitHub repositories. 

                                                      
7 Version Control definition: https://www.atlassian.com/git/tutorials/what-is-version-control (Retrieved Jan 2018) 
8 Git: https://git-scm.com/ (retrieved Jan 2018) 
9 Bitbucket: https://bitbucket.org/ (Retrieved Jan 2018) 
10 SHIELD’s public repository in GitHub https://github.com/shield-h2020 (Retrieved Jan 2018) 

https://www.atlassian.com/git/tutorials/what-is-version-control
https://git-scm.com/
https://bitbucket.org/
https://github.com/shield-h2020
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Internal repositories are integrated with the Slack11 communication tool, so any contributor 
receives the latest software-related contributions in real time. Slack also allows SHIELD to 
create channels for discussion on development, integration issues etc. directly. Figure 4-2 
shows Slack usage over time.  

 

Figure 4-2 SHIELD Slack usage over time. 

4.1.2. Issue Tracking 

Issue tracking [5] is the process of recording specific tasks as tickets, which will be carried out 
by each partner. Tickets define incremental work per software component as part of their 
releases. Reported issues are periodically evaluated and undertaken during the course of the 
work. SHIELD uses JIRA12, as part of the Atlassian suite to track issues and tickets related to the 
software development and deployment process. JIRA is provided to the consortium by I2CAT. 

In any given day, anyone can report a new feature, improvement, task or bugfix in the form of 
a ticket. The ticket must contain a useful title and description, one or more components 
assigned, a priority evaluation, and releases: which one is affected, which one will contain the 
logic defined for the new ticket. 

Any specific developer, integrator or deployer is assigned to perform the task ‒ typically 
assigned by the Work Package Leaders (WPLs), Technical Coordinator etc.; while one or 
multiple collaborators can be set to watch their related issues, e.g. to keep track of the progress 
of their team. 

                                                      
11 Slack: https://slack.com (Retrieved Jan 2018) 
12 Atlassian JIRA: https://www.atlassian.com/software/jira (Retrieved Jan 2018) 

https://slack.com/
https://www.atlassian.com/software/jira
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Figure 4-3 Open tickets in SHIELD’s Kanban board, categorised by their status. 

Finally, the integration between JIRA and Bitbucket allows linking any ticket with its 
corresponding development work, to better control and document the process. 

4.1.3. Deployment and integration 

As discussed in the previous section, Continuous Delivery and Continuous Integration refers to 
the combined processes of delivery and integration, particularly in an agile production 
environment where code commits are very frequent during each day. Tools such as Jenkins13 
and Bamboo14, offer means to automate testing, deployment and integration of components 
in fast-paced projects. SHIELD utilises the Bamboo platform, which is deployed and maintained 
by I2CAT. 

 
Figure 4-4 SHIELD’s Bamboo platform. 

Starting with the build phase, the code is checked out from its repository and compiled. Other 
tasks can be performed as well, such as analysing the code for quality assurance or any other 
ancillary processes. 

In the deployment phase, the environment is prepared, and the source is executed in the target 
nodes. At the time of writing this deliverable, the deployment phase is not fully implemented 
and is instead performed manually, although more automation is the key goal. 

                                                      
13 Jenkins: https://jenkins.io/ (Retrieved Jan 2018) 
14 Bamboo: https://www.atlassian.com/software/bamboo (retrieved Jan 2018) 

https://jenkins.io/
https://www.atlassian.com/software/bamboo
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The software development process also introduces a stage for code review prior to merge the 
source into the stable branch. This step allows to spot specific features missing, possible issues, 
point improvements to the committer and perform external testing of the code. Furthermore, 
specific unit tests are provided per component. These are first executed locally by the 
developer, then can be invoked by the remote integration platform.  

4.2. Description of Workflow Processes 

Some processes have been defined within the consortium in order to provide a clearer and 
easier procedure. For instance, the contribution to the development works or the network 
testing are described in this section. 

4.2.1. Development process 

The development process always starts with the definition of a new ticket in JIRA; where the 
work to be done is explained. When the work is to be started, the assignee changes the ticket 
status to “In progress”. 

After that, a new branch must be created. The specific branching schema is chosen on a per-
repository basis, and thus varies slightly across the software component whose source is to be 
modified. Two options to control such flows were considered in SHIELD, namely the: 

i) feature/develop/master, and   

ii) feature/master.  

Both expect the developer to create one feature branch per ticket, develop and test locally. 
Changes will be pushed from the local branch to the remote. Once the developer considers the 
work is ready, the status of the related ticket is changed to “In review”. In parallel, a Pull Request 
(PR) must be created, defining the reviewer (WPL and any other developer related to the 
committed work), the source branch and the target branch (in case of feature/develop/master, 
the target branch will be “develop”; whereas in case of feature/master, the target branch will 
be “master”. 

 

Figure 4-5 An issued pull request. 

After the PR is examined by the WPL, any of the following possible outcome may happen: 
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a) The PR will be approved if at least one reviewer will accept the proposed change. WPL 
will verify that the destination branch is correct (or otherwise edit it), mark the remote 
feature branch for removal, then proceed to merge. 

b) The PR will neither be approved, nor denied, if comments and requests for changes are 
provided. If at least one reviewer provides comments and clearly indicates these must 
be introduced or followed before the PR can be accepted. The developer can discuss 
with the reviewer to clarify any issue or to direct the development work to fix 
something. Eventually, the outcome of the review should be that of a). 

c) The PR will be denied if at least one reviewer declines the change. This is the case when 
work is deprecated or no longer required, or when a PR is duplicated. Comments must 
be provided to specify why the work has been rejected. 

After the PR is approved and the code is merged, its developer must update the status of the 
related ticket to “Done”. This enables the consortium to closely monitor the status of 
development activities and identify crucial tasks to be prioritised. 

4.3. Other testing suites 

SHIELD utilises the OpenStack15 software for its cloud computing infrastructure. OpenStack has 
defined its own integration test suite, called Tempest16. An isolated testing environment is 
necessary to deploy and run Tempest tests although unit tests can also be run independently. 
In the case of the OpenDayLight17 SDN controller, its wiki page also provides the repository of 
the Integration-Test18 subproject, offering tools specific for ODL.  

                                                      
15 OpenStack: https://www.openstack.org/ (Retrieved Jan 2018) 
16 OpenStack Tempest: https://docs.openstack.org/tempest/latest/ (Retrieved Jan 2018) 
17 OpenDayLight: https://www.opendaylight.org/ (Retrieved Jan 2018) 
18 ODL Integration-Test subproject: https://wiki.opendaylight.org/view/Integration/Test  

https://www.openstack.org/
https://docs.openstack.org/tempest/latest/
https://www.opendaylight.org/
https://wiki.opendaylight.org/view/Integration/Test
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5. FUNCTIONAL CYBERSECURITY TESTING 

In addition to the integration and code verification tests, SHIELD employs a multitude of 
cybersecurity testing tools to assess the cybersecurity capabilities of the vNSF ecosystem and 
the Data Analytics and Recommendation Engine (DARE). These tools are therefore used for the 
functional testing of the SHIELD platform, i.e. testing “slices” of its functionality. In this section 
we provide a quick reference for a variety of open-source tools used to simulate cyberattacks, 
generate network traffic and train the machine learning algorithms used in the DARE.   

5.1. Cybersecurity testing 

There is a multitude of tools available to simulate or launch cyberattacks and monitor their 
effects.  

Specialised operating system distributions contain pre-packaged and pre-configured 
penetration testing tools. Kali Linux is among the most well-known distributions and contains a 
variety of penetration testing tools. Furthermore, there are existing OS distributions packaged 
with a multitude of known vulnerabilities, that can be setup as “targets”. In SHIELD’s case, a 
specialised OS is easily installed as a VM within any testbed and operated to launch attacks or 
as a “victim”. 

Specialised software frameworks can be used to develop customised cyberattack vectors. The 
Metasploit framework is such an example; it provides tools for developing and executing exploit 
code against a remote target. Other frameworks provide a way to launch phishing attacks or 
use browser exploits.  

Online cybersecurity databases often publish threat information or block lists. Block lists are 
collections of URL, URI, or IP addresses that are associated with known adware, malware or 
ransomware. SHIELD plans to use these online resources to test vNSF functionality, 
performance and scaling. Threat information are published by many major cybersecurity 
enterprises.  

Public, open-source code repositories such as GitHub offer collections of tools to simulate a 
variety of attacks (DoS, Phishing, Malware simulation etc). Furthermore, code to live malware, 
rootkits, worms etc. has been often released. Therefore, SHIELD can use simulation tools or 
adapt existing source code and run malware in isolated forensic envoronments within its 
testbeds.  

Network monitoring and visualization tools are also utilised to inspect the traffic that passes 
through specific SHIELD components. It can be from low level traffic, flows monitoring (netflow, 
tstat) or high level dashboards, such the ones offered by Spot. 

Traffic generators such as iperf, httpperf, tcpreplay, etc are frequently used by SHIELD to 
generate traffic with specific velocity, volume and variety characteristics (e.g. malicious 
patterns).   

Table 5-1 contains a list of publicly available tools that can be utilised by SHIELD. During the Y1 
activities, SHIELD utilised a variety of DDoS, Tunneling and traffic generation and 
monitoring/visualisation tools.   
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Table 5-1 Reference list of cybersecurity functional testing tools publicly available. 

Type Tools 

Specialised OS 

Penetration testing: Kali Linux (Backtrack), WHAX, BlackArch, BackBox, 
Pentoo, Parrot Security OS.  

Target OS: Damn Vulnerable Linux (DVL), OWASP Web Testing 
Environment, Metasploitable 

Software 
Frameworks 

Metasploit, NMap, Burp Suite, BeEF – Browser Exploitation 
Framework, OWASP ZAP, w3af, OpenVAS, SpeedPhish, xfltreat, 
OWASP Xenotix 

DDoS tools 

Rate-based, network & transport layer: LOIC, XOIC, UDP Flooder, UDP 
Unicorn, hping3, tcpreplay, Dereil, DDOSIM 

Rate-based, application layer: OWASP Switchblade, TorsHammer, 
HULK, Saphyra, ExoFlood, DoSHTTP, GoldenEye, HOIC, 
AnonymousDOS, Dereil, DDOSIM 

Reflection/Amplification: XOIC, hping3, UDP Unicorn, arpspoof, 
OffensivePython/Saddam, Tsunami 

Poisoning: arpspoof, subterfuge, arpoison 

Fragmentation: Scapy 

Protocol-based, application layer: Slowloris, OWASP Switchblade, 
pyLoris, SlowDroid, XSSer, XSSProxy, DAVOSET 

Online threat 
databases 

Malware Information Sharing Platform (MISP), Virustotal, 
Ransomware tracker, PhishTank, Malware Domains, Spamhaus 
Project 

Botnets SlowDroid, BoNeSi, Mirai, BASHLITE 

Phishing and 
Identity theft 

ClickJack (for UI Redress attack), LUCY, GoPhish, KingPhisher, 
SpeedPhish framework, Social Engineering Toolkit, BeEF (browser 
exploitation), CSRFDemo (Cross Site Request Forgery attack) 

Malware source 
code 

Available in GitHub: theZoo collection, Mirai, Zeus worm, Cypher, 
petya, bash-ransomware 

Malware simulation Stackhackr, Barkly, LUCY 

Tunneling  

HTTP: chisel, corkscrew, httptunnel 

DNS: iodine, dns2tcp 

Other: multitun, proxytunnel, sshtunnel, icmptx, fraud-bridge 

Remote execution 
& backdoors 

Matahari, backdoorme, webshell, chromebackdoor, backdoor-apk, 
backdoorppt, BrainDamage 

Cross-site scripting Cross, BruteXSS, XSSYA, XSSer, Excess-XSS, OWASP Xenotix, XSSmh 

Worms/Rootkits etc 
OpenWorm, wormhole, PowerWorm, Wormz, wormbrowser 

ZeroAccess v3 (P2P malware), Zeus 
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Type Tools 

Traffic generation, 
Monitoring and 
visualization 

tcpdump, wireshark, LibreNMS, Grafana, OpenNMS, iperf, httperf, 
moongen 

5.2. Training of Machine Learning Algorithms 

As described in D4.1, the DARE exploits the results of two data analysis modules – the Cognitive 
DA module and the Security DA module – that are able to identify network threats by ingesting 
a number of different network traffic log formats (.nfcapd, .pcap, proxy logs) and applying 
machine-learning algorithms to perform anomaly detection on the ingested datasets. These 
modules, currently installed in dedicated VMs in the Athens testbed, were configured, fine-
tuned and tested prior to participating in the data exfiltration and DDoS demonstrations 
presented during the Y1 review (please also refer to Section 6 on the demonstration activities). 
Next follows a description of all the procedures performed to train and test each module. 

5.2.1. Cognitive DA module 

The first machine-learning module of the DARE which is based on the Apache Spot framework 
and open-source technologies, was installed in the Athens testbed during the two-day technical 
workshop, held in the NCSRD premises (28-29/6-2017). During this workshop, the 
computational nodes of the engine were setup and configured on a distributed computing 
cluster, while all the executed steps were documented on the produced installation manual. 
During the follow-up period after installation, several tests were performed by ORION and 
INFILI that validated the detection capabilities of the engine as well as its performance 
characteristics.  Since this module was one of the main SHIELD components necessary to 
showcase the mitigation of a data exfiltration attempt, efforts were concentrated on the 
consecutive analysis of datasets and the evaluation of the detection results. This required the 
establishment of a testbed network, including a malicious DNS server that would extract 
information from a compromised, malware-infected machine, as described thoroughly in §6.1. 
The network traffic logs produced by this activity were being captured and sent for analysis to 
the Cognitive DA module. Since this was the first opportunity for the engine to be tested within 
a network, several parameters regarding the functionality of its constituent components 
needed to be tweaked before achieving optimal performance. 

It should be noted that the machine-learning algorithmic procedure that is implemented in this 
module (LDA) was found to rely heavily on the existence of realistic traffic conditions, more 
specifically in regard to the ratio between normal and malicious traffic. This dependency comes 
as a result of the topic creation method that is used by the LDA algorithm to detect normal 
network behaviours so that it can later identify the outliers which have a potential malicious 
nature. It implies that, since each network log is correlated with a topic distribution that 
represents normal (common) network behaviour, if the traffic profile consists of more 
anomalous traffic that benign, it is likely that the created topics will depict a false image of the 
network. As a result, the algorithm will distinguish other normal traffic logs as suspicious 
outliers (false positives) and at the same time will characterise suspicious behaviour as normal 
(false negatives). This is a common weakness of unsupervised learning methods since they are 



SHIELD                                                          D5.1 • Integration Results of SHIELD HW/SW modules 

 

© SHIELD Consortium 
24 

by definition not trained with labelled data prior to deployment, as in supervised learning. 
However, unsupervised learning methods are widely used in cybersecurity, as they are 
considered the sole countermeasure against zero-day exploits for which labelled data cannot 
exist. In order to address the traffic ratio issue, the testbed traffic was artificially increased with 
the use of a normal traffic generator script that created queries of the most common websites. 
This solution significantly improved the simulation conditions, eventually allowing for the 
detection of the DNS tunnelling attempt. 

As a next step to evaluate and enhance the efficiency of the cognitive DA module, its installation 
is planned on POLITO infrastructure in the immediate future. POLITO has agreed to participate 
as a data provider, granting access to the campus network traffic that will allow the assessment 
of the module’s existing detection capabilities on a realistic network environment. Moreover, 
this will cover the needs of training and testing datasets for the development of the module’s 
upcoming threat classification functionalities. Since POLITO has been collecting data in real time 
from operational networks since 2014, it can provide approximately 300TB of network data -
some of them already labelled by IDS tools- which should suffice to produce the inferred 
functions that will enable the accurate assignment of threat class labels to unseen traffic. Since 
these datasets cannot escape the campus network, an instance of the cognitive DA module will 
have to be installed on testbed infrastructure provided by POLITO. All data involved in this 
procedure will be sanitised (IP anonymization, HTTP request anonymization etc.) and a 
supervisor from POLITO will ensure that no privacy and legal violations will occur (also see 
Annex A – Privacy and Ethics). 

5.2.2. Security DA module 

The second module of the DARE is based on the network anomaly detector developed by Talaia 
Networks, which consists of a combination of machine learning techniques that can process 
and analyse network data, discover anomalies and classify them to specific cybersecurity 
threats. Since it is based on a mature product, its capabilities were selected to be showcased 
in the demonstration of a DDoS mitigation scenario that included an end-to-end run of all 
SHIELD components. For this purpose, the analytics module was installed and configured in a 
dedicated VM by TALAIA, sharing only the same distributed filesystem with the Cognitive DA 
module. The engine ingested and analysed netflow logs, containing a mixture of UDP and TCP 
flooding activity generated by the BoNeSi tool, as well as normal netflow traffic. Although it was 
able to successfully detect several simulated DDoS attacks, some further modifications were 
made to enhance its performance. More specifically, the frequency of the received packet 
captures was increased so that each packet contained fewer logs, as a measure to avoid data 
overflow. Minor adjustments were also made to the results report so that the association with 
the DDoS attack was more evident. 
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6. YEAR ONE DEMONSTRATION 

The early integration activities in Y1 were focused on implementing the configurations needed 
for realising the demo scenarios which were targeted for the Y1 review. These demo scenarios, 
each of which was built around a specific subset of the features of the SHIELD platform, were: 

 Detection and mitigation of data exfiltration with DNS tunneling: Cross-cutting use 
cases 1&2. 

 vNSF on-boarding and detection and mitigation of DDoS attacks: Cross-cutting use cases 
1&2. 

 NFVI/SDN attestation: Cross-cutting all use-cases. 

The realisation of these scenarios required the integration of the following components of the 
SHIELD platform (their current versions): 

 The Dashboard with the NFVO for vNSF on-boarding, deployment and status update. 

 The vNSFO with the VIM/NFVI for vNSF on-boarding, deployment and status update. 

 The vNSF with the DARE ingestion component for feeding the network metrics. 

 The Dashboard with the DARE for visualising incidents and mitigation suggestions. 

 The DARE (Recommendation and Remediation Engine) with the vNSFs for applying 
policy recommendations. 

 The Security Data Analytics component with the DARE for detecting DDoS attacks. 

 The Trust Monitor with the NFVI and SDN infrastructures for validating the integrity of 
compute nodes, vNSFs and SDN rules. 

The SHIELD Y1 demos were presented internally during the project’s 4th General Assembly and 
the project’s first Review Meeting. They were also presented publicly during:  

 the ENISA Bonding EU Cyber Threat Intelligence (CTI – EU)19 workshop that took place in 
October 30th -31st 2017 in Rome, Italy. 

 the IEEE Conference on Network Function Virtualization and Software Defined Networks 
(IEEE NFV/SDN), held November 6-8, 2017 in Berlin, Germany, where they received the 
Best Demo Award (Figure 6-1) among 22 other demos. The demo was submitted under 
the title “NFV-based network protection: the SHIELD approach”. 

The videos presenting the demos are publicly available in the project’s YouTube channel20.  

                                                      
19 CTI EU main page: https://www.enisa.europa.eu/events/cti-eu-event (Retrieved Jan 2017) 
20 https://www.shield-h2020.eu/about/social-networks.html  

https://www.enisa.europa.eu/events/cti-eu-event
https://www.shield-h2020.eu/about/social-networks.html
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Figure 6-1 Best demo award announced in IEEE NFV-SDN website. 

6.1. Detection of data exfiltration 

6.1.1. Scenario description 

Data exfiltration [6] (also known as data extraction/extrusion) is defined as a security breach 
that occurs from the intentional and unauthorised transfer of confidential information from a 
system (e.g. illegally copying, transferring or retrieving an individual’s or organization's data 
from a computer or server). It is a targeted malicious activity, performed through various 
different techniques, typically by cybercriminals over the Internet.  

The Domain Name System (DNS) is one of the most prevalent protocols that can be abused to 
perform data exfiltration attacks, as it is often less monitored in comparison to other Internet 
protocols (e.g. HTTP, FTP, and mail transfer protocols) and users tend to overlook it as a threat 
for malicious communication [7]. This results in many organisations focusing on other resources 
where attacks take place and completely lacking DNS monitoring. The primary threat actors of 
these attacks are: 

 Advanced Persistent Threats (APTs) [8], which use multiple phases and attack modalities 
to break into a network and covertly exfiltrate valuable information over the long term. 
APT groups launch highly sophisticated and targeted attacks against their victims. 

 Insider Threats [9] emerging within an organization, which can be intentional (when 
information is extracted wilfully) or unintentional (when information is extracted via 
phishing, malware etc.). 

 Organised Cybercriminals offering cybercrime and cyber espionage as-a-Service (e.g. 
CopyKittens) [10]. 
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In the demonstrated SHIELD scenario, a data exfiltration method called DNS tunnelling is 
leveraged to encapsulate encrypted data in DNS packets, by exploiting a tunnel set between a 
malicious authoritative DNS server and a compromised machine that is infected by malware. 

 

Figure 6-2 Data exfiltration through DNS. 

6.1.2. Scenario motivation 

During the last decade, several malicious software have made use of the DNS protocol for data 
exchange; the reasons behind them usually having a financial or espionage motive. In 2016, 
Symantec [11] and Kaspersky [12] independently released reports of an APT named Project 
Sauron, which utilised DNS Tunnelling to exfiltrate system data from malware infected 
machines. The reports traced the malware infections back to 2011, meaning that the malware 
was effectively transmitting data through DNS for five years. Other relevant, well-known 
malware include Morto21 and FeederBot22 that both utilise DNS tunnelling as a Command and 
Control channel and DNSMessenger23 that relies on DNS queries to receive PowerShell 
commands. 

According to the SHIELD use case survey24, 36% of the stakeholders in “Threats and 
vulnerabilities” criterion identify data leaks as the top cybersecurity threat to their 
organisations. The problem of detecting DNS exfiltration attempts, however, has not been 
studied enough, and hence no mature solutions that can be used to challenge these attacks are 

                                                      
21 C. Mullaney, “Morto worm sets a (dns) record”, 2011,  Retrieved from 
http://www.symantec.com/connect/blogs/morto-worm-sets-dns-record  
22 C Dietrich, “Feederbot - a bot using dns as carrier for its c&c”, 2011, Retrieved from 
http://blog.cj2s.de/archives/28-Feederbot-a-bot-using-DNS-ascarrier-for-its-CC.html  
23 Infoblox, “DNSMessenger, Fileless Random Access Trojan Opens a Backdoor”, available at: 
https://www.infoblox.com/threat-center/dns-messenger/  
24 https://www.shield-h2020.eu/shield-h2020/documents/project-
deliverables/SHIELD_D2.1_Requirements_KPIs_Design_and_Architecture_v1.0.pdf  

http://www.symantec.com/connect/blogs/morto-worm-sets-dns-record
http://blog.cj2s.de/archives/28-Feederbot-a-bot-using-DNS-ascarrier-for-its-CC.html
https://www.infoblox.com/threat-center/dns-messenger/
https://www.shield-h2020.eu/shield-h2020/documents/project-deliverables/SHIELD_D2.1_Requirements_KPIs_Design_and_Architecture_v1.0.pdf
https://www.shield-h2020.eu/shield-h2020/documents/project-deliverables/SHIELD_D2.1_Requirements_KPIs_Design_and_Architecture_v1.0.pdf
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available25  (and especially those characterised by low throughput, with short and sporadic 
messages). 

The SHIELD platform offers data exfiltration detection capabilities as part of the Cognitive Data 
Analysis module, based on the Apache Spot engine. This was showcased during the demo, with 
the detection of a simulated DNS tunnelling attack, followed by the definition of a high-level 
mitigation policy to block the connection between the malicious DNS server and the 
compromised machine. 

6.1.3. Scenario setup 

The scenario involved a number of SHIELD components that were installed in dedicated VMs in 
the Athens testbed. The components leveraged for this demonstration were the Data 
Acquisition components (Distributed Filesystem, Data Transformation, Streaming Service), the 
Cognitive Data Analysis module and the Remediation Engine of the DARE, as well as Apache 
Spot’s built-in GUI, serving as the Security Dashboard. The scenario consisted of three distinct 
stages, namely Attack Simulation, Anomaly Detection and Response, which are described 
below: 

In the Attack Simulation stage, we assume a system within an organisation that has been 
compromised by an insider that aims to exfiltrate data. This malware creates a tunnel that 
allows for remote access and control of the system, by communicating externally with a 
malicious DNS server in order to receive encrypted instructions or exfiltrate data in queries. At 
the same time, the authoritative DNS server is setup, so that the malware is able to direct 
queries to its subdomain. The attacker then can receive and decrypt the data contained in the 
query sent from the compromised system to the DNS server. In our demonstration, the 
malware that establishes the tunnel is represented by the Iodine tool, while iPerf is being used 
to create the extracted traffic between the server and the endpoint. Since the demonstration 
takes place inside a testbed network with minimum real traffic, a traffic generator script is being 
used to load popular webpages, thus creating the necessary “normal” DNS traffic to ensure 
realistic network conditions. All the aforementioned activity is being captured in .pcap files, 
using the Tshark tool. 

During the Anomaly Detection stage, the data exfiltration attempt is being exposed by the 
analysis of the accumulated .pcap files which takes place inside the DARE VMs. Each VM is 
configured in a way so that it serves a specific task: data ingestion, analysis or visualisation. 
First, the relevant logs are being ingested by the engine’s DNS collectors and are passed to the 
distributed filesystem (HDFS) of the cluster. The DNS pipeline gathers traffic in intervals, to be 
passed as input to the DARE. When ingestion is concluded, the Cognitive DA module is 
responsible to perform the suspicious connects analysis on the ingested data, by exploiting a 
machine-learning algorithm (Latent Dirichlet Allocation) to detect outliers of normal network 
activity. The module detects and successfully ranks the malicious DNS queries as suspicious. 
The analysis output is provided as a visual representation of the results in the Spot GUI, as well 
as a .csv file that will be exploited by the Recommendation Engine. 

                                                      
25 R. Rasmussen, “Do you know what your dns resolver is doing right 
now?”, 2012. 
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The Response stage leverages the Remediation and Recommendation Engine of the DARE to 
create a mitigation policy, based on the analysis of the Cognitive DA module. Since the 
aforementioned module lacks a threat classifier that would allow the Remediation Engine to 
deploy threat-specific countermeasures, a preloaded high-level recipe (HSPL) is selected that 
requests the blocking of the most suspicious connection, in our case between the DNS server 
and the endpoint. The HSPL rule is then translated down to a set of machine-readable policies 
(MSPL) that can be forwarded to actuating vNSFs. The final step of translation from MSPL to 
application configuration performed by the relevant vNSF that would actually block the 
connection was not showcased, since the required functionality will be developed in the near 
future.  

In order to create the DNS tunnel, the iodine tool was set up in the Athens testbed. Iodine is an 
open-source tool that allows the user to set up both the infected client and the malicious 
authoritative DNS server. In our case, the malicious DNS server was “masquerading” as a 
popular sports team’s fan club page (t1.olympiakara.com26).  

6.1.4. Scenario results 

All the procedures that take place during the demo stages are presented in sequence: 

The first stage involves the use of Iodine for the establishment of the connection between the 
compromised machine and the server via the DNS tunnel (Figure 6-3), the generation of 
“malicious” queries using iPerf (Figure 6-3), as well as of normal traffic using a traffic generator 
script that queries the 100 most popular websites (as reported by Alexa27). All this network 
traffic is being captured by a tshark daemon which creates .pcap files.  

 

 
Figure 6-3 Iodine used to create a tunnel between the malicious DNS server and the compromised 

system 

 

                                                      
26 The domain olympiakara.com is currently unregistered and unaffiliated with any actual team or fan club website. 
Hence, it was used as an example in the cybersecurity scenario that run solely on the Athens testbed. 
27 Alexa Top 500 sites on the web: https://www.alexa.com/topsites (Retrieved Jan 2018) 

https://www.alexa.com/topsites
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Figure 6-4 Traffic sent from the compromised machine to the server using iPerf, simulating data 

exfiltration. 

In the second stage, the produced .pcap network logs are inserted to the DARE, where they are 
ingested and analysed by the VMs of the Cognitive DA module. The .pcap files are moved inside 
a monitored directory of the module. A set of collector-worker daemons is responsible for their 
transfer from the local filesystem to the HDFS, their parsing from binary to human-readable 
content and the creation of Hive tables containing this information (Figure 6-4). After ingestion, 
the machine learning procedure initiates the anomaly detection algorithm (Figure 6-6) that 
eventually creates a .csv file to assign a threat index to each connection of the traffic logs. The 
results are also represented on a GUI environment, where the DNS tunnelling attack can be 
easily distinguished (Figure 6-7). 
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Figure 6-5 Ingestion procedure of the captured .pcap network logs to the DARE. 

 

 
Figure 6-6 Anomaly detection procedure of the Cognitive DA module based on Apache Spot. 

 

 
Figure 6-7 Visualisation of the anomaly detection results. The DNS tunnelling attempt stands out at the 

Network View window as the connection marked with the red line.   
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Finally, during the third stage, the Remediation Engine forwards the anomaly detection results 
to a monitored folder, where a daemon detects and processes the file to correctly parse all 
necessary information to create a mitigation policy. A set of HSPL DROP rules are generated 
from the DNS tunnelling recipe, including contextual information about the attack (Figure 6-8). 
The HSPL rules are then refined to MSPL, where the general protection requirements are 
expressed as specific device-independent configurations (e.g. DROP rules for specific source IP 
address, protocols and ports used) (Figure 6-9). 

 

 
Figure 6-8 HSPL rule created after the processing of the Anomaly Detection results file. 

 
Figure 6-9 MSPL rule generated by the translation of the HSPL rule. 
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Figure 6-10 depicts some preliminary statistical 
findings for this demo in the form of a box-and-
whiskers plot of the measured threat index. The 
“box” represents 50% of the measurements in 
each data set (the measurements between the 
25% and 75% percentiles). The whiskers represent 
the range of normal operation for the system. Any 
measurement that lies in areas beyond the 
whiskers are considered outliers. The threat index 
is the probability estimated by Spot’s machine 
learning algorithm. A low value means that the 
traffic is considered atypical and therefore, 
suspicious.  

As the figure shows, the DNS tunnel traffic is 
consistently given a low threat index, lower than 
2% with the exception of very few outliers. These 
outliers can contribute to false negatives, meaning 
tunneled traffic that can be considered non-
malicious. The normal DNS traffic set is associated 
with higher threat index values, with the exception 
of some measurements in the lower percentiles 
(<25%) where the threat index falls under 2%. 

These measurements can contribute to false positives, meaning that normal DNS packets could 
be wrongly considered malicious.  

6.2. vNSF on-boarding, detection and mitigation of DDoS attacks 

6.2.1. Scenario description 

Denial of Service28 is a cyberattack that depletes a system’s resources (network, or 
memory/processing) and thus prevents legitimate users from accessing it. When the malicious 
attacker utilises numerous hosts to perform the attack, e.g. botnets, it is considered as a 
Distributed Denial of Service29. The primary threat actors behind these attacks are [13] [14]: 

 Organised cybercriminals: Groups (such as DD4BC, the Armada Collective, the Phantom 
Squad etc) using DDoS for personal gain by extorting money by threatening DDoS 
attacks, offering DDoS as-a-Service to the highest bidder, or trying to create financial 
losses for the victim. 

 Non-organised cybercriminals: Launching DDoS attacks for their personal gain. Examples 
include extortion, or scamming the victim by piggybacking on other cybercriminal 
groups’ notoriety. 

                                                      
28 Denial of Service is “an attack that prevents authorized access to resources or delays of time-critical operations. 
(Time-critical may be milliseconds or it may be hours, depending upon the service provided.) “SOURCE: CNSSI-
4009/NISTIR 7298 Rev.2 
29 Distributed Denial of Service is a “Denial of Service technique that uses numerous hosts to perform the attack.” 
SOURCE: CNSSI-4009/NISTIR 7298 Rev.2 

 

Figure 6-10 Preliminary statistical findings 
for DNS tunnel detection. 
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 Individuals: Individuals launching small scale DDoS/DoS using freely available tools. 
Usually for personal gain (e.g. cheating on online gaming) or for experimentation (e.g. 
script kiddies) 

 Hacktivists: Using DDoS as a means for political protest or “vigilante” justice. Examples 
of hacktivist groups include Anonymous, LulzSec etc. 

In the demonstrated SHIELD scenario, a malicious attacker has been hired from a company to 
attack a rival’s website. The cybercriminal-for-hire used malware to infect a variety of devices 
and turn them into a botnet of 1,000 unique IPs. The infected devices then launch a rate-based 
DoS attack, that floods the victim website with multiple TCP requests.  

6.2.2. Scenario motivation 

DDoS is an attack that disrupts operations and causes loss of reputation, productivity and/or 
revenue. The Ponemon Institute30 has estimated the average downtime for a DDoS attack at 54 
minutes, while the cost of downtime per minute can range from a few dollars up to 100,000$ 
depending on the type of business affected [15]. In 2016, the Mirai malware was used to launch 
the biggest DDoS attack that has been recorded, reportedly over 1Tbps [16]. Mirai was used to 
hijack networked devices and IoT and turn them into a massive botnet. The Mirai-based botnet 
was used to launch a DNS lookup request flood to DynDNS servers causing a crash. A multitude 
of major websites using DynDNS were compromised and were unreachable by legitimate users 
(examples include Amazon, Twitter, Netflix, Airbnb, CNN, etc). The financial impact of this 
attack has yet to be fully determined, although the total lost revenue for 178,000 domains 
hosted by Dyn may be estimated to surpass the billion-dollar mark. The targeted company, Dyn, 
reportedly lost 8% of its customer base, owing to the events of the DDoS attack. 

The SHIELD use case survey31, also shows that 13.8% stakeholders identify Denial of Service as 
the top threat to their infrastructure, while an additional 15.1% consider all sorts of operational 
interruption (including DDoS). Depending on the DDoS attack type, operations can be disrupted 
for a long time; mitigation and forensics after a successful attack can be very time consuming.  

The major negative impacts of DDoS attacks make this scenario a necessity. Furthermore, it is 
the first SHIELD scenario that requires an end-to-end integrated run of all SHIELD components. 
It involves the use of all major SHIELD components. In this scenario, SHIELD demonstrates how 
the engine is able to detect the attacks and provide rules to mitigate them. The use of vNSFs in 
SHIELD allows an ISP to cut down on the costs for cybersecurity and be flexible in implementing 
new rules and mitigation measures, thus creating additional financial incentives. 

6.2.3. Scenario setup 

In this scenario, SHIELD components were installed in dedicated VMs in the Athens testbed, as 
described in Section 2. Most of SHIELD’s components are part of this scenario, as it requires 
end-to-end chaining of all key functionalities. In order to properly address the scenario, 
additional components were required: 

                                                      
30 Ponemon Institute: https://www.ponemon.org/ (Retrieved Dec 2017) 
31 https://www.shield-h2020.eu/shield-h2020/documents/project-
deliverables/SHIELD_D2.1_Requirements_KPIs_Design_and_Architecture_v1.0.pdf  

https://www.ponemon.org/
https://www.shield-h2020.eu/shield-h2020/documents/project-deliverables/SHIELD_D2.1_Requirements_KPIs_Design_and_Architecture_v1.0.pdf
https://www.shield-h2020.eu/shield-h2020/documents/project-deliverables/SHIELD_D2.1_Requirements_KPIs_Design_and_Architecture_v1.0.pdf
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 A dummy website was created to serve as the “victim”. The website was deployed in an 
Apache webserver v2.4.7 installed in the Ubuntu operating system. 

 The BotNet Simulator (BoNeSi) tool was used to launch the DDoS attack. BoNeSi is a 
network traffic generator that allows a user to generate packets with spoofed IPs, 
therefore creating traffic that is similar to a botnet. BoNeSi was used to launch UDP and 
TCP floods against the dummy website. 

 Tcpdump and LibreNMS32 were used as network monitoring tools. 

 httpperf was used to simulate normal HTTP traffic.  

6.2.4. Scenario results 

Starting the scenario, SHIELD demonstrates how to on-board a new Firewall vNSF (Figure 6-11). 
The vNSF at this point is clear of any rules for the mitigation of the attack. During the on-
boarding process, a developer will access the store with its credentials and upload the SHIELD-
formatted package of its specific vNSF and NS. The store performs an initial processing of such 
package to validate that the proper structure and data is in place. If the package is properly 
formatted, the store contacts the orchestrator and provides it with the OSM-formatted 
packages for both the vNSF and NS of the Firewall. 

 

(a) 

 

(b) 

                                                      
32 LibreNMS: https://www.librenms.org/ (Retrieved Dec 2017) 

https://www.librenms.org/
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Figure 6-11 Preliminary version of vNSF Store Graphic Interface: (a) On-boarding a vNSF  image, (b) the 
valid OSM descriptor of the vNSF and pop-up notice of the on-boarding process.  

 

After few seconds, the vNSF and NS will be available in OSM and can be instantiated on any of 
the registered VIMs (Figure 6-12). The deployment process would take around one minute, 
after which the Firewall vNSF will be running and ready to receive any configuration request. 

 

 
 

Figure 6-12 Fast instantiation of a vNSF. 

The ingestion service is also operational, so network data are sent to the TALAIA engine every 
minute. The ingestion cycle can be configured to longer intervals. The following figure 
illustrates the operation of the BoNeSi tool (Figure 6-13). On the right-hand terminal, BoNeSi is 
simulating a botnet of 1,000 malware-infected devices, sending up to 80,000 requests per 
second to the victim webserver. On the left-hand terminal, the tcpdump tool is set up to 
illustrate the packets that arrive in the webserver. If the attack persists, the website is 
eventually not able to handle more requests. Thus, requests coming from legitimate users are 
denied and the users are not able to browse the website. The incoming TCP flood in this 
scenario was able to crash the victim webserver in seconds. 
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Figure 6-13 Launching the DDoS attack: the left side terminal shows tcpdump traffic monitoring, while 
the right side terminal shows the BoNeSi botnet simulator in operation. 

Prior to the attack, the analytics engine detects traffic of about 150Kbps. A new ingestion cycle 
directs flows from the attack to the engine. Once the analytics engine has finished processing 
the ingested data, it classifies the sudden rise in traffic as an anomaly of type DoS. It then 
correlates the offending DoS traffic from multiple sources to a single “DDoS” type anomaly. The 
outgoing reply traffic is also grouped as a “DDoS Reply” anomaly (Figure 6-14). It creates a csv 
log of the identified anomalies that is automatically sent to the recommendation and 
remediation engine. 

 

  

Figure 6-14 The TALAIA engine showing the detected DDoS and correlated reply traffic. 

The recommendation and remediation daemon detects the newly received file and parses it to 
identify the type of attack and severity. It searches for the appropriate High-level Security Policy 
Language (HSPL) remediation recipe (Figure 6-15). The recipe is essentially a template for the 
actions that need to be taken. The recipe is translated into an application-independent set of 
configuration rules that will be applied by the proper vNSF, specified in the Medium-level 
Security Policy Language (MSPL). MSPL is sent as an xml file to the dashboard. In this specific 
case, the daemon selected to drop the offending flows. 
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(a) 

 

(b) 

Figure 6-15 Recommendation and remediation daemon showing: (a) identification of attack and sample 
HSPL recipe, (b) sample of generated MSPL entries. 

The detected attack is then visible in the dashboard, along with the MSPL recommendation 
(Figure 6-16). When clicking on the details, the user is presented with the remediation actions. 
The user can select to apply this action or dismiss the alert. 
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Figure 6-16 SHIELD security dashboard, showing reported events and received mitigation 
recommendations. 

If the remediation action is applied, the dashboard submits the MSPL data and the ID of the 
network service (NS) containing the appropriate vNSF towards the vNSFO. The vNSFO identifies 
the specific vNSF from the running service and forwards the MSPL data towards its specific 
endpoint. The vNSF transforms the received MSPL into a configuration that modifies the state 
of the running instance appropriately (Figure 6-17). 

 

Figure 6-17 Firewall vNSF front-end, showing the 1,000 individual IPs used by the attacker and the 
resulting DROP rules. 

The performance of the system was assessed for a number of 1,000 to 50,000 random unique 
IPs. Requests per second ranged from 40,000 to 150,000. The results showed that the data 
analysis, recommendation and remediation processes scale well with respect to the number of 
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unique IPs and requests per second although resource management within the virtual (host) 
machine was crucial in improving the overall performance and response time.  

6.3. NFVI/SDN attestation 

6.3.1. Scenario description 

Infrastructure trust is one of the key concepts of the SHIELD platform, which is achieved by a 
combination of authentication and integrity. Leveraging Trusted Computing33 (TC) 
technologies, namely the Remote Attestation workflow, each node in the NFV infrastructure 
must provide a proof of integrity of the virtualisation software stack and the vNSFs running on 
it. Each attested node is equipped with a Trusted Platform Module (TPM)34 chip that provides 
a hardware root of trust, and specific software is installed to measure the software stack 
starting from the boot phase up to applications. The integrity report is digitally signed with a 
hardware key in the TPM and includes both the values of the TPM secure registers, the PCRs, 
as well as measurements of software events tracked by the Integrity Measurement 
Architecture (IMA)35 Linux module. 

Whilst SHIELD leverages virtualisation technologies for achieving flexible applications (i.e. 
vNSFs) orchestration, the project uses Software-Defined Network (SDN) to be able to flexibly 
modify the network element’s forwarding tables. In addition to verifying the software stack 
running on the network equipment (e.g. switches), the dynamic SDN forwarding rules need to 
be attested in order to validate that the network is enforcing the rules configured by the vNSF 
orchestrator, more precisely by the SDN controller of the vNSFO. This is achieved by attaching 
a TPM to the network elements, implementing remote attestation and extending remote 
attestation to support continual SDN rules verification. 

The Trust Monitor component oversees the trust of the SHIELD infrastructure periodically, in 
order to timely inform the Orchestrator to take appropriate action upon detected misbehaviour 
in both the NFV Infrastructure and SDN components, such as the isolation a compromised 
node. 

6.3.2. Scenario motivation 

The use of Software Defined Networking brings many benefits for end-users and operators of 
service-oriented infrastructures (mainly composed of cloud/IaaS/PaaS providers, telco 
operators, ISPs and organisations that need a low-cost cybersecurity investment to secure their 
network or data centre etc.). Before Software Defined Networking and Network Function 
Virtualization, IT relied on expensive proprietary hardware and software platforms that were 
time consuming to install, configure and maintain. The paradigm of software networking has 
shown potential for major CAPEX/OPEX reduction and early Fortune 500 adopters have already 

                                                      
33 Trusted Computing Group: https://trustedcomputinggroup.org/ (Retrieved Dec 2017) 
34 Trusted Platform Module: http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/ 
(Retrieved Dec 2017) 
35 https://sourceforge.net/p/linux-ima/wiki/Home/ 

https://trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://sourceforge.net/p/linux-ima/wiki/Home/
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reported significant cost reduction (up to 95% in many cases) [17]. A great number of market 
reports predict a continuous growth of these technologies:  

“from the user perspective, 2015 became the year of initial SDN deployments. […] SDN-related inquiry 
volume continued at a high rate, with SDN coming up in approximately 70% of DC networking inquiries 

largely due to clients looking for more automation.” [18] 

“With a promise to drive significant CapEx and OpEx reductions, NFV is poised to transform the entire 
telco infrastructure ecosystem. Mind Commerce estimates that global spending on NFV solutions will 
grow at a CAGR of 46% between 2014 and 2019. NFV revenues will reach $1.3 Billion by the end of 

2019.” [19] 

SDN/NFV is expected to transform future networks, although experts warn of the cybersecurity 
risks due to the increased attack surface [20] [21]. Built-in infrastructure trust is therefore 
considered a necessity. The SHIELD road mapping analysis36 also reveals that stakeholders have 
identified Infrastructure and Service attestation as a crucial factor expected to affect the 
adoption of SHIELD technology. The goal of this scenario is to demonstrate that the network 
infrastructure hosting the vNSFs is trusted and secured by assessing the attestation capability 
of the Trust Monitor. 

6.3.3. Scenario setup 

This scenario involves SHIELD’s network infrastructure, the trust monitor, SHIELD vNSFs and 
the SDN Controller. The first part of the demonstration is focused on the attestation of the 
networking infrastructure, while the second part focuses on the attestation of the NFVI and 
SHIELD vNSFs. 

6.3.3.1.  Networking infrastructure attestation 

The demonstrator of the network infrastructure attestation for the alpha release of SHIELD is 
composed of one Aruba physical switch, equipped with a TPM (version 1.2) and a prototype 
software stack that implements remote attestation – including SDN rules. The switch is 
connected to a server, which hosts virtual machines: one virtual machine executes the SDN 
controller, one implements the network verifier of the Trust Monitor and a third one is used to 
create a rogue SDN controller taking control over the switch SDN rules configuration. 

6.3.3.2.  Computing infrastructure attestation 

Regarding the NFVI attestation, the demonstration is based on a single machine with two 
environments: 

 A Host OS that executes the Attestation Agent and the Container environment for the 
vNSF. 

 A Virtual Machine that executes the Trust Monitor instance. 

The single machine runs a CentOS 7 Linux distribution. The NFVI node is equipped with a TPM 
1.2 and runs the OpenAttestation37 framework. The container execution environment is 

                                                      
36 https://www.shield-h2020.eu/shield-h2020/documents/project-
deliverables/SHIELD_D6.3_Interim_Report_on_Exploitation_Activities_v.1.0.pdf 
37 OpenAttestation: https://01.org/blogs/2014/openattestation-oat-project (Retrieved Jan 2018) 

https://01.org/blogs/2014/openattestation-oat-project
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Docker38. The Virtual Machine is run by the Kernel-based Virtual Machine (KVM)39 hypervisor 
driver. The Integrity Measurement Architecture (IMA) module is enabled in the host Linux 
kernel to collect the runtime measurements of binaries and scripts executed both in the host 
platform and the Docker containers. 

6.3.4. Scenario results 

6.3.4.1.  Networking infrastructure attestation 

At the start of the scenario, the Trust Monitor is required to detect that the switch software 
stack has been tampered with, both at the application and firmware levels, I a three-step 
process: 

Step 1. The switch is running the correct software stack: When connected directly on the 
switch, an operator sees the correct application version and the network verifier of the 
Trust Monitor reports a correct software stack. 

Step 2. A malicious application layer is deployed on the switch: The malicious application 
fakes the command line output to show an application layer version similar to the 
correct application layer. When connected directly on the switch, an operator sees the 
correct application version. The network verifier of the Trust Monitor reports an 
incorrect software stack, based on the unknown Platform Configuration Register (PCR) 
value reported by the TPM for the application layer. 

Step 3. A malicious firmware layer is deployed: A malicious firmware layer is deployed in 
order to hide the malicious application layer by faking the input used for the extension 
of the TPM’s PCR. When connected directly on the switch, an operator sees the correct 
application version. The network verifier of the Trust Monitor reports an incorrect 
software stack, based on the unknown PCR value reported by the TPM for the firmware 
layer. The application layer’s PCR is correct but cannot be trusted since a previous 
measurement is incorrect. 

In the second part of the scenario, SHIELD demonstrates that the Trust Monitor can dynamically 
verify the SDN rules in the switch and detects an unauthorised SDN controller taking control 
over the switch as well as unauthorised rules on the switch.  The SDN switch and genuine SDN 
controller are configured to work together. 

Step 1. The network verifier of the Trust Monitor is launched periodically: The network 
verifier attests the switch every two seconds – this includes retrieving the expected SDN 
rules from the genuine SDN controller. The network verifier of the Trust Monitor then 
reports correct SDN rules. 

Step 2. The SDN controller northbound API is used to mimic the vNSF Orchestrator: The 
SDN switch is asked to push new rules. The network verifier of the Trust Monitor reports 
correct SDN rules. The rogue SDN controller takes control of the SDN switch. The 
network verifier of the Trust Monitor reports incorrect SDN rules. 

Step 3. The genuine SDN controller takes back control of the SDN switch. The network 
verifier of the Trust Monitor reports correct SDN rules. The genuine SDN controller 

                                                      
38 Docker: https://www.docker.com/ (Retrieved Jan 2018) 
39 KVM: https://www.linux-kvm.org/page/Main_Page (Retrieved Jan 2018) 

https://www.docker.com/
https://www.linux-kvm.org/page/Main_Page
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pushes an unauthorised SDN rule. The network verifier of the Trust Monitor reports 
incorrect SDN rules. 

6.3.4.2.  Computing Infrastructure attestation 

The purpose of this demonstration is to verify that the Trust Monitor can detect a misbehaviour 
in both the NFVI node and the vNSF, by means of remote attestation. The Trust Monitor is pre-
configured to periodically attest the NFVI node. The Attestation Agent interacts with the host 
TPM to sign the remote attestation quote, containing the IMA integrity report, via a 
cryptographic key generated from a non-migratable key installed by the vendor. The NFVI node 
does not run any vNSF initially, hence the periodic attestation task only contains the trust status 
of the NFVI node itself, as shown on the Trust Monitor GUI (Figure 6-18). 

 

 Figure 6-18 Verifier GUI shows a trusted attestee. 

 

The Trust Monitor verifies successfully the remote attestation quote and the individual 
measurements of the binaries running in the NFVI node. The Trust Monitor GUI displays the 
measurements and paths of the binaries executed in the host (Figure 6-19). 
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Figure 6-19 Verifier GUI showing the paths to the binaries and the related measurements. 

A Docker-based vNSF is run within the NFVI node, and it is added to the list of vNSFs (before 
empty) to be attested periodically. The integrity report now contains both the measurements 
of the NFVI host platform and the vNSF. At this point, a script runs in the vNSF that has not 
been measured previously, resulting in an untrusted state of the following remote attestation 
(Figure 6-20). 

 

Figure 6-20 Verifier GUI shows untrusted state. 

 

The Trust Monitor GUI displays the unknown measurement in the integrity report, specifying 
that the binary was executed in the vNSF (with a specific identifier automatically assigned by 
Docker). 



SHIELD                                                          D5.1 • Integration Results of SHIELD HW/SW modules 

 

© SHIELD Consortium 
45 

 

 

(a) (b) 

Figure 6-21 Verifier GUI showing integrity reports for unknown (a) vNSF, (b) NFVI host. 

 

The Docker-based vNSF is then excluded from the remote attestation process and the 
trustworthiness of the NFVI node is assessed. The NFVI node is still trusted. 
Finally, an unknown binary is executed in the NFVI node host platform itself. The binary is 
detected by the next attestation refresh, and the Trust Monitor GUI displays the unknown 
measurement in the integrity report as well (Figure 6-21). 
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7. CONCLUSIONS & PLANNED WORK IN WP5 

7.1. Conclusions 

In the first month of WP5 activities, the consortium was able to run the first end-to-end 
functional tests, utilising all prototype components. Random network traffic was generated to 
this extent; no online captures or existing data were utilised. The random traffic was designed 
with specific characteristics to increase scientific credibility and trust to the research results. 

The use of specified code development and integration tools greatly facilitated the integration 
process. The existence of specific tickets in the issue tracker helped organise the work and 
identify critical risks and bottlenecks as they evolved. At the time of this document’s drafting, 
no major risks are foreseen within WP5. 

The Y1 demonstration activities of SHIELD showcased basic features such as vNSF onboarding, 
remote attestation and anomaly detection. Denial-of-Service and Data exfiltration attacks were 
performed in end-to-end scenarios that involved the entire SHIELD architecture. SHIELD was 
able to showcase how the attacks would be mitigated. Performance issues were identified with 
respect to the machine learning components of the DARE. In most cases, misconfigurations in 
terms of the available resources were the root cause.  

7.2. Future demos and plans 

According to the feedback collected by the consortium during the project review and the public 
demo presentations (in CTI EU and IEEE SDN/NFV), there are multiple points that could be taken 
into account in the definition of future demonstrations40 within WP5. SHIELD plans at least two 
additional demonstrations in Y2 & Y2.5, with a more integrated scope. The next paragraphs 
outline some directions for the next demos, as also suggested by the project reviewers during 
Y1 review. 

SHIELD should showcase business-oriented use cases, such as IPR protection. Based on the 
deployment configuration, IPR protection can be considered to apply to Use Case 2, where an 
ISP offers SecaaS services to the client. In such a case, the client could be a streaming service 
(such as Netflix etc.) that monitors the activity of their users. Specific cybersecurity needs arise 
from such a scenario. This would require the composition of a new network service to provide 
features such as VPN or proxy connections, IP spoofing detection etc. The as-a-Service 
paradigm followed by SHIELD and the flexibility in composing network services with active 
vNSFs makes this work technically feasible. The machine learning algorithms featured in the 
DARE would need to be trained with appropriate traffic patterns, although the individual 
algorithms performance has not yet been ascertained. The composition of services per vertical 
can maximise the project’s impact and business potential. Hence, SHIELD can identify additional 
vertical cases to be considered, targeting online journalism, online marketing, online gaming 

                                                      
40 The definition of new specifications and requirements based on the collected feedback are not within the scope 
of this document. D2.2/D3.2/D4/2 will contain the final iterations of requirements and specifications, also taking 
into account the collected feedback. Hence, D5.1 will focus on how feedback can be utilized in the scope of future 
demonstrations. 
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etc. The consortium will take this into account when proposing future demonstration plans. 
Furthermore, billing schemes should be clear and visible in the Store for SHIELD cybersecurity 
services. 

SHIELD should also demonstrate its scaling capabilities. As WP5 work progresses, SHIELD should 
test how: (a) to scale up the infrastructure to handle network traffic with varied characteristics 
(in terms of volume, variety and velocity), and (b) to improve vNSFs performance without 
adding to the network latency. An IoT use case was suggested, especially in terms of Smart 
Cities developments. An important aspect would be to integrate more processing capabilities 
within the vNSFs, although the trade-off with respect to network QoS should be studied. To 
that extent, WP5 will focus future effort on performance optimisation, scaling/resource 
management and support for multiple users. 

GDPR compliance is a major aspect that needs to be visible in future demonstrations. D3.2/D4.2 
will introduce GDPR specifications for the components that store and process data. Such 
information should be visible when running a demonstration scenario and appropriate 
enhancements should be added (e.g. adding GDPR specifications in the Store, easily 
discoverable information for the data subject, adding accountability on who accesses data, 
encrypting communications between components to reduce risk of data breaches etc.)  

7.3. Calendar of future WP5 activities 

This calendar includes the most important WP5 activities.   

Table 7-1 Calendar of WP5 activities. 

Date Activity Partners involved 

M17 Submission of D5.1 All WP5 partners 

M17 GA5 – discussion on WP5 future steps All SHIELD partners 

M18 Migration of VMs & Spot installation I2CAT 

M17 Installation of attestation firmware in Athens HPE, NCSRD, ORION 

M18 Training and testing the Cognitive DA module with realistic data INFILI, POLITO 

M19 Finalise Y2 demo plan All WP5 partners 

M20 Delivery of Y2 vNSFs ORION, NCSRD, POLITO, TID 

M21 Installation of attestation firmware in Barcelona HPE, I2CAT 

M21 GA6 – discussion on WP5 future steps All SHIELD partners 

M21 Finalise Y2.5 demo plan All WP5 partners 

M24 Complete end-to-end testing with multiple tenants All SHIELD partners 

M24 Complete functional testing of all cybersecurity classification 

algorithms 

All WP4/WP5 partners 

M24 Complete Service Elasticity testing All WP3/WP5 partners 

M25 Y2 demonstration All SHIELD partners 

M30 Y2.5 demonstration All SHIELD partners 

M30 Submission of D5.2 All WP5 partners 

M30 Final release of SHIELD platform All SHIELD partners 
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LIST OF ACRONYMS 

Acronym Description 

BoNeSi BotNet Simulator 

DDoS Distributed Denial of Service 

DD4BC DDoS for Bitcoin 

DoS  Denial of Service 

DNS Domain Name System 

GUI Graphical User Interface 

HSPL  High-level Security Policy Language 

IMA  Integrity Measurement Architecture 

ISP Internet Service Provider 

MANO Management and Orchestration 

MSPL  Medium-level Security Policy Language 

NFV Network Function Virtualisation 

NFVI Network Function Virtualisation Infrastructure 

NS Network Service 

KVM  Kernel-based Virtual Machine 

OSM Open Source MANO 

SDN Software Defined Networking 

SecaaS Security-as-a-Service 

PCR Platform Configuration Register 

TC  Trusted Computing 

TCP Transmission Control Protocol 

TPM  Trusted Platform Module 

UDP User Datagram Protocol 

URI Uniform Resource Identifier 

URL Uniform Resource Locator 

VNSF Virtual Network Security Function 

VNSFO Virtual Network Security Function Orchestrator 

VIM Virtual Infrastructure Manager 

VM Virtual Machine 

XML eXtensible Markup Language 
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ANNEX A – PRIVACY AND ETHICS 

Privacy and Data Protection 

The work performed in WP5 during M13-M17 did not raise any significant concerns in terms of 
privacy and data protection. Functional testing and machine learning training utilised sets of 
traffic generated through open-source tools. No existing datasets or captures have been 
utilised during this time. If the need arises, the consortium will take the necessary precautions 
to ensure that partners utilising existing data sets of network traffic should provide proof of 
ownership of the data set (or a valid license) and proof that consent processes have been 
followed, and partners that intend to capture network traffic in real operational conditions, can 
provide proof that appropriate consent and anonymisation processes have been followed. 

No questionnaires were issued to collect feedback for WP5 activities so far. Should the need 
arise, questionnaires will include a consent form for personal data collection. Video production 
required for the demos does not include any personal identifiable information. IPs are 
simulated and do not represent actual user traffic. Should the need arise to capture video, 
consent forms will be prepared and identifiable information will be “ghosted out” or blurred in 
the video. Any signed consent forms will be relayed to the Project Coordinator and included in 
the project periodic reports. 

Training of machine learning algorithms with existing POLITO 
Data Set 

As described in detail in D1.1, the POLITO data set was created by anonymised traffic collected 
in POLITO’s premises:    

 The data were collected in real time from POLITO’s network infrastructure. That 
includes 100GB of net flow data, 100GB of DNS data and 50GB of proxy data. 

 The cluster that probes and processes data has implemented security safeguards 
against data breaches. 

 The data are sanitized/anonymised using CryptoPAn41 and the users don’t have access 
to information leading to the identification of users. SHIELD will not have access to 
identifiable information 

 Although opt-out mechanisms have not been implemented, the POLITO users are 
notified of the monitoring capabilities once they request to connect to a network. A 
dedicated webpage42 offers the required information. 

SHIELD’s external ethical advisor has reviewed this case and concluded that: 

                                                      
41 CryptoPAN: https://www.cc.gatech.edu/computing/Telecomm/projects/cryptopan/ (Retrieved Jan 2018) 
42 POLITO webpage on monitoring activities: 
https://www.areait.polito.it/servizi/default.asp?id_progetto_servizio=348 (Retrieved Jan 2018) 

https://www.cc.gatech.edu/computing/Telecomm/projects/cryptopan/
https://www.areait.polito.it/servizi/default.asp?id_progetto_servizio=348
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“As such, the conclusion is that the use of the above data does not raise any ethical/privacy 
implications during the first year of the project. However, as the actual training of the data has not 

started yet (during the first period of the SHIELD reporting), the EA and the consortium will monitor the 
situation during the actual training period to ensure that there are no changes to the above conclusion. 
In doing so, the consortium has agreed to involve, in all the activities that are related to the processing 

of the traces, a person from POLITO. This will ensure that: i) traces are used correctly, ii) no abuse of 
the data takes place, iii) any changes to the above conclusion are immediately reported to the EA and 

the project coordinator. Updates will be reported on Deliverable D1.2.” 
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ANNEX B – DEFINITION OF TESTS 

Platform functional and integration tests 

## ID Name Description 
Related 
Req. ID 

Related 
Components 

Related inputs Success criteria KPIs 

1 PLT01 
vNSF 

deployment: 
vNSF descriptor 

vNSFO requests a vNSF 
descriptor (vNSFD) from the 

Store and the Store 
responds and sends the 
descriptor. The vNSFO 

validates the descriptor 

PF01, 
PF02 

vNSFO, the Store 

valid vNSF descriptors 
for all tested vNSFs, 

invalid descriptors to 
test rejection by the 

Orchestrator 

successful exchange 
between the vNSFO and 

Store, successful validation 
or discarding of a descriptor 

Communication delay, 
traffic overhead 

1 PLT01 
vNSF onboarding: 
vNSF descriptor 

user submits a vNSF and/or 
a NS package to the Store. 

The store validates the 
descriptor and onboards the 

package on the vNSFO; 
which validates the 
descriptor as well 

PF02 vNSFO, Store 

valid vNSF descriptors 
for all tested vNSFs, 

invalid descriptors to 
test rejection 

successful uploading of the 
package, successful 

validation or discarding of a 
descriptor (and thus, the 

package) 

 

2 PLT02 
vNSF 

deployment: 
vNSF Image 

vNSFO requests a vNSF 
image (VDU) from the Store. 

The Store responds and 
sends the vNSF image to the 

Orchestrator 

PF01, 
PF02 

vNSFO, the Store 
valid vNSF images for 

all tested vNSFs, invalid 
images 

successful exchange 
between the vNSFO and 

Store 

Communication delay, 
traffic overhead 

2 PLT02 
vNSF onboarding: 

vNSF image 

user submits a vNSF 
package. The store 

uncompresses the package 
and, if the vNSF image(s) 

contained are not 
registered into all available 
VIMs, it asks the vNSFO to 

do so 

PF02 vNSFO, Store 
valid vNSF images for 

all tested vNSFs, invalid 
images 

successful exchange 
between the vNSFO and 

Store 
 

3 PLT03 

vNSF 
deployment: 

instantiation and 
initialisation 

the vNSFO deploys 
(instantiates and initialises) 
the vNSF, through SWA-3 

PF02 
vNSFO and the 

vNSF to be tested 
images/descriptors for 

all tested vNSFs 
successful instantiation and 

initialisation of vNSF 
Response time 
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## ID Name Description 
Related 
Req. ID 

Related 
Components 

Related inputs Success criteria KPIs 

4 PLT04 
vNSF lifecycle 
management 

vNSFO sends specific action 
(e.g., "stop") through SWA-3 

and vNSF executes the 
specific operation 

PF02 
vNSFO and the 

vNSF to be tested 
Active vNSF instances 

successful execution of 
action for vNSF 

Response time 

5 PLT05 
vNSF policy 

configuration 

The Security Orchestrator 
(vNSFO component) sends 

policies to the vNSF through 
SWA-4 

PF02 vNSFO and vNSF 
policy test list per vNSF 

component 
(MSPL/HSPL) 

the action and policy are 
sent from vNSFO to the 
vNSF (e.g., check vNSFO 

dashboard); then the policy 
is translated to a 

configuration 

Response time for the 
configurations to be 

applied, response time w.r.t 
to the size of the 

HSPL/MSPL policy set 

6 PLT06 
Data collection 

and storage 

The vNSFs send monitoring 
information to the DARE, 

where they are stored 
PF04 vNSFs, DARE 

simulated/generated 
traffic or existing 
sanitised data set 

Feed vNSFs with artificial 
traffic and check that 
monitoring data are 

properly stored in the DARE 
databases (cross-check with 

local data and logs at the 
vNSFs) 

Communication delay, 
traffic overhead 

7 PLT07 
Scalability with 
respect to data 

volume 

The platform handles data 
volumes in the order of TBs 

NF04 vNSFs, DARE 
simulated/generated 

traffic or existing 
sanitised data set 

Feed the DARE with 
monitoring information in 

the order of Tbs. All traffic is 
successfully received and 

accounted for. 

Delay of the analytics 
process as a function of the 
stored data. The number of 
flows generated equals the 

flows processed. 

8 PLT08 
Network scaling: 

scale-out 
vNSFO request to add a 

vNSF to a running NS 
PF07 vNSF, VNSFO 

valid Netwok Service 
and vNSF images and 

descriptors 

A vNSF can be added to a 
running NS 

Response time 

9 PLT09 
Network scaling: 

scale-in 
vNSFO request to remove a 

VNSF from a running NS 
PF07 vNSF, VNSFO valid NS 

A vNSF can be removed 
from a running NS 

Response time 

10 PLT10 Security Analytics 

The two data analytics 
modules of the DARE 
process monitoring 

information from the vNSFs 
and provide anomaly/attack 

results 

PF04 DARE 

simulated/generated 
traffic, valid instances 
of the data analytics 

modules 

Each module generates a file 
(e.g csv) containing a list of 

the detected anomalies. The 
reported anomalies and 

their characteristics should 
match the ones generated. 

detection rate, false 
positive rate, false negative 

rate, processing time per 
1GB of ingested data 
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## ID Name Description 
Related 
Req. ID 

Related 
Components 

Related inputs Success criteria KPIs 

11 PLT11 
Visualisation of 
analytics results 

The data analytics modules 
provide GUI(s) that allow for 
the interactive visualisation 
of the analytics results. The 

GUI(s) are fed with 
detection results (e.g. those 

from PLT12) to check if 
they're properly visualised. 

PF05 DARE 

valid instances of the 
two data analytics 

modules, results from 
a successful 

implementation of the 
ml-algorithms, a 

cognitive walkthrough 
scenario 

The ml-results are correctly 
visualised by the GUI and 

the anomalies are properly 
identified and assigned an 
appropriate severity level 

estimated time to complete 
a cognitive walkthrough 

scenario versus actual user 
time 

12 PLT12 
Anomaly 

mitigation 

The DARE ingests network 
traffic with a predefined set 

of anomalies that might 
contain possible threats. It 

successfully detects the 
anomalies and uses policies 
to provide info to the acting 

vNSFs for mitigation 
activities on the possible 

threats. 

PF13 
DARE, acting 

vNSFs 

simulated traffic with 
artificial 

anomalies/attacks, 
successful 

implementation of the 
data analytics modules, 

remediation policies, 
valid acting vNSFs 

instances 

The DARE successfully 
isolates the attacker IPs and 
performs mitigation actions 
(e.g. blocks network access) 

Detection rate, false 
positive/negative rate 

13 PLT13 Interoperability 

All interfaces (vNSFO, Trust 
monitor, vNSFs, DARE, 

Dashboard) expose openly-
defined APIs and are able to 
exchange information with 

third parties. 

PF17 
vNSFO, Trust 

monitor, vNSFs, 
DARE, Dashboard 

test client to retrieve 
data via the APIs 

The test client successfully 
retrieves data from the APIs 

Consistency between 
retrieved data and actual 
data, number of requests 

per second, network 
performance 

14 PLT14 
SDN Controller 

attestation 

Remote attestation should 
indicate if an SDN controller 

has been compromised. 
PF19 

SDN controller, 
Trust monitor 

an instance of a 
trusted and untrusted 

SDN controller 

The trust monitor detects a 
compromised SDN 

controller in a timely 
manner 

detection rate, false 
positive rate, false negative 

rate, response time  

15 PLT15 
Compute 
platform 

attestation 

Remote attestation should 
indicate if the compute 

platform has been 
compromised. 

PF19 
Compute 

platform, Trust 
monitor 

an instance of a 
trusted and untrusted 

compute platform 

The trust monitor detects a 
compromised module in a 

timely manner 

detection rate, false 
positive rate, false negative 

rate, response time  

16 PLT16 
Recommendation 

and mitigation 

The recommendation 
engine receives a csv file 

generated by the Cognitive 
or Security DA modules and 

provides the 
recommendation action. 

PF11, 
PF12, 
PF16, 
PF18 

Recommendation 
and mitigation 

daemon, 
dashboard, 

vNSFO, vNSFs 

csv files with known 
anomalies 

The recommendation 
daemon generates the 

HSPL/MSPL set with the 
mitigation actions. This 

information is sent in XML 
format to the dashboard 

Response time (csv to 
HSPL/MSPL 

recommendation, 
recommendation to 

dashboard, and dashboard-
vNSFO-vNSF) 
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## ID Name Description 
Related 
Req. ID 

Related 
Components 

Related inputs Success criteria KPIs 

This is sent to the 
dashboard and can be 

visualised by the user and 
applied 

where the user may view it 
and apply it. The vNSFO 

applies configuration 
changes to the appropriate 

vNSFs. 

17 PLT17 
Network service 
deployment & 
configuration 

The vNSFO deploys and 
instantiates a NS comprising 

of multiple vNSFs 

PF15, 
PF18 

vNSFO, Store, 
vNSFs, dashboard 

valid vNSF & NS 
descriptors; images for 

all tested vNSF 

NS is successfully deployed, 
vNSFs can be dynamically 

added and removed  

Response time from the 
successful application of a 

mitigation action to the 
instantiation of a NS 

18 PLT18 vNSF attestation 
Remote attestation should 
indicate if a vNSF has been 

compromised. 
PF11,PF19 

vNSFs, vNSFO, 
Store, Trust 

monitor 

an instance of a 
trusted and untrusted 

vNSF 

The trust monitor detects a 
compromised vNSF in a 

timely manner; then notifies 
the vNSFO in order to 

execute some action (e.g., 
stop the vNSF or isolate it) 

detection rate, false 
positive rate, false negative 

rate, response time  

19 PLT19 Access control 
A SHIELD user should be 
able to login and logout. 

Login can expire 

PF06, 
PF09. 
PF21 

Dashboard a test user account 
User accounts are created, 
maintained and properly 

used 

Time to perform 
login/logout 

20 PLT20 
Logging & Log 

sharing 

Major cybersecurity events 
are documented and can be 

shared with appropriate 
administrators or third 

parties (such as law 
enforcement) 

PF12, 
PF16 

DARE, vNSF, 
Dashboard 

simulated traffic with 
artificial 

anomalies/attacks, 
successful 

implementation of the 
data analytics modules, 

remediation policies, 
valid acting vNSFs 

instances 

Major events should be 
logged. Persistence of logs 

should be ensured.  

Size of logs, impact on 
computational 
performance 

21 PLT21 Accountability 

Administrative activities 
(logins, application of 
mitigation actions etc) 

should be logged. 

PF21, 
PF12 

all components 
with access 

control elements 
test user accounts 

User/Administrator actions 
should be logged and 

accounted for 

Size of logs, impact on 
computational 
performance 

22 PLT22 Billing framework 

The user is able to view and 
choose the appropriate 

subscription model from the 
Store 

PF20 
Store, vNSFs, 
Dashboard 

test user accounts 

The user is able to select an 
appropriate billing 

framework, depending on 
the NS to be instantiated. 
Activity must be logged to 

ensure proper billing 

Size of logs, impact on 
computational 
performance 
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## ID Name Description 
Related 
Req. ID 

Related 
Components 

Related inputs Success criteria KPIs 

23 PLT23 
Communications 

security 

The communications 
between all SHIELD 

components is secure and 
encrypted 

PF22 all 
network monitoring 

tools 

Traffic between SHIELD 
components is secure and 
cannot be easily decrypted 

Impact to overall latency 
and response times (with 
and without encryption) 

24 PLT24 Multi-user 
Create or use multiple users 

with isolated services and 
secured access to analytics 

PF14 all 
Instantiated NS for at 

least two users 

New SecaaS users should be 
added, their services and 

data should be totally 
isolated and secured, with 
acceptable performance 

Impact on network and 
data analysis performance 
with the addition of new 

tenants  

25 PLT25 Service elasticity Adapt resource allocation  
PF14, 
PF07 

vNSFO, vNSFs 
Composed network 
services for at least 

two tenants 

Resource allocation across 
multiple services 

Impact on network and 
data analysis performance  

 

Performance and Usability tests 

## ID Name Description 
Related 

Requirement 
ID 

Related 
Components 

Related inputs Success criteria KPIs 

1 PUT01 Response time 

The platform ingests traffic, 
an attack is artificially 

generated, DARE detects 
and reports it in a relatively 

short time. 

NF01, NF06 vNSFs, DARE 

Valid Network Service and 
vNSF images, simulated traffic 
with artificial anomalies, valid 

instances of data analytics 
module, remediation policies 

The generated attack is 
detected in a reasonable 

time frame. 

seconds from the attack 
initiation until its 

detection 

2 PUT02 
Analytics impact 
on performance 

DARE performs a full 
ingestion-detection-

visualisation cycle while the 
user browses the 

Dashboard 

NF05, NF06 DARE 
simulated/generated traffic, 
valid instances of the data 

analytics modules 

User experience is not 
degraded by the traffic 

analysis 

seconds for GUI query 
while DARE performs 

analytics / seconds for the 
same query while DARE is 

idle 

3 PUT03 
Impact on 
perceived 

performance 

The SHIELD services have 
minimal impact on user 
perceived performance 

NF05, NF06 
vNSFs, 
VNSFO, 
Store 

None 

Deploy a security service 
and verify that user QoE 
is not seriously affected. 
The network's QoS is not 

affected as well. 

Decrease in BW / increase 
of RTT after service 

deployment (compared 
to plain network 

connectivity). QoS 
measurements (latency, 
jitter, loss, throughput) 
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## ID Name Description 
Related 

Requirement 
ID 

Related 
Components 

Related inputs Success criteria KPIs 

4 PUT04 
Effective 

visualisations 

The  GUI design is efficient 
and intuitive (in the sense 

it does not create cognitive 
load and is easy to use 

without a lot of instruction) 

PF05, NF08 Dashboard 
Cognitive walthrough scenarios 

for every GUI tested 

user is able to quickly 
complete the cognitive 

walkthrough, the UI 
elements perform the 

expected functionalities, 
User receives 

feedback/notifications in 
a timely manner, User 

satisfaction 

Estimated time to 
complete cognitive 

walkthrough with Fitt's 
Law, Actual user time to 
complete walkthrough 

5 PUT05 Availability 
The SHIELD platform is 

continuously up and 
running 

NF02, NF06 all simulated continuous traffic 
SHIELD components 

should experience little 
to no downtime 

Total uptime, time-to-fail 
for each component 

6 PUT06 Scalability 
SHIELD can scale up and 

down without major 
hindrances to performance 

NF03, NF06 all None 
Scalability in  Network 

Service composition and 
for multiple users 

Decrease in BW / increase 
of RTT after service 

deployment (compared 
to plain network 

connectivity). QoS 
measurements (latency, 
jitter, loss, throughput) 

7 PUT07 Data volume 
The SHIELD platform is able 
to process the appropriate 

data volume 
NF04, NF06 all 

simulated continuous traffic 
with different velocity, volume, 

variety characteristics 

SHIELD components 
should be able to 

perform adequately 
under high data volumes 

processing time per GB of 
data, network QoS 

measurements 

8 PUT08 vNSF hardening 
The SHIELD vNSFs and their 

associated virtual 
environments are secured 

NF06, NF09 vNSFs None 
VM environments must 

be hardened against 
known cyberattacks 

vNSF performance (data 
processing and response 

time) 

9 PUT09 
Standards 

compliance 

SHIELD complies with 
industry standards and 

data formats 
NF06, NF07 all None 

SHIELD components 
should provide data in 
appropriate industry 

formats and align with 
known standards 

None 

10 PUT10 
Real-time 

notifications 

A security event must be 
reported by a pop up 

notification 
PF05, NF08 Dashboard HSPL/MSPL set 

A timely notification is 
presented to the user 

Response time 
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Service test conditions 

## ID Name Description 
Related 

Requirement 
ID 

Related 
Components 

Related inputs Success criteria KPIs 

1 SET01 
Rate-based DoS 

protection 

DARE detects rate-based DoS 
attacks and the offending 

traffic is limited or dropped 
in a related vNSF 

PF10, SF08, 
SF09 

vNSFO, 
vNSF, DARE 

simulated traffic, test 
policies/rules set 

New policies are received, 
translated and applied. The rate-

based attack is mitigated 

Time to 
detection, 

time to 
mitigation, 

Target 
downtime 

2 SET02 IP/URL/URI blocking vNSFs apply blocking rules 
PF10, SF08, 

SF09 
vNSFO, 

vNSF, DARE 
simulated traffic, test 

blocklists 
The SHIELD vNSFs block access to 

the specified IP/URLs/URIs 

Detection 
rate, false 
negatives, 

false positives 

3 SET03 Rate limiting 
vNSFs apply rate-limiting 

rules 
PF10, SF08, 

SF09 
vNSFO, 

vNSF, DARE 

simulated traffic, test 
policies/rules set, BoNeSi tool 

for ICMP/UDP/TCP flood 
attack simulation 

New policies are received, 
translated and applied 

Response 
time 

4 SET04 
Application-based 

DoS protection 

vNSFs apply policies against 
application layer attacks (e.g. 

xml based attacks) 

PF10, SF08, 
SF09 

vNSFO, 
vNSF, DARE 

simulated traffic, test 
policies/rules set 

Application-based DoS attacks 
are detected and mitigated 

Time to 
detection, 

time to 
mitigation, 

Target 
downtime 

5 SET05 
Protocol-based DoS 

protection 

vNSFs apply polocies against 
protocol-based DoS attacks 
(e.g. fragmentation attacks, 

Slowloris etc) 

SF09 
vNSFO, 

vNSF, DARE 

tools to simulate attacks 
based on malformed packets 

and abuse of protocol 
mechanisms 

Anomalies in protocol use must 
be detected in time 

Time to 
detection, 

time to 
mitigation, 

Target 
downtime 

6 SET06 Tunnel detection 
DARE detects tunneling 

attacks (through e.g. DNS, 
ICMP,  HTTP etc) 

SF06 
vNSFO, 

vNSF, DARE 
tunneling infrastructure set 

up 

Tunnels used to exfiltrate data or 
divert protocol traffic should be 

identified 

Detection 
rate, false 
negatives, 

false positives 

7 SET07 VPN/Proxy detection 
SHIELD detects traffic 

through proxies or VPN 
(under possible conditions) 

SF06, SF02 
vNSFO, 

vNSF, DARE 
vpn/proxy infrastructure 

VPN/Proxy traffic should be 
detected, when feasible 

Detection 
rate, false 
negatives, 

false positives 
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## ID Name Description 
Related 

Requirement 
ID 

Related 
Components 

Related inputs Success criteria KPIs 

8 SET08 IP spoofing detection 
SHIELD detects spoofed 

packets 
SF06 

vNSFO, 
vNSF, DARE 

IP spoofing tools 
Spoofed traffic should be 

detected 

Detection 
rate, false 
negatives, 

false positives 

9 SET09 
Malware C2 

detection 
Malware C2 traffic is 
detected and blocked 

SF06, SF02 
vNSFO, 

vNSF, DARE 
simulated malware traffic, 

blocklist of known C2s 
DARE detects existence of 

spreading malware 

Time to 
detection, 

time to 
mitigation 

10 SET10 
Ransomware 

C2/payment site 
Detect and block malware 

CCC over DNS tunnel 
SF06, SF02 

vNSFO, 
vNSF, DARE 

simulated malware traffic, 
blocklist of known C2s and 

payment sites 

DARE detects existence of 
spreading ransomware 

Time to 
detection, 

time to 
mitigation 

11 SET11 Content filtering 
SHIELD filters available, 
unencrypted content 

SF01 
vNSFO, 

vNSF, DARE 

simulated traffic, definition of 
content types, data 

protection specifications 

SHIELD filters the appropriate 
content types 

Response 
time 

12 SET12 Security assessments 
Processed and history data 

synthesise a security 
assessment 

SF02, SF05 
vNSFO, 

vNSF, DARE 
previous logs and simulated 

traffic 

Security assessments and SIEM-
like reporting is available in an 

easy to use GUI 

Response 
time, overall 
network QoS 

13 SET13 Traffic filtering L4-L7 traffic filtering SF03 
vNSFO, 

vNSF, DARE 
simulated traffic 

Traffic is properly classified, 
filtered and/or diverted 

Response 
time, overall 
network QoS 

14 SET14 Traffic classification 
Traffic classification per 

application type 
SF04, SF09 

vNSFO, 
vNSF, DARE 

simulated traffic with a lot of 
variety (e.g. VoIP, streaming 
video, web applications etc) 

Traffic is classified according to 
known application types 

Response 
time, overall 
network QoS 

15 SET15 
Central log 

processing/SIEM 
Central log processing and 

visualisation 
SF02, SF05 

vNSFO, 
vNSF, DARE 

previous logs and simulated 
traffic 

Security assessments and SIEM-
like reporting is available in an 

easy to use GUI 

Response 
time, Gui ease 
of use through 

cognitive 
walkthrough 

16 SET16 Malware detection 
SHIELD detects malware 

behavior 
SF06, SF02 

vNSFO, 
vNSF, DARE 

malware simulation tools or 
malware running in a forensic 

environment 

SHIELD discovers the existence or 
spreading of malware 

Response 
time, 

detection rate 

17 SET17 Spam protection 
SHIELD protects against 

spam and phishing 
campaigns 

SF07, SF02 
vNSFO, 

vNSF, DARE 
phishing/spam software 

frameworks 
SHIELD blocks spam 

Response 
time, 

detection rate 
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## ID Name Description 
Related 

Requirement 
ID 

Related 
Components 

Related inputs Success criteria KPIs 

18 SET18 Anomaly detection 
Suspicious traffic is detected 

in DARE and is easily 
discoverable in the GUI 

SF08, SF09 
vNSFO, 

vNSF, DARE 
various cyber-attack tools and 

exploits 

SHIELD identifies anomalies in 
network traffic that might 

correspond to attacks or zero-
day exploits 

Response 
time, 

detection rate 

19 SET19 
Intrusion 

Detection/Prevention 
System 

Signature-based detection SF09 
vNSFO, 

vNSF, DARE 
Signature-based rules, 

generated traffic 
Intrusions are detected in time 

and prevented 

Response 
time, 

detection rate 

20 SET20 Honeypots 
Unsecured targets act as 

honeypots and relay data for 
analysis to the DARE 

SF10 
vNSFO, 

vNSF, DARE 
simulated traffic, honeypot 

VMs 
SHIELD can create honeypots and 

collect network data 

Response 
time, overall 
network QoS 

21 SET21 Sandboxing 
SHIELD provides a sandbox 

environment 
SF11 

vNSFO, 
vNSF, DARE 

simulated traffic, VM images 
Sandbox environment is 
operational and secured 

Response 
time, overall 
network QoS 

22 SET22 VPN 
SHIELD provides secure VPN 

services 
SF12 

vNSFO, 
vNSF, DARE 

VPN tools 
SHIELD creates a secure VPN  

service 

Response 
time, overall 
network QoS 

23 SET23 Information entropy 
URL/Domains/URI entropy is 

measured 
SF01, SF06, 

SF09 
vNSFO, 

vNSF, DARE 
Randomised URLs  

Suspicious domains/URLs etc are 
identified through entropy-based 

detection 

Detection 
rate, false 
negatives, 

false positives 

24 SET24 Phishing detection 
SHIELD is able to detect 

common Phishing attacks 
SF03 

vNSFO, 
vNSF, DARE 

tools to simulate phishing 
attacks (email spoofing, 
watering hole, request 

forgery, UI redress attacks, 
session highjacking etc) 

SHIELD detects phishing attacks 
in a timely manner 

Response 
time, 

detection rate 

25 SET25 Network monitoring 
Overall network monitoring 

and training of ML 
algorithms 

all SF** 
vNSFO, 

vNSF, DARE 
Network monitoring and 

visualisation tools 

SHIELD monitors activities on the 
network and ML algoriths are 
trained with appropriate data 

Changes in ML 
algorithm 

performance 
and detection 

rate 
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Ethical and regulatory compliance test conditions 

## ID Name Description 
Related 

Requirement 
ID 

Related 
Components 

Related inputs Success criteria KPIs 

1 COT01 
Data Processing 
Specifications 

Data processing specifications should 
be provided for all data processing 

components. This information should 
be visible in the appropriate UI 

ERC03, 
ERC04 

all data 
processing 

components 

Date processing 
specifications 

Data processing 
specifications are available 

in the Store, Dashboard 
and DARE graphical 

interfaces 

User satisfaction 
( information 

should be clear 
and easily 

discoverable) 

2 COT02 
Traffic Classification 

Transparency 

Mitigation actions with respect to 
application types should be justified by 

security events and logged 

ERC06, 
ERC08 

DARE, 
vNSFs, 
vNSFO, 

Dashboard 

None 

Accountability to ensure 
net neutrality rules are 

respected. Application of 
traffic classification must be 

visible and accounted for 

Time to discover 
the appropriate 

information 

3 COT03 
Data Protection 

Information 

Dashboard should display information 
and allow contact with Data Controller 

or Data Protection Officers 

ERC03, 
ERC04 

Dashboard None 

Data protection 
information are clear and 
easily discoverable, User 

satisfaction 

Time to discover 
the appropriate 

information 

4 COT04 Lawful Interception 
API access must be ensured to law 

enforcement 
ERC09 All None 

API access is granted and 
monitored 

API Response 
time 

5 COT05 
Data access and 

processing 

Identifiable data should be easily 
accessed/erased/rectified if necessary. 

If data are not identifiable, then the 
data subject must provide means of 

identification (GDPR article 11) 

ERC01, 
ERC02 

All 
Data access 

request 

Data 
access/erasure/rectification 
requests are processed and 

granted 

API Response 
time 

6 COT06 Data retention 
Components should specify data 

retention periods 
ERC05 All 

Data retention 
specifications 

Components should retain 
data only for the 

designated period 
None 

7 COT07 Notifications 
Breaches in components must be 

reported 
ERC07 All 

backdoors, data 
exfiltration 
attacks etc 

A breach is identified and 
reported in a timely 

manner 
Response time 

 

 

 


