
SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
1

Deliverable D4.3

Information-driven engine ready for
experiments

Editor D. Papadopoulos (INFILI)

Contributors G. Gardikis, A. Kapodistria, G. Kolonias, S. Pantazis (Space
Hellas), C. Fernandez, B. Gaston (i2Cat), A. Litke, N.
Papadakis (INFILI), G. Dimopoulos (Talaia), M. De
Benedictis (POLITO), A. Pastor (TID), R. Preto (Ubiwhere),
O. Segou, C. Xilouris (ORION).

Version 1.0

Date November 29th , 2018

Distribution PUBLIC (PU)

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
2

Executive Summary

This deliverable documents the conclusions of the technical development work of SHIELD
related to WP4. It covers the final architectural design, the development and deployment of
the core components involved in this work package, namely the information-driven Data
Analysis and Remediation Engine (DARE) and the Security Dashboard.

In terms of design, this deliverable provides the final functional layout of the DARE platform
and of the Security Dashboard, along with any functional or architectural updates that have
been introduced since D4.2. These updates -which involve all WP4 components- mainly include
the addition of new algorithmic implementations, as well as of extensions and enhancements
of the existing ones, and are sufficiently documented within the context of D4.3. Specifically,
details of new or updated functionalities are provided for the Data Acquisition module, the
Cognitive and Security Data Analytics Modules, the Cybersecurity Topologies and the Security
Dashboard components.

An aggregated version of the final mapping of the requirements (Platform Functional, Non-
Functional, Service Functional and Ethical & Regulatory Compliance) is also collected on this
deliverable.

Finally, instructions are supplied for the set-up of the scalable storage and computing
environment, as well as for the installation and deployment of the individual DARE components
and of the Security Dashboard.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
3

Table of Contents

1. INTRODUCTION ... 5

1.1. SHIELD project overview .. 5

1.2. Scope of this document ... 5

1.3. Organisation of this document .. 6

2. FINAL FUNCTIONAL LAYOUT ... 7

2.1. DARE architecture .. 8

3. UPDATES SINCE D4.2 ... 10

3.1. Data acquisition and storage ... 10

3.2. Data analysis phase .. 11

3.2.1. Cognitive Data Analysis Module ... 11

3.2.2. Security Data Analysis Module ... 17

3.3. Cybersecurity topologies phase .. 17

3.4. Dashboard .. 19

4. REQUIREMENTS MAPPING ... 20

5. ENVIRONMENT SETUP GUIDE ... 22

5.1. CDH framework installation and configuration .. 22

6. INSTALLATION GUIDE ... 25

6.1. Open Source status .. 25

6.2. Apache Spot.. 25

6.3. Distributed Collector and Streaming Worker ... 27

6.4. Cognitive DA module ... 28

6.4.1. Anomaly Detection DL .. 28

6.4.2. Anomaly Detection ML ... 28

6.4.3. Threat Classification ML ... 29

6.4.4. Threat Classification DL .. 29

6.5. Security DA module.. 30

6.6. Recommendation and Remediation Engine ... 30

6.7. Dashboard and APIs ... 31

7. CONCLUSIONS .. 32

7.1. Present status ... 32

7.2. Future work .. 32

8. REFERENCES .. 33

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
4

LIST OF FIGURES ... 35

LIST OF TABLES... 36

LIST OF ACRONYMS ... 37

 REGULATORY COMPLIANCE .. 39

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
5

1. INTRODUCTION

1.1. SHIELD project overview

The SHIELD project aims to deliver virtualised security services to protect the flow of data across
the infrastructure controlled by the SHIELD platform and also to ensure that such
infrastructures are properly attested and secured.

To do so, several technologies are combined. The Network Function Virtualisation (NFV) and
Software-Defined Networking (SDN) environments allow the deployment of virtualised services
(NSs); whilst the Trusted Computing (TC) provides means to attest and verify whether the
infrastructure is secured or trusted. Finally, the Big Data (BD) Analytics and Trusted Computing
(TC) provide remediation suggestions to inactivate or destroy threats in any virtualised or
physical node running on the SHIELD-managed infrastructure.

1.2. Scope of this document

The technical work of WP4 (“Usable information-driven engine”) is dedicated to the creation
of a reliable and scalable cybersecurity framework, which offers Security-as-a-Service by
exploiting the insights of network data analysis. This involves: (a) the development of
acquisition and storage capabilities for data associated with cyberattacks; (b) the development
of data analytics capabilities for anomaly detection and threat classification, by employing
machine learning and deep learning techniques; (c) the development of adaptive cyberattacks
mitigation capabilities, providing remediation policies to be deployed in specific places of the
network; and (d) the development of a graphical user interface with operations and
management capabilities, making SHIELD a cybersecurity.

This document (D4.3, “Information-driven engine ready for experiments”) provides the last
status regarding the DARE and Security Dashboard components. During M20-M27, SHIELD has
continued the deployment, adjustment and configuration efforts on streaming data acquisition
and storage, novel anomaly detection and classification models for near-real-time analytics and
updated recommendation and remediation recipes for the DARE. Regarding the Dashboard,
updates include integration with the vNSF Orchestrator, support of multi-user NS lifecycle
management, as well as additional GUI features such as real-time notifications, NS inventory
and catalogue views and visualizations for vulnerabilities attestation

D4.3 inherits and extends the following deliverables:

 D2.2 “Updated requirements, KPIs, design and architecture”, which gives the final,
updated version of D2.1.

 D4.2 “Updated specifications, design and architecture for the usable information-driven
engine”, which contains the second iteration of design and specifications for the DARE
platform and for the Security Dashboard, which was initially provided in D4.1.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
6

1.3. Organisation of this document

This document is organised as follows:

● Section 1 (present section) serves as a basic introduction to this document and its

scope;

● Section 2 provides the overview of the final functional layout of the DARE platform;

● Section 3 details the updates at the different levels (architecture and design,

development) per WP4 component since D4.2;

● Section 4 provides a summarized view of the requirements per WP4 component, along

with explanations regarding the satisfaction of the agreed requirements.

● Section 5 lists the instructions to perform the setup of the environment that supports

the operations of the DARE platform and of the Security Dashboard;

● Section 6 includes the guide for the installation of the WP4-related components;

● Section 7 concludes the document, summarizing the WP4 work during the project and

suggesting next steps for improvements;

● Annex A provides the Ethical Regulatory Compliance requirements for the WP4

components.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
7

2. FINAL FUNCTIONAL LAYOUT

Based on the SHIELD use cases and the requirements highlighted in Deliverable D2.2 [1], the
designed high-level architecture for the SHIELD platform is articulated around six different
components, illustrated in Figure 1 (vNSFs, Trust monitor, vNSF Orchestrator, vNSF Store,
Security overview dashboard and DARE). The low detail architecture and the design of the
components corresponding to WP4 where defined in D4.1 [2] and D4.2 [3]. These components
(DARE and Dashboard) are the ones analysed in this deliverable where we expose their final
state and their functionalities. The flows of data between these components is shown in Figure
2.

Figure 1: The SHIELD architecture

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
8

Figure 2: Data flow diagram of the DARE

2.1. DARE architecture

The DARE is composed by a central data analytics engine and a distributed set of data collection
components. It is worth mentioning that it has been designed following a Big Data approach
where the data value elicitation is divided into three different phases, as shown in Figure 3:

1. Data acquisition and storage.

2. Data analysis.

3. Cybersecurity topologies.

Following, we describe these subcomponents:

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
9

Figure 3: Architecture of the DARE

Data Collector: it is responsible for acquiring the data generated in a monitoring vNSF, using the
specific format of the technology provided by such vNSF. The collector is part of each
monitoring vNSF and integrated into the diagram for clarification purposes.

Data transformation: it is responsible for transforming the format-specific data into a generic
format.

Streaming service: it sends the information from the monitoring vNSF to the data analytics
central engine, assuring reliability on the communication.

Distributed File System / Cache: it is responsible for storing the collected data for both, batch
(i.e. hard disks) or real-time (i.e. cache) processing.

Data analytics framework: it is responsible for classifying the traffic for anomaly detection using
machine learning techniques.

Recommendation and remediation: it proposes, given a specific anomaly or threat detected, a
set of vNSFs with the appropriate policies to be deployed in specific places of the network.

Dashboard API: it pushes all the generated information to the Dashboard.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
10

3. UPDATES SINCE D4.2

In this section, all updates at the different levels (architecture and design, development) per
WP4 component since D4.2 are listed, in order to better keep track of the development work
that has been done to extend the engine’s capabilities.

3.1. Data acquisition and storage

The Data Acquisition phase is responsible for the efficient and reliable capture and storage of
various heterogeneous data. It involves mechanisms and methods to capture and transfer files
generated by network tools to the central data analytics engine. This phase is of high
importance for ensuring the integrity of the data and their quality in further processing steps.

As described in detail in D4.2, the distributed data acquisition module was implemented
following a decentralized schema (Figure 4). This decentralized format is time efficient as far as
read/write from/to HDFS [4] is concerned and since only relevant info is sent, network traffic is
reduced inside infrastructure.

Figure 4: Distributed data acquisition and storage architecture

Distributed Collector

Distributed collector was deployed to solve scalability issues of Spot’s original collector. It is
fully integrated with vNSFs and supports netflow, DNS, and proxy traffic, security event and
data metrics. Essentially what collector does is to monitor the file system and to detect new
files. Then these raw files are converted into comma separated files and are published in Kafka
topics [5].

Streaming Worker

Streaming Worker was developed to register the processed data into corresponding Hive
tables. Kafka topics and partitions are created and files read from each topic are stored to HDFS.
Furthermore, records are inserted into Hive tables. Use of Streaming Worker was proven to be
more time efficient in terms of time consumed for storage processes.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
11

3.2. Data analysis phase

The DARE leverages two different data analytics modules that export their findings to a shared
Remediation engine, to produce optimal results. The Cognitive Data Analytics module is based
on the Apache Spot platform [6], an in-development, and open-source project for network
telemetry and anomaly detection. The Security Data Analysis module implements a version of
Talaia’s proprietary network visibility solution based on the SecaaS architecture. The
aforementioned modules are heavily modified and functionally enriched, with respect to the
fulfilment of the SHIELD’s requirements.

3.2.1. Cognitive Data Analysis Module

New Anomaly Detection Algorithms

One of the limits identified in the Apache Spot Framework was the lack of variety of machine
learning algorithms. In the case of anomaly detection, only LDA [7] was supported. To overcome
this limitation, several algorithms have been introduced by the SHIELD consortium, based on
different Python frameworks and libraries. Depending on the selected framework, there was a
relative impact on the performance compared to non-distributed processing environments,
especially during the algorithms’ training phase. To mitigate this problem, the training phase
has been removed from the DARE timeline, and introduced as maintenance algorithm lifecycle
process (see Re-Train lifecycle capacity).

Autoencoder

Deep learning techniques are starting to see an application in the field of anomaly detection,
due to their capability to extract complex features from raw data. For anomaly detection we
have used autoencoders, which rely in reconstructing the input signal after going through a
compressive path [8]. This type of networks are composed of two main parts, the encoder and
the decoder (Figure 5). The encoder’s task is to compress the input data into a low
dimensionality vector, while the decoder uses this vector as input, and tries to reconstruct the
data with minimum losses. After being trained, the autoencoder will have adjusted its
parameters to optimally reconstruct data similar to the one it was trained with. However,
anomalies will present a high reconstruction error after being forwarded through this
architecture. Then, the reconstruction error can be used to label a certain data point as
anomaly or not.

For SHIELD, we have created an Autoencoder composed of three layers. The first one
containing 16 neurons corresponding to the following variables of the netflow traffic:

 Protocol: has been encoded using on-shot technique producing a vector of 5 variables.

 Flags: have been encoded using one-shot technique producing a vector of 6 variables.

 Duration of the flow.

 Origin and destination ports.

 Number of packets and number of bytes per flow.

The inner layer is composed by 12 neurons and the outer layer contains again 16 neurons. The
reasons of the choice of this simple network are mainly two. On the one hand, the number of
variables is relatively small (16) and on the other, we want to avoid false positives (normal traffic
labelled as malicious).

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
12

Figure 5: An autoencoder. The phase between the input and the code is called encoder and the phase
between the code and the output is called decoder.

One class Support Vector Machines

One class SVM [9] belongs to the unsupervised algorithms group using novelty as detection
method. It is based on the applicability of Support Vector Machines (SVM), commonly used in
classification supervised learning processes, but simplifying the problem to identify if one data
point belongs to one anomaly class or not (one class). The algorithm is estimating the support
of input’s distribution by identifying regions where most of the cases lie (Figure 6). This
algorithm implies two main aspects when we think in the cybersecurity threat landscape. First,
being an unsupervised method, it does not require any type of labelling process for the training
phase, and second the novelty detection implies that the traffic must be clean in the training
phase. These two properties can be very useful in order to work with some types of network
cyber-attacks, such as zero-days attacks, where no training dataset or labelling process will be
possible. Our implementation, extracts and normalizes relevant data from the netflow protocol,
focusing in the relevant features of the network traffic, such as protocol family, ports, IPs, flow
duration, bytes and packets per flow or number of similar flows.

Figure 6: One-class SVM. The points within the decision boundaries are considered normal cases.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
13

Isolation Forest

IForest [10] provides an anomaly detection algorithm, exploiting the concept of “isolated”
observations after applying a random forest of decision trees. The reasoning is simple, anomaly
observations are easy to isolate because they will show a significantly shorter path length
(Figure 7). IForest is suitable for huge amount of datasets and shows an acceptable memory
usage [11] [12]. Precisely, these properties make IForest a very promising technique to apply in
anomaly detection for cybersecurity incidents based on huge network flows, such as Telco or
big corporations with massive traffic. Also, it’s worth mentioning that the training process can
be achieved with normal and anomalous traffic in the same dataset, thus making it valid for
production environments.

Figure 7: Isolation Forest. Outliers (red) are less frequent than regular observations and require less
splits (closer to the root of the tree).

Local Outlier Factor

LOF [13] is another anomaly detection algorithm based on outlier detection, where data points
are seized using local density deviation with respect to their k-nearest neighbours. Regions of
similar density correspond to normal data points, while points that have a substantially lower
density than their neighbours can be considered to be outliers (Figure 8). This algorithm has
shown promising results in some type of cybersecurity attacks, such as network intrusion [14],
but suffers from a high computational resources demand.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
14

Figure 8: Local Outlier Factor. Points that have a substantially lower density than their neighbours can be
considered to be outliers.

New Threat Classification algorithms

While anomaly detection focuses on distinguishing outliers of network activity from normal
traffic, threat classification is a classification technique that assigns these outliers to one of
several predefined threat classes. Classification algorithms (also called classifiers) are
supervised learning methods, meaning that they are trained with labelled datasets to recognize
distinctive patterns, in order to classify all activity based on this information. From an intrusion
detection perspective, classification algorithms can work in parallel with anomaly detection or
in addition to it, to characterize anomalous network activity as malicious, benign, scanning, or
as any other threat category of interest, using information like source/destination ports, IP
addresses, and the number of bytes sent during a connection. The following threat
classification algorithms have been implemented for the DARE Cognitive DA module:

Random Forest

Random forest is an ensemble supervised machine learning method used for classification. It
constructs a multitude of decision trees at training time and outputs the mode of the classes
(the most repeated value) of the individual trees as the final class [15]. Essentially, each tree’s
prediction is counted as a vote for one class and the final label is predicted to be the class which
receives the most votes (majority vote) (Figure 9). The algorithm applies the general technique
of bootstrap aggregation (or bagging) to tree learners, leading to a better performance model
by decreasing the variance, without increasing the bias [16]. Random forest is considered one
of the best-performing ML algorithms [17], mainly because of its ability to remove decision
trees' habit of overfitting the training set (being too much dependant of the training set and
not performing so well in the testing set) [18] and of its unmatched classification accuracy
compared to current algorithms. In the case of network traffic classification, the datasets are
usually unbalanced since the majority class (normal traffic) is usually orders of magnitude

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
15

higher than the minority classes (attack flows). Therefore, classifiers are overwhelmed by the
dominating class and tend to ignore the flows related to malicious activity. Random forest is of
no exception, thus techniques like cost-sensitive learning and oversampling of the minority
class are leveraged to tackle this issue.

For our implementation, the scalable Spark MLlib framework [19] was used to design a Random
Forest model of 50 trees, which was trained and evaluated using the datasets described later.
Since Spark provides APIs in non-JVM languages such as Python, many data scientists use the
latter, as it has a rich variety of numerical libraries with a statistical, machine-learning, or
optimization focus. A parameterization grid was set to select the optimal values for the
maximum tree depth (length of the longest path from a root to a leaf) and feature subset size
(number of features to consider for splits at each node).

Figure 9: Random Forest. It constructs a multitude of decision trees at training and outputs the mode of
the classes of the individual trees.

Multi-Layer Perceptron (MLP)

MLP is a class of feedforward artificial neural networks, consisting of at least three layers of
nodes (input, hidden, and output layers). In MLP, each neuron unit calculates the linear
combination of its real-valued inputs and passes it through a threshold activation function
(Figure 10). Learning occurs iteratively, by changing connection weights after each piece of data
is processed, based on the amount of outputted errors compared to the expected result
(backpropagation). The use of non-linear activation functions in the neural nodes can be
implemented to reproduce a nonlinear function mapping, allowing to solve non-linearly
separable problems, such as network anomaly classification [20] [21]. Using a carefully chosen
set of features of the Netflow protocol as input signal, we were able to train and compare
several MLP architectures to classify multiple normal and anomalous states, using the Deep
Learning Studio platform [22] which leverages the open-source Keras neural network library
[23].

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
16

The proposed architecture involves an input layer, a batch-normalisation layer, two hidden
dense layers consisting of 36 and 12 nodes respectively and the output layer. The rectified
linear unit (ReLU) is chosen as the activation function of the hidden dense layers, while Softmax
is used for the output layer. The model was trained for 10 epochs using the Adagrad optimizer
and categorical cross-entropy as loss function. The selected MLP model was integrated in the
Cognitive DA module of the DARE, and it was further compared to the Random Forest classifier
in terms of speed, robustness, and accuracy in capturing the essence of this system.

Figure 10: MultiLayer Perceptron. Each neuron unit calculates the linear combination of its real-valued
inputs and passes it through a threshold activation function.

Re-Train lifecycle capacity.

Cognitive models re-train lifecycle management allows the DARE, to re-train different
algorithms over production environments with fresh datasets obtained during data acquisition
and storage phase at specific intervals. This new capability of the Cognitive DA module is
represented in Figure 11 and it can be deployed as a parallel process to avoid delays in the
detection phase due to training.

Figure 11: Periodic re-train lifecycle management of the DARE modules

The re-training process can be adjusted to occur periodically, and for a specific time period, e.g.
24h. It utilizes the network data from the ingestion subcomponents to produce new models
that substitute the original ones. This allows us to update the algorithms over time, accounting
for any differences in the network patterns, i.e. traffic increase or user behavioural changes.
This is particularly useful for newly added anomaly detections algorithms. To this end, our new

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
17

implementation includes the feature of training with data from one specific date and exporting
the trained model to be used for anomaly detection of the future traffic.

3.2.2. Security Data Analysis Module

Traffic Ingestion

The Security DA Module is configured to ingest traffic from the distributed collector. The
ingestion is performed by a Python service which monitors the HDFS for new traffic captured
by the distributed collector. As soon as the traffic becomes available, the service will fetch it,
transform it and send it to the anomaly detection engine to be ingested.

Anomaly Detection

The detection capabilities of the security DA module were extended to allow the detection of
cryptocurrency mining activity inside the monitored network. More specifically, the machine
learning algorithms that are part of Talaia’s anomaly detection engine were trained to be able
to identify the Stratum protocol which is the de facto protocol that is currently being used to
allow the communication between the mining software and the mining pool server. The
detection of Stratum traffic automatically generates a new anomaly notification that includes
all the flows that were generated from the mining activity.

The Stratum protocol is used by a wide range of mining software and for mining different
cryptocurrencies such as Bitcoin, Ethereum, Litecoin, etc. Therefore, by detecting Stratum
traffic, the security DA module is capable of identifying cryptocurrency mining activity
independent of the configuration and the type of the mined currency. Moreover, the detection
only relies on the analysis of netflow traffic and does not require instrumentation and
monitoring of the user equipment nor advanced DPI software to analyse the traffic down to
the packet level.

Anomaly Notification

A monitoring service polls the engine frequently for new anomalies and as soon as a new one
is detected, it is sending all related logs to the Recommendation and Remediation Engine and
SHIELD’s Dashboard in the form of RabbitMQ messages [24].

3.3. Cybersecurity topologies phase

The cybersecurity topologies component (Figure 12) is in charge of analyzing the attack data
generated by the machine-learning modules of the DARE, decide an appropriate response to
mitigate the threat, produce a set of medium-level policies and send them to the dashboard as
recommendations, so that an administrator can be noticed and take remediation action.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
18

Figure 12: Overview of the Recommendation and Remediation Engine

Full RabbitMQ support

The initial prototype of the cybersecurity topologies module reacted to new attacks by listening
to a directory where an external entity had to copy a CSV file containing the attack report and
used a RabbitMQ queue only to send the policies to the dashboard.

The updated version of this module now fully supports also a RabbitMQ queue that can be used
to receive the attack CSV data instead of copying a file in a specific watched folder. This has two
main advantages over the previous approach. First, this method allows multiple attack reports
to be sent in parallel, since each CSV file line is sent as a separate message. Second, it makes
more homogeneous the interaction and integration between the DARE and the dashboard
since now every module uses RabbitMQ queues to exchange the data.

Constraints for the attack destination

The attack remediation recipes can contain zero or more constraints that modify the produced
policies. As an example, these constraints can be used to force the use of the “any port” value
in the policies (this is useful, for instance, to write node isolation policies).

The initial prototype of the cybersecurity topologies module allowed to place most of the
constraints only on the source of the attack, while now it is possible to put these constraints
also on the attack destination (i.e. the victim). This allows to write more flexible recipes and in
turn to produce better tailored remediation policies.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
19

3.4. Dashboard

The Dashboard component enables users and applications to access SHIELD’s internal features,
therefore being the entry point of SHIELD solution. The main architecture of Dashboard has not
changed since D4.2, however their specified capabilities were implemented, enabling multi-
user lifecycle management, real-time notifications, incident summary, attestation and
remediation (Figure 13).

Figure 13: Security Incidents summary of the Dashboard

In the current version of the Dashboard, multiple types of users can be created, namely
Developers, SecaaS Clients and Cybersecurity Agents. For each SecaaS client multiple users can
be created and associated with it. Each SeccaS client user is tied to a specific role which bounds
it to perform a set of restricted actions, for instance a SecasS client admin has the ability to
instantiate a service whereas remaining users can only view the instantiated services.

Real-time notifications were enhanced, supporting vNSFO service instantiation status
notifications, Trust Monitor notifications and Store onboarding notifications.

The security attestation of vNSFs may result in remediation actions which are reported from
the DARE to the Dashboard. From these actions, the client administrator can now choose the
remediation and apply it to rectify a particular vNSF.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
20

4. REQUIREMENTS MAPPING

Based on D4.2, we address four types of requirements: i) platform requirements (PF), ii) non-
functional requirements (NF), iii) service requirements (SF) and iv) regulatory compliance
requirements (ERC). In this section, the compliance of WP4 components to i), ii) and iii) is briefly
justified from a general point of view (Table 1). The regulatory compliance of the DARE and the
Dashboard is discussed in the Annex of this document.

Table 1: Compliance of WP4 components to PF, NF and SF requirements.

Component Requirements Justification

DARE PF04, PF08, PF12,
PF13, PF16, PF18,
PF21, PF22

The DARE offers real-time monitoring of network
traffic collected by the vNSFs, by leveraging its set of
distributed collector and streaming worker modules.
It also utilizes machine-learning algorithms optimized
for distributed computing frameworks, to analyse the
ingested traffic in near-real-time. The platform is
expandable, having already showcased that it can
support several analytics engines based on open-
source principles. When an attack is detected,
information is provided to the Remediation Engine in
order to construct a recommendation message that is
then forwarded to the Dashboard in an encrypted
manner. The platform retains historic data stored in
its distributed file system, available for processing and
reporting.

NF01, NF02, NF03,
NF04, NF05, NF06,
NF07, NF08

The platform incorporates SotA scalable, streaming
processing technologies (Hadoop, Hive, Spark, Kafka)
to process and analyse the ingested data in a relatively
short time, regardless of its volume. When
performance is degraded due to increasing data
volume, adding more data nodes to the infrastructure
can improve the system’s performance significantly.
Load-balancing and resource management
functionalities (YARN) are also integrated to its
infrastructure to ensure a stable user experience. All
DARE modules are easily installed and maintained,
following the steps of their detailed documentation.
Finally, the engine inputs and exports data in ways
that conform to well-established data input formats
(Netflow).

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
21

SF01, SF02, SF03,
SF04, SF05, SF06,

 SF07, SF08, SF09,
SF10, SF11, SF12

The engine already complies with all mandatory
service functional requirements: It offers effective
mitigation mechanisms for malware spreading and
volumetric Denial of Service attacks. It supports
advanced processing services, such as L4 traffic
filtering, multi-source log monitoring, correlation and
alert generation (Remediation engine). It is capable of
detecting attacks with a wide range of techniques
(.nfcapd and .pcap protocols), similar to an IDPS. The
DARE doesn’t support optional service functional
requirements such as phishing detection, honeypots
and sandboxing techniques

Dashboard PF03, PF05, PF06,
PF07, PF09, PF12,
PF13, PF14, PF15,
PF16, PF17, PF20,
PF21, PF22

The operator is able to control the lifecycle of vNSFs
via GUI, supporting the onboarding, instantiation,
chaining, configuration, monitoring and termination
of vNSFs. Different users can be created for the same
SecaaS client by the SecaaS admin. Any access to the
SHIELD platform is protected by authentication and
authorization mechanisms. A particular user, namely
Cyberagent, is created for each SecaaS instance in
order to share logs with a third-party identity, namely
a Cybersecurity Agency. It is possible to trigger
remediation actions in order to mitigate threats and it
is also possible to monitor in real-time the detected
threats in a particular vNSF.

NF01, NF02, NF03,
NF07, NF08, NF09

The notification reports about a particular action take
place in a matter of seconds, however the triggering
of actions to third-party modules can take longer, e.g.
instantiation of a service. The setup and execution of
Dashboard can be performed by a single command.

SF05, SF11, SF12 Optional service functional requirements are not
supported yet, but may be considered for the final
release.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
22

5. ENVIRONMENT SETUP GUIDE

5.1. CDH framework installation and configuration

CDH [25] is an Apache-licensed open source framework and is considered as the most popular
distribution for Apache Hadoop and related projects. CDH delivers the core elements of
Hadoop, scalable storage and distributed computing, along with a Web-based UI and enterprise
capabilities (Figure 14). CDH provides multiple benefits in terms of flexibility, integration,
scalability, security, high availability and compatibility.

Figure 14: List of CDH supported services

Hardware specifications

Our proposed CDH setup comprises of 3 Ubuntu 16.04 VMs running on ESXi hosts. The first VM
is the Cloudera Master host and runs Hadoop master processes such as the HDFS NameNode
and YARN Resource Manager. The second VM is the Cloudera Edge Node host and acts as the
client access point for launching jobs in the cluster. Finally, the last VM is the Cloudera Worker

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
23

host which runs DataNodes and other distributed processes such as Impala. Following are the
resource specifications of the hosts as well as the roles assigned to each host.

Table 2: Resource specifications and assigned roles of hosts.

Hosts # of CPUs Memory (GB) Disk (GB) Roles

Cloudera
Manager

8 20 400 · HDFS DataNode

· HDFS HttpFS

· HDFS NFS Gateway

· HDFS SecondaryNameNode

· Hive Gateway

· Hive MetaStore Server

· HiveServer2

· Impala Daemon

· Kafka Gateway

· Kafka MirroMaker

· Activity Monitor

· Alert Publisher

· Event Server

· Host Monitor

· Service Monitor

· Spark Gateway

· YARN JobHistory Server

· YARN NodeManager

· YARN ResourceManager

Cloudera
Edge Node

8 20 400 · HDFS Balancer

· HDFS NFS Gateway

· HDFS NameNode

· Hive Gateway

· Impala Catalog Server

· Impala StateStore

· Kafka Gateway

· Kafka Broker

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
24

· Spark Gateway

· ZooKeeper Server

Cloudera
Worker

8 20 400 · HDFS DataNode

· HDFS NFS Gateway

· Hive Gateway

· Impala Daemon

· Kafka Gateway

· Kafka Broker

· Spark Gateway

· Spark History Server

· YARN NodeManager

CDH environment setup and configuration

The installation procedure is sufficiently documented in Cloudera’s installation guide and
requires 7 main steps as follows:

Step 1: Configure a Repository:
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/configure_cm_repo.html
#cm_repo

Step 2: Install JDK:
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cdh_ig_jdk_installation.h
tml#topic_29

Step 3: Install Cloudera Manager Server:
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/install_cm_cdh.html#cmi
g_topic_6_6

Step 4: Install Databases:
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cm_ig_installing_configu
ring_dbs.html#cmig_topic_5

Step 5: Set up the Cloudera Manager Database:
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/prepare_cm_database.ht
ml#cmig_topic_5_2

Step 6: Install CDH and Other Software:
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/install_software_cm_wiz
ard.html#cm_installation_wizard

Step 7: Set Up a Cluster:
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cluster_setup_wizard.ht
ml#concept_b4d_wkh_ycb

https://www.cloudera.com/documentation/enterprise/6/6.0/topics/configure_cm_repo.html#cm_repo
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/configure_cm_repo.html#cm_repo
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cdh_ig_jdk_installation.html#topic_29
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cdh_ig_jdk_installation.html#topic_29
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/install_cm_cdh.html#cmig_topic_6_6
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/install_cm_cdh.html#cmig_topic_6_6
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cm_ig_installing_configuring_dbs.html#cmig_topic_5
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cm_ig_installing_configuring_dbs.html#cmig_topic_5
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/prepare_cm_database.html#cmig_topic_5_2
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/prepare_cm_database.html#cmig_topic_5_2
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/install_software_cm_wizard.html#cm_installation_wizard
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/install_software_cm_wizard.html#cm_installation_wizard
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cluster_setup_wizard.html#concept_b4d_wkh_ycb
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cluster_setup_wizard.html#concept_b4d_wkh_ycb

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium 25

6. INSTALLATION GUIDE

6.1. Open Source status

The WP4 components are available at the SHIELD organization’s public repository in Github:
https://github.com/shield-h2020. All of them with the exception of the Security DA module are
shipped under the Apache 2.0 license. The latter is derived from the security module of Talaia’s
commercial product and is integrated into the SHIELD platform as a closed source, stand-alone
component.

The data acquisition components (namely the Distributed Collector and the Streaming Worker)
are located at the repositories named “vnsfs-collectors” and “dare-workers” respectively,
under the SHIELD organization, with the link provided above. The analytics components
(Apache Spot and the anomaly detection and threat classification components of the Cognitive
DA module) are located at the “dare” repository. Finally, the Remediation Engine component
is available at the “dare-sec-topo” repository and the Security Dashboard is located at the
“dashboard” repository. The contents of all these repositories provide the source code of their
component, the installation and deployment scripts and the documentation regarding setup,
configuration and deployment. All the developments that were presented in the demos
corresponding to the year two review have been marked as a release tag v0.2 in the
repositories.

6.2. Apache Spot

The DARE Cognitive DA leverages Apache Spot [6] as a built-in, community-driven cybersecurity
solution, to bring advanced analytics to all IT Telemetry data on an open, scalable platform. It
is an open-source software for leveraging insights from flow and packet analysis which
expedites threat detection, investigation, and remediation via machine learning and
consolidates all enterprise security data into a comprehensive IT telemetry hub based on open
data models. Spot’s scalability and machine learning capabilities support an extendable
ecosystem of ML-based applications that can run simultaneously on a single, shared, enriched
dataset to provide organizations with maximum analytic flexibility.

Apache Spot version 1.0 was released in August 7, 2017 and is the latest stable release used by
the DARE. It can be cloned from the following link (as tarball):

https://www-us.apache.org/dist/incubator/spot/1.0-incubating/apache-spot-1.0-
incubating.tar.gz

Alternatively, you can clone our forked repository1 which contains all relevant DARE modules,
including Apache Spot.

You can verify this release using 1.0 signatures and checksums[PGP, SHA-512, MD5] with
project release KEYS.

In order to validate the build follow the instructions:

1 https://github.com/shield-h2020/dare

https://github.com/shield-h2020
https://www-us.apache.org/dist/incubator/spot/1.0-incubating/apache-spot-1.0-incubating.tar.gz
https://www-us.apache.org/dist/incubator/spot/1.0-incubating/apache-spot-1.0-incubating.tar.gz
http://www-eu.apache.org/dist/incubator/spot/1.0-incubating/apache-spot-1.0-incubating.tar.gz.asc
http://www-eu.apache.org/dist/incubator/spot/1.0-incubating/apache-spot-1.0-incubating.tar.gz.sha512
http://www-eu.apache.org/dist/incubator/spot/1.0-incubating/apache-spot-1.0-incubating.tar.gz.md5
http://www-eu.apache.org/dist/incubator/spot/KEYS

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
26

 Download the tarball from the above link.

 Decompress the tarball:
tar -zxvf apache-spot-1.0-incubating.tar.gz

 Change directory:
cd apache-spot-1.0-incubator

Since Apache Spot is composed of more than one module or sub-projects, some of them need
compilation, while others (Python or Javascript based) don’t.

To install each module please follow the below instructions:

 Decompressed tarball content should be the same with the content located in:

https://github.com/apache/incubator-spot/tree/v1.0-incubating

 To install each component please follow the official documentation guide:

http://spot.apache.org/doc/#installation

 Spot-ingest (centralized), Spot-setup, Spot UI and Spot-OA have specific requirements to

install manually.

http://spot.apache.org/doc/#configuration

http://spot.apache.org/doc/#ingest

http://spot.apache.org/doc/#oa

http://spot.apache.org/doc/#ui

 Spot-ML is the only component to build the binary files using sbt assembly commands. To

install it follow these instructions:

http://spot.apache.org/doc/#ml

We have realised that due to the work that has been done during the first year of the project,
several subcomponents have been redefined, mainly because of changes in the state-of-the-
art from the moment when the proposal was submitted and because of the more extensive
knowledge gained within the consortium. However, none of these changes impose a major shift
from the overall technical approach of the project, as laid out in the DoA.

Although we expect to acquire new knowledge and get more insights during the development
phase, the consortium does not envision major adjustments during the updates of the design
deliverables (D2.2 - M17, D3.2-M19 and D4.2-M19). Note that the work exposed in this
deliverable perfectly separates the Architecture and Design (blocks and workflows), the
specifications (requirements from the technical point of view) and the implementation (the
technologies used). This separation isolates the subcomponents in a way that the implications
of a change in any of these aspects (architecture, design, specifications and implementation)
will be minimised.

As an Innovation Action, SHIELD’s vision is to leverage state-of-the-art techniques and try not
to reinvent the wheel. To this end, SHIELD has studied the most mature open source
technologies and has concluded that Apache Spot will be the main solution to be reused and
improved to build the DARE. Apache Spot has some of the most important functionalities
needed by the DARE (ingestion, data treatment, extensible analytic framework and a
dashboard) however, it is missing some relevant aspects needed by SHIELD. Firstly, Apache Spot
has been built to be a batch solution and although streaming technologies have been

https://github.com/apache/incubator-spot/tree/v1.0-incubating
https://spot.incubator.apache.org/doc/#installation
https://spot.incubator.apache.org/doc/#installation
https://spot.incubator.apache.org/doc/#installation
http://spot.apache.org/doc/#configuration
http://spot.apache.org/doc/#ingest
https://spot.incubator.apache.org/doc/#oa
https://spot.incubator.apache.org/doc/#ui
http://spot.apache.org/doc/#ml

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
27

considered, the collection of data is completely centralised (workers read a folder for new files).
This is not enough for SHIELD since one of the envisioned functionalities is the capacity to
process vNSF logs and alerts in real-time. Secondly, the platform offers an anomaly detection
algorithm based on probabilities of events however, neither classification of threats is being
done nor real-time processing. Moreover, since Spot is completely lacking threat mitigation and
recommendation functionalities, these will be originally developed, so that the capabilities of
the DARE are in accordance with what was initially envisioned in the DoA. Finally, as SHIELD
must integrate information from multiple sources in the Dashboard (Store, vNSF Orchestrator,
recommendations, and results from Security engine and results from Cognitive engine), it will
not use the dashboard provided by Spot, but will directly use the API provided by the analytics
framework.

With all these aspects in mind, we conclude the second iteration of the project design and we
enter the second iteration of the development phase, having drafted a clear technical roadmap
till the end of the project.

6.3. Distributed Collector and Streaming Worker

Distributed collector is a daemon that runs in each vNSF (one collector per vNSF). When a new
file is created, collector detects it and then the file is decoded and translated into comma-
separated output with specific structure. Then, the Apache Avro serialization framework [26] is
used to convert the output to an Avro-encoded format and send it afterwards to the Apache
Kafka streaming platform. In the Kafka cluster, published messages are consumed by streaming
workers daemons in the analytics engine. The role of the Streaming Worker is to listen to a
particular topic of the Kafka cluster and consume the incoming messages. Streaming data is
divided into batches (according to a time interval). These batches are deserialized by the
Worker, according to the supported Avro schema, parsed and registered in the corresponding
table of Hive. Streaming Worker can be deployed in local, client or cluster mode.

Installations thus, includes dependencies in Python regarding:

 Avro serialization framework

 Kafka-python for the Apache Kafka distributed system

 Watchdog – a Python API and shell utilities that monitor file system events

Moreover, in Linux OS there is a dependency with pip the Python package manager and in order
to process specific pipelines, installation on appropriate tools is needed:

 Spot-nfdump – a version for processing netflow

 Tshark – a part of wireshark distribution for processing pcap files.

Required installation and dependency files along with detailed configuration can be found at
SHIELD public repositories23.

2 https://github.com/shield-h2020/vnsfs-collectors
3 https://github.com/shield-h2020/dare-workers

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium 28

6.4. Cognitive DA module

6.4.1. Anomaly Detection DL

The Autoencoder is developed using Python and using the PySpark library to run it in SPOT
architecture based on Spark. Moreover, as the Autoencoder uses neural networks, it is
necessary to install a deep learning framework. In this case we have used BigDL [27], a
framework supported by Intel that is focused on Deep Learning in CPUs (in contrast to most
frameworks that are designed only for GPUs).

Installation includes the following steps:

1. Install BigDL

2. Install Python

3. Install PySpark and Numpy

4. Download the code from SHIELD public repository 4

5. In order to execute the detection use the following command:
./ml_security_zoo.sh PHASE TYPE YYYYMMDD

./ml_security_zoo_csv.sh PHASE TYPE YYYYMMDD

where:
./ml_security_zoo.sh is for parquet data sources.

./ml_security_zoo_csv.sh is for csv data sources.

PHASE can be train or test, for training or detection stages.

TYPE should be flow. (a.k.a. netflow)

YYYYMMDD specific date to use for training or current date for detecting anomalies.

6.4.2. Anomaly Detection ML

Anomaly detection ML installation expands the algorithms available in the Apache Spot ML
module from DARE. Installation includes the following steps:

1. Install python library dependencies such as pandas, numpy or scikit-learn

2. Clone or download the spot-anomalies module developed from SHIELD public repository.

3. Edit the Apache Spot configuration file (spot.conf) to customize relevant parameters

training and testing dataset paths, specific to algorithms parameters (OCSVM, iForest, LOF)

In order to manage this module, a common command is provided:

./ml_security PHASE TYPE YYYYMMDD

where:

PHASE can be train or test, for training or detection stages.

TYPE should be flow. (a.k.a. netflow)

4 https://github.com/shield-h2020/dare/

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium

29

YYYYMMDD specific date to use for training or current date for detecting anomalies.

Anomaly detection module installation, detailed configuration and management is depicted in
the public SHIELD GitHub repository5.

6.4.3. Threat Classification ML

The Apache Spark distributed-computing framework is leveraged to implement a scalable
Random Forest classifier using the MLLib library. Our implementation utilizes the PySpark API
to train a Random Forest model using labeled data, which can then be used to label the outliers
detected by the Anomaly Detection modules. Since our installation involves an existing CDH
cluster, our implementation can be executed in a distributed manner across all nodes, with the
help of the YARN cluster manager. When run on YARN, Spark application processes are
managed by the YARN ResourceManager and NodeManager roles.

Please note that this module requires Spark version 2.2.1 or higher and Python 3.4 or higher.
Follow the instructions below to install the Random Forest classifier to any node of the CDH
cluster:

1. Download or clone the Random Forest module developed from SHIELD public repository6.
2. Install the necessary Python3 libraries, following the module’s documentation.
3. You can either use the pretrained Random Forest model, or you can train your own using a

labelled dataset with the following command:
./classifier3.sh train <HDFS_PATH_OF_LABELED_DATA> <#_OF_TREES(opt.)>

4. You can make predictions for unlabeled netflow data that is ingested and stored in the Hive
DB, with the following command:
./b_sim_anom_class_pub.sh <YYYYMMDD>

The output of the classification procedure is being saved at the path where the trained model
exists. You can edit these paths by modifying the threat_classifier0.4.py script. The classification
report is sent to the correct topics of the Remediation Engine and to the Dashboard via the
RabbitMQ queue.

6.4.4. Threat Classification DL

The MultiLayer Perceptron classifier serves as an alternative to the Random Forest classifier
described above, and further expands our data analytics solutions. It is developed using the
desktop version of the Deep Learning Studio, which is compatible with a number of open-
source programming frameworks, popularly used in artificial neural networks, including MXNet
and Google's TensorFlow.

Our netflow classification model was developed using the Keras environment, a high-level
neural networks API, written in Python and capable of running on top of TensorFlow, developed
with a focus on enabling fast experimentation. The trained model can be imported and
executed on a node of the CDH cluster, following the steps below:

1. Download or clone the MLP-classifier module developed from SHIELD public repository7.

5 https://github.com/shield-h2020/dare
6 https://github.com/shield-h2020/dare/tree/master/classifier_ml
7 https://github.com/shield-h2020/dare/tree/master/classifier_dl

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
30

2. Install necessary Python3 and libLAS packages (if not already installed).
3. Install Tensorflow, Keras and sklearn dependencies
4. Perform the classification procedure on netflow data using the trained model, by running

the following command:
python3 test.py <NETFLOW_FILE.CSV> tensorflow

The results will be output to test_result.csv on the same directory with the model.

6.5. Security DA module

The installation of the Security DA Module depends on the installation of an instance of Talaia’s
engine8 that is running the latest anomaly detection models. In the same environment it is
required to copy the two python-based scripts that are responsible for performing the traffic
ingestion and the anomaly notification tasks, watch_nfcapd.py and anomaly_reporter.py
respectively.

The watch_nfcapd.py requires the configuration of the IP address of the HDFS namenode of
the Apache Spot cluster and the directory in which the distributed collector saves the collected
traffic.

The anomaly_reporter.py requires the configuration of the RabbitMQ settings so that the
logs from the anomaly reports can be sent to the correct topics and subsequently read by the
Dashboard and the Recommendation and Remediation engine.

As soon as the configuration is complete, these two scripts can be ran from the command line
without any further arguments.

6.6. Recommendation and Remediation Engine

The Remediation Engine is a collection of Python 3 scripts, available at the SHIELD public
repository9 and they require a quick and minimal setup in order to be configured and running.
You can find the

Installation steps:

1. First, you need a working Python 3 environment. Installing the pip3 package is also
suggested. In a Debian/Ubuntu Linux environment this can be accomplished by typing:
apt install python3 python3-pip

2. Once the remediation engine source code has been downloaded, the additional Python
packages can be installed by issuing the command:
$ pip3 install -r requirements.txt

3. Now, the actual remediation engine component can be installed in the current Linux box:
$ python3 setup.py install

4. It is also suggested to launch the integrated tests by issuing the command:
$ python3 setup.py test
All the tests must succeed.

5. The module can be used as a standalone daemon by using the following command:
$ python3 daemon.py -c /path/to/cybertop.cfg -l /path/to/logging.ini

8 https://www.talaia.io/Big-Data-Engine
9 https://github.com/shield-h2020/dare-sec-topo

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium 31

The two files cybertop.cfg and logging.ini are used to respectively configure the
daemon itself and the verbosity of its logs. Some examples are already provided in the
tests folder.
Alternatively, the module can also be installed as a system service so that it is automatically
started when the system boots. This can be achieved by executing:
daemon/cybertop_systemd_install.sh

6. To setup the service the configuration file /etc/default/cybertop must be manually
edited. In particular it must be modified in order to find the cybertop.cfg and
logging.ini configuration files for the actual daemon configuration.

6.7. Dashboard and APIs

The Dashboard component is deployed as a multi-container application using the Docker
Compose tool. The only requirements for the host system are Docker (17.06.0 or later) and
Docker Compose (3.0 or later).

You can download or clone the Dashboard module from SHIELD public repository10. The setup
and execution of the Dashboard can be performed using the provided “run.sh” script, for
instance:
./run.sh --environment .env.production --verbose

This command will raise the application containers and use the configuration environment for
production. Different environment configurations can be added or modified by creating or
changing “.env” files.

In the case of Dashboard being setup for the first time the following additional command
must be executed in order to initialize the database:
docker exec -it docker_dashboard-persistence_1 bash -c

"/usr/share/dev/dashboard/docker/setup-datastore.sh --environment

.env.production"

To be noted that the “setup-datastore.sh” script also uses an environment configuration
(.env.production in this example) which should be the same of the one used in the “run.sh”
script.

From this point on, the ISP operator can access the Dashboard frontend in
http://DASHBOARD_GUI_HOST_WEB , where the “DASHBOARD_GUI_HOST_WEB” is the
IP/hostname defined in the environment configuration file. The default ISP operator credentials
are:

username: admin

password: adminpass

client: default

10 https://github.com/shield-h2020/dashboard

http://dashboard_gui_host_web/

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
32

7. CONCLUSIONS

7.1. Present status

This document presents the final version and the technical details of the information-driven
Data Analysis and Remediation Engine as well as of the Dashboard. The document starts with
describing the final layout of the DARE architecture, along with all major updates and additions
to the WP4 components, since the last deliverable (D4.2). This facilitates the reader to keep
track of all the development work that has been done to extend the engine’s capabilities in the
last phase of the project.

After this, we provide the final mapping of requirements and how does each component fulfil
them. That covers platform functional and non-functional requirements, as well as service
functional and ethical compliance requirements (the latter being described at the following
Annex). The environment and virtual infrastructure setup, as well as the installation and
configuration guides are provided to give a high-level view on how to deploy the SHIELD
platform from scratch, by following the provided steps, related to the environment and 3rd
party tools required for the platform and to the deployment and configuration for the WP4
components described above.

7.2. Future work

The work of all WP4 tasks (i.e., mostly on the development side) concludes with the delivery of
this report. The integration and assessment procedures of the WP4-based components with
the rest of components in the SHIELD platform will continue until the end of WP5 and the
termination of the project itself. The results of the WP4 activities will be provided in the final,
upcoming demonstrations; and may be advertised and exposed through dissemination efforts
like events (Winter School) and papers.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
33

8. REFERENCES

[1] SHIELD consortium, “D2.2 Updated Requirements, KPIs, design and architecture,” 2017.

[2] SHIELD consortium, “D4.1 Specifications, design, and architecture for the usable
information driven engine,” 2017.

[3] SHIELD consortium, “D4.2 Updated specifications, design and architecture for the usable
information-driven engine,” 2018.

[4] “HDFS Architecture Guide,” [Online]. Available:
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html. [Accessed March 2018].

[5] “Apache Kafka,” [Online]. Available: https://kafka.apache.org/. [Accessed March 2018].

[6] “Apache Spot,” [Online]. Available: http://spot.incubator.apache.org/. [Accessed March
2018].

[7] B. e. al, “Latent Dirichlet Allocation,” Journal of Machine Learning Research, vol. 3, pp.
993-1022 , 2003.

[8] P. Baldi, “Autoencoders, Unsupervised Learning and Deep Architectures,” in Proceedings
of the 2011 International Conference on Unsupervised and Transfer Learning Workshop -
Volume 27, Washington, 2011.

[9] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor and J. Platt, “Support Vector
Method for Novelty Detection,” in Proceedings of the 12th International Conference on
Neural Information Processing Systems, Cambridge, 1999.

[10] F. T. Liu, K. M. Ting and Z.-H. Zhou, “Isolation Forest,” in Proceedings of the 2008 Eighth
IEEE International Conference on Data Mining, Washington, 2008.

[11] U. Carrasquilla, BENCHMARKING ALGORITHMS FOR DETECTING ANOMALIES IN LARGE
DATASETS.

[12] R. Domingues, M. Filippone, P. Michiardi and J. Zouaoui, “A Comparative Evaluation of
Outlier Detection Algorithms,” Pattern Recogn., vol. 74, pp. 406-421, 2 2018.

[13] M. M. Breunig, H.-P. Kriegel, R. T. Ng and J. Sander, “LOF: Identifying Density-based Local
Outliers,” SIGMOD Rec., vol. 29, pp. 93-104, 5 2000.

[14] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur and J. Srivastava, “A comparative study of
anomaly detection schemes in network intrusion detection,” in In Proceedings of SIAM
Conference on Data Mining, 2003.

[15] T. K. Ho, “Random Decision Forests,” in Proceedings of the Third International Conference
on Document Analysis and Recognition (Volume 1) - Volume 1, Washington, 1995.

[16] L. Breiman, “Bagging Predictors,” Mach. Learn., vol. 24, pp. 123-140, 8 1996.

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
34

[17] M. Fernández-Delgado, E. Cernadas, S. Barro and D. Amorim, “Do We Need Hundreds of
Classifiers to Solve Real World Classification Problems?,” J. Mach. Learn. Res., vol. 15, pp.
3133-3181, 1 2014.

[18] G. Biau, “Analysis of a Random Forests Model,” J. Mach. Learn. Res., vol. 13, pp. 1063-
1095, 4 2012.

[19] Apache Spark MLlib , The Apache Foundation, “https://spark.apache.org/mllib/,”
[Online].

[20] C. Siaterlis and V. Maglaris, “Detecting Incoming and Outgoing DDoS Attacks at the Edge
Using a Single Set of Network Characteristics,” in Proceedings of the 10th IEEE Symposium
on Computers and Communications, Washington, 2005.

[21] S. Andropov, A. Guirik, M. Budko and M. Budko, “Network Anomaly Detection Using
Artificial Neural Networks,” in Proceedings of the 20th Conference of Open Innovations
Association FRUCT, Helsinki, 2017.

[22] Deep Learning Studio, deepcognition.ai,, “https://deepcognition.ai/products/desktop/,”
[Online].

[23] Keras: The Python Deep Learning library, “https://keras.io/,” [Online].

[24] RabbitMQ, open source message broker., “https://www.rabbitmq.com/,” [Online].

[25] CDH - Cloudera Distribution for Hadoop, “https://www.cloudera.com/products/open-
source/apache-hadoop/key-cdh-components.html,” [Online].

[26] Apache Avro data serialisation framework, “https://avro.apache.org/,” [Online].

[27] BigDL, a distributed deep learning library for Apache Spark, “https://bigdl-
project.github.io/0.7.0/,” [Online].

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
35

LIST OF FIGURES

Figure 1: The SHIELD architecture .. 7

Figure 2: Data flow diagram of the DARE ... 8

Figure 3: Architecture of the DARE... 9

Figure 4: Distributed data acquisition and storage architecture .. 10

Figure 5: An autoencoder. The phase between the input and the code is called encoder and the
phase between the code and the output is called decoder. .. 12

Figure 6: One-class SVM. The points within the decision boundaries are considered normal
cases. .. 12

Figure 7: Isolation Forest. Outliers (red) are less frequent than regular observations and require
less splits (closer to the root of the tree). .. 13

Figure 8: Local Outlier Factor. Points that have a substantially lower density than their
neighbours can be considered to be outliers. ... 14

Figure 9: Random Forest. It constructs a multitude of decision trees at training and outputs the
mode of the classes of the individual trees. .. 15

Figure 10: MultiLayer Perceptron. Each neuron unit calculates the linear combination of its real-
valued inputs and passes it through a threshold activation function. 16

Figure 11: Periodic re-train lifecycle management of the DARE modules 16

Figure 12: Overview of the Recommendation and Remediation Engine 18

Figure 13: Security Incidents summary of the Dashboard .. 19

Figure 14: List of CDH supported services ... 22

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
36

LIST OF TABLES

Table 1: Compliance of WP4 components to PF, NF and SF requirements. 20

Table 2: Resource specifications and assigned roles of hosts. .. 23

Table 3: Compliance of WP4 components to PF, NF and SF requirements. 39

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
37

LIST OF ACRONYMS

Acronym Meaning

API Application Programming Interface

DARE Data Analysis and Remediation Engine

DDoS Distributed Denial of Service

DNS Domain Name System

DoS Denial of Service

ERC Ethical and Regulatory Compliance (requirements)

GDPR General Data Protection Regulation

GUI Graphical User Interface

HDFS Hadoop Distributed File System

IDPS Intrusion Detection and Prevention System

IP Internet Protocol

IF Isolation Forest

ISP Internet Service Provider

LDA Latent Dirichlet Allocation

LOF Local Outlier Factor

MLP MultiLayer Perceptron

NF Non-Functional (requirement)

NFV Network Function Virtualisation

NS Network Service

PF Platform Functional (requirement)

PoP Point of Presence

RF Random Forest

SecaaS Security as a Service

SF Service Functional (requirement)

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
38

SP Service Provider

SQL Structured Query Language

SVM Support Vector Machines

TM Trust Monitor

UC Use Case

URI Uniform Resource Identifier

UUID Universally unique identifier

vNSF virtual Network Security Function

vNSFO vNSF Orchestrator

SHIELD D4.3 • Information-driven engine ready for experiments

© SHIELD Consortium
39

 REGULATORY COMPLIANCE

D4.2 provides an overview of the EU regulatory ecosystem that affects SDN/NFV adoption such
as GDPR, ePrivacy, net neutrality etc. A set of regulatory compliance specifications was created,
for each WP4 component that parses personal data in any form. D2.3 also provides compliance
requirements. This Annex provides the mapping of Requirements to the individual
components, as of Year 2.

Table 3: Compliance of WP4 components to PF, NF and SF requirements.

Components Requirements Justification

DARE ERC01, ERC02, ERC04,
ERC05, ERC06, ERC09

The DARE storage and processing components
expose methods for accessing and deleting
personal identifiable information, as all relevant
data (stored in the HDFS and in the Hive DB) is
easily retrieved by IP address which can be
associated to persons. In terms of analytics, since
the DARE offers multi-user support, each user
can gain access only to threat results that are
relevant to his organisation. This data can be
erased upon request or after a user-defined
period of time, without affecting the efficiency of
the ML-based modules. Moreover, all anomaly
detection and threat classification modules are
based on open-source technologies and are thus
transparent in terms of data processing. The
Security DA module is a commercial product and
as such some specific details related to the exact
algorithmic implementations may not be
disclosed.

Dashboard ERC03, ERC04, ERC05,
ERC06, ERC09

The Dashboard provides transparent procedures
with regard to all its available services: It
presents simple information when a NS is
selected, including (contact details of the data
controllers, data protection and regulatory
compliance info, as well as a log of any action to
throttle or block traffic). In case of personal data
breach, it conveys a notification to the contact
associated with the tenant.

