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Executive Summary 

This deliverable documents the conclusions of the technical development work of SHIELD 
related to WP4. It covers the final architectural design, the development and deployment of 
the core components involved in this work package, namely the information-driven Data 
Analysis and Remediation Engine (DARE) and the Security Dashboard.  

In terms of design, this deliverable provides the final functional layout of the DARE platform 
and of the Security Dashboard, along with any functional or architectural updates that have 
been introduced since D4.2. These updates -which involve all WP4 components- mainly include 
the addition of new algorithmic implementations, as well as of extensions and enhancements 
of the existing ones, and are sufficiently documented within the context of D4.3. Specifically, 
details of new or updated functionalities are provided for the Data Acquisition module, the 
Cognitive and Security Data Analytics Modules, the Cybersecurity Topologies and the Security 
Dashboard components.  

An aggregated version of the final mapping of the requirements (Platform Functional, Non-
Functional, Service Functional and Ethical & Regulatory Compliance) is also collected on this 
deliverable.  

Finally, instructions are supplied for the set-up of the scalable storage and computing 
environment, as well as for the installation and deployment of the individual DARE components 
and of the Security Dashboard. 

 

  



SHIELD D4.3 • Information-driven engine ready for experiments 

 

© SHIELD Consortium 
3 

Table of Contents 

1. INTRODUCTION ................................................................................................................. 5 

1.1. SHIELD project overview ...................................................................................................... 5 

1.2. Scope of this document ....................................................................................................... 5 

1.3. Organisation of this document ............................................................................................ 6 

2. FINAL FUNCTIONAL LAYOUT ................................................................................................. 7 

2.1. DARE architecture ................................................................................................................ 8 

3. UPDATES SINCE D4.2 ....................................................................................................... 10 

3.1. Data acquisition and storage ............................................................................................. 10 

3.2. Data analysis phase ............................................................................................................ 11 

3.2.1. Cognitive Data Analysis Module ................................................................................. 11 

3.2.2. Security Data Analysis Module ................................................................................... 17 

3.3. Cybersecurity topologies phase ........................................................................................ 17 

3.4. Dashboard .......................................................................................................................... 19 

4. REQUIREMENTS MAPPING ................................................................................................. 20 

5. ENVIRONMENT SETUP GUIDE ............................................................................................. 22 

5.1. CDH framework installation and configuration ................................................................ 22 

6. INSTALLATION GUIDE ....................................................................................................... 25 

6.1. Open Source status ............................................................................................................ 25 

6.2. Apache Spot........................................................................................................................ 25 

6.3. Distributed Collector and Streaming Worker ................................................................... 27 

6.4. Cognitive DA module ......................................................................................................... 28 

6.4.1. Anomaly Detection DL ................................................................................................ 28 

6.4.2. Anomaly Detection ML ............................................................................................... 28 

6.4.3. Threat Classification ML ............................................................................................. 29 

6.4.4. Threat Classification DL .............................................................................................. 29 

6.5. Security DA module............................................................................................................ 30 

6.6. Recommendation and Remediation Engine ..................................................................... 30 

6.7. Dashboard and APIs ........................................................................................................... 31 

7. CONCLUSIONS ................................................................................................................ 32 

7.1. Present status ..................................................................................................................... 32 

7.2. Future work ........................................................................................................................ 32 

8. REFERENCES .................................................................................................................. 33 



SHIELD D4.3 • Information-driven engine ready for experiments 

 

© SHIELD Consortium 
4 

LIST OF FIGURES ................................................................................................................. 35 

LIST OF TABLES................................................................................................................... 36 

LIST OF ACRONYMS ............................................................................................................. 37 

 REGULATORY COMPLIANCE .................................................................................. 39 

 

 

  



SHIELD D4.3 • Information-driven engine ready for experiments 

 

© SHIELD Consortium 
5 

1. INTRODUCTION 

1.1. SHIELD project overview 

The SHIELD project aims to deliver virtualised security services to protect the flow of data across 
the infrastructure controlled by the SHIELD platform and also to ensure that such 
infrastructures are properly attested and secured.  

To do so, several technologies are combined. The Network Function Virtualisation (NFV) and 
Software-Defined Networking (SDN) environments allow the deployment of virtualised services 
(NSs); whilst the Trusted Computing (TC) provides means to attest and verify whether the 
infrastructure is secured or trusted. Finally, the Big Data (BD) Analytics and Trusted Computing 
(TC) provide remediation suggestions to inactivate or destroy threats in any virtualised or 
physical node running on the SHIELD-managed infrastructure. 

1.2. Scope of this document 

The technical work of WP4 (“Usable information-driven engine”) is dedicated to the creation 
of a reliable and scalable cybersecurity framework, which offers Security-as-a-Service by 
exploiting the insights of network data analysis. This involves: (a) the development of 
acquisition and storage capabilities for data associated with cyberattacks; (b) the development 
of data analytics capabilities for anomaly detection and threat classification, by employing 
machine learning and deep learning techniques; (c) the development of adaptive cyberattacks 
mitigation capabilities, providing remediation policies to be deployed in specific places of the 
network; and (d) the development of a graphical user interface with operations and 
management capabilities, making SHIELD a cybersecurity. 

This document (D4.3, “Information-driven engine ready for experiments”) provides the last 
status regarding the DARE and Security Dashboard components. During M20-M27, SHIELD has 
continued the deployment, adjustment and configuration efforts on streaming data acquisition 
and storage, novel anomaly detection and classification models for near-real-time analytics and 
updated recommendation and remediation recipes for the DARE. Regarding the Dashboard, 
updates include integration with the vNSF Orchestrator, support of multi-user NS lifecycle 
management, as well as additional GUI features such as real-time notifications, NS inventory 
and catalogue views and visualizations for vulnerabilities attestation 

D4.3 inherits and extends the following deliverables: 

 D2.2 “Updated requirements, KPIs, design and architecture”, which gives the final, 
updated version of D2.1. 

 D4.2 “Updated specifications, design and architecture for the usable information-driven 
engine”, which contains the second iteration of design and specifications for the DARE 
platform and for the Security Dashboard, which was initially provided in D4.1. 
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1.3. Organisation of this document 

This document is organised as follows: 

● Section 1 (present section) serves as a basic introduction to this document and its 

scope; 

● Section 2 provides the overview of the final functional layout of the DARE platform; 

● Section 3 details the updates at the different levels (architecture and design, 

development) per WP4 component since D4.2; 

● Section 4 provides a summarized view of the requirements per WP4 component, along 

with explanations regarding the satisfaction of the agreed requirements. 

● Section 5 lists the instructions to perform the setup of the environment that supports 

the operations of the DARE platform and of the Security Dashboard; 

● Section 6 includes the guide for the installation of the WP4-related components; 

● Section 7 concludes the document, summarizing the WP4 work during the project and 

suggesting next steps for improvements; 

● Annex A provides the Ethical Regulatory Compliance requirements for the WP4 

components. 
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2. FINAL FUNCTIONAL LAYOUT 

Based on the SHIELD use cases and the requirements highlighted in Deliverable D2.2 [1], the 
designed high-level architecture for the SHIELD platform is articulated around six different 
components, illustrated in Figure 1 (vNSFs, Trust monitor, vNSF Orchestrator, vNSF Store, 
Security overview dashboard and DARE). The low detail architecture and the design of the 
components corresponding to WP4 where defined in D4.1 [2] and D4.2 [3]. These components 
(DARE and Dashboard) are the ones analysed in this deliverable where we expose their final 
state and their functionalities. The flows of data between these components is shown in Figure 
2. 

 

Figure 1: The SHIELD architecture 
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Figure 2: Data flow diagram of the DARE 

 

 

2.1. DARE architecture 

The DARE is composed by a central data analytics engine and a distributed set of data collection 
components. It is worth mentioning that it has been designed following a Big Data approach 
where the data value elicitation is divided into three different phases, as shown in Figure 3: 

1. Data acquisition and storage. 

2. Data analysis. 

3. Cybersecurity topologies. 

 

Following, we describe these subcomponents: 
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Figure 3: Architecture of the DARE 

 

Data Collector: it is responsible for acquiring the data generated in a monitoring vNSF, using the 
specific format of the technology provided by such vNSF. The collector is part of each 
monitoring vNSF and integrated into the diagram for clarification purposes.  

Data transformation: it is responsible for transforming the format-specific data into a generic 
format.  

Streaming service: it sends the information from the monitoring vNSF to the data analytics 
central engine, assuring reliability on the communication. 

Distributed File System / Cache: it is responsible for storing the collected data for both, batch 
(i.e. hard disks) or real-time (i.e. cache) processing.  

Data analytics framework: it is responsible for classifying the traffic for anomaly detection using 
machine learning techniques. 

Recommendation and remediation: it proposes, given a specific anomaly or threat detected, a 
set of vNSFs with the appropriate policies to be deployed in specific places of the network. 

Dashboard API: it pushes all the generated information to the Dashboard.  
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3. UPDATES SINCE D4.2 

In this section, all updates at the different levels (architecture and design, development) per 
WP4 component since D4.2 are listed, in order to better keep track of the development work 
that has been done to extend the engine’s capabilities. 

3.1. Data acquisition and storage 

The Data Acquisition phase is responsible for the efficient and reliable capture and storage of 
various heterogeneous data. It involves mechanisms and methods to capture and transfer files 
generated by network tools to the central data analytics engine. This phase is of high 
importance for ensuring the integrity of the data and their quality in further processing steps. 

As described in detail in D4.2, the distributed data acquisition module was implemented 
following a decentralized schema (Figure 4). This decentralized format is time efficient as far as 
read/write from/to HDFS [4] is concerned and since only relevant info is sent, network traffic is 
reduced inside infrastructure. 

 

 

Figure 4: Distributed data acquisition and storage architecture 

 

Distributed Collector 

Distributed collector was deployed to solve scalability issues of Spot’s original collector. It is 
fully integrated with vNSFs and supports netflow, DNS, and proxy traffic, security event and 
data metrics. Essentially what collector does is to monitor the file system and to detect new 
files. Then these raw files are converted into comma separated files and are published in Kafka 
topics [5]. 

Streaming Worker 

Streaming Worker was developed to register the processed data into corresponding Hive 
tables. Kafka topics and partitions are created and files read from each topic are stored to HDFS. 
Furthermore, records are inserted into Hive tables. Use of Streaming Worker was proven to be 
more time efficient in terms of time consumed for storage processes. 
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3.2. Data analysis phase 

The DARE leverages two different data analytics modules that export their findings to a shared 
Remediation engine, to produce optimal results. The Cognitive Data Analytics module is based 
on the Apache Spot platform [6], an in-development, and open-source project for network 
telemetry and anomaly detection. The Security Data Analysis module implements a version of 
Talaia’s proprietary network visibility solution based on the SecaaS architecture. The 
aforementioned modules are heavily modified and functionally enriched, with respect to the 
fulfilment of the SHIELD’s requirements. 

3.2.1. Cognitive Data Analysis Module 

New Anomaly Detection Algorithms 

One of the limits identified in the Apache Spot Framework was the lack of variety of machine 
learning algorithms. In the case of anomaly detection, only LDA [7] was supported. To overcome 
this limitation, several algorithms have been introduced by the SHIELD consortium, based on 
different Python frameworks and libraries. Depending on the selected framework, there was a 
relative impact on the performance compared to non-distributed processing environments, 
especially during the algorithms’ training phase. To mitigate this problem, the training phase 
has been removed from the DARE timeline, and introduced as maintenance algorithm lifecycle 
process (see Re-Train lifecycle capacity). 

Autoencoder 

Deep learning techniques are starting to see an application in the field of anomaly detection, 
due to their capability to extract complex features from raw data. For anomaly detection we 
have used autoencoders, which rely in reconstructing the input signal after going through a 
compressive path [8]. This type of networks are composed of two main parts, the encoder and 
the decoder (Figure 5). The encoder’s task is to compress the input data into a low 
dimensionality vector, while the decoder uses this vector as input, and tries to reconstruct the 
data with minimum losses. After being trained, the autoencoder will have adjusted its 
parameters to optimally reconstruct data similar to the one it was trained with. However, 
anomalies will present a high reconstruction error after being forwarded through this 
architecture. Then, the reconstruction error can be used to label a certain data point as 
anomaly or not.  

For SHIELD, we have created an Autoencoder composed of three layers. The first one 
containing 16 neurons corresponding to the following variables of the netflow traffic: 

 Protocol: has been encoded using on-shot technique producing a vector of 5 variables. 

 Flags: have been encoded using one-shot technique producing a vector of 6 variables. 

 Duration of the flow. 

 Origin and destination ports. 

 Number of packets and number of bytes per flow. 

The inner layer is composed by 12 neurons and the outer layer contains again 16 neurons. The 
reasons of the choice of this simple network are mainly two. On the one hand, the number of 
variables is relatively small (16) and on the other, we want to avoid false positives (normal traffic 
labelled as malicious). 



SHIELD D4.3 • Information-driven engine ready for experiments 

 

© SHIELD Consortium 
12 

 

Figure 5: An autoencoder. The phase between the input and the code is called encoder and the phase 
between the code and the output is called decoder. 

 

One class Support Vector Machines 

One class SVM [9] belongs to the unsupervised algorithms group using novelty as detection 
method. It is based on the applicability of Support Vector Machines (SVM), commonly used in 
classification supervised learning processes, but simplifying the problem to identify if one data 
point belongs to one anomaly class or not (one class). The algorithm is estimating the support 
of input’s distribution by identifying regions where most of the cases lie (Figure 6). This 
algorithm implies two main aspects when we think in the cybersecurity threat landscape. First, 
being an unsupervised method, it does not require any type of labelling process for the training 
phase, and second the novelty detection implies that the traffic must be clean in the training 
phase. These two properties can be very useful in order to work with some types of network 
cyber-attacks, such as zero-days attacks, where no training dataset or labelling process will be 
possible. Our implementation, extracts and normalizes relevant data from the netflow protocol, 
focusing in the relevant features of the network traffic, such as protocol family, ports, IPs, flow 
duration, bytes and packets per flow or number of similar flows. 

 

Figure 6: One-class SVM. The points within the decision boundaries are considered normal cases. 
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Isolation Forest 

IForest [10] provides an anomaly detection algorithm, exploiting the concept of “isolated” 
observations after applying a random forest of decision trees. The reasoning is simple, anomaly 
observations are easy to isolate because they will show a significantly shorter path length 
(Figure 7). IForest is suitable for huge amount of datasets and shows an acceptable memory 
usage [11] [12]. Precisely, these properties make IForest a very promising technique to apply in 
anomaly detection for cybersecurity incidents based on huge network flows, such as Telco or 
big corporations with massive traffic. Also, it’s worth mentioning that the training process can 
be achieved with normal and anomalous traffic in the same dataset, thus making it valid for 
production environments. 

 

Figure 7: Isolation Forest. Outliers (red) are less frequent than regular observations and require less 
splits (closer to the root of the tree). 

 

Local Outlier Factor 

LOF [13] is another anomaly detection algorithm based on outlier detection, where data points 
are seized using local density deviation with respect to their k-nearest neighbours. Regions of 
similar density correspond to normal data points, while points that have a substantially lower 
density than their neighbours can be considered to be outliers (Figure 8). This algorithm has 
shown promising results in some type of cybersecurity attacks, such as network intrusion [14], 
but suffers from a high computational resources demand. 
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Figure 8: Local Outlier Factor. Points that have a substantially lower density than their neighbours can be 
considered to be outliers. 

 

New Threat Classification algorithms 

While anomaly detection focuses on distinguishing outliers of network activity from normal 
traffic, threat classification is a classification technique that assigns these outliers to one of 
several predefined threat classes. Classification algorithms (also called classifiers) are 
supervised learning methods, meaning that they are trained with labelled datasets to recognize 
distinctive patterns, in order to classify all activity based on this information. From an intrusion 
detection perspective, classification algorithms can work in parallel with anomaly detection or 
in addition to it, to characterize anomalous network activity as malicious, benign, scanning, or 
as any other threat category of interest, using information like source/destination ports, IP 
addresses, and the number of bytes sent during a connection. The following threat 
classification algorithms have been implemented for the DARE Cognitive DA module: 

 

Random Forest 

Random forest is an ensemble supervised machine learning method used for classification. It 
constructs a multitude of decision trees at training time and outputs the mode of the classes 
(the most repeated value) of the individual trees as the final class [15]. Essentially, each tree’s 
prediction is counted as a vote for one class and the final label is predicted to be the class which 
receives the most votes (majority vote) (Figure 9). The algorithm applies the general technique 
of bootstrap aggregation (or bagging) to tree learners, leading to a better performance model 
by decreasing the variance, without increasing the bias [16]. Random forest is considered one 
of the best-performing ML algorithms [17], mainly because of its ability to remove decision 
trees' habit of overfitting the training set (being too much dependant of the training set and 
not performing so well in the testing set) [18] and of its unmatched classification accuracy 
compared to current algorithms. In the case of network traffic classification, the datasets are 
usually unbalanced since the majority class (normal traffic) is usually orders of magnitude 
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higher than the minority classes (attack flows). Therefore, classifiers are overwhelmed by the 
dominating class and tend to ignore the flows related to malicious activity. Random forest is of 
no exception, thus techniques like cost-sensitive learning and oversampling of the minority 
class are leveraged to tackle this issue.  

For our implementation, the scalable Spark MLlib framework [19] was used to design a Random 
Forest model of 50 trees, which was trained and evaluated using the datasets described later. 
Since Spark provides APIs in non-JVM languages such as Python, many data scientists use the 
latter, as it has a rich variety of numerical libraries with a statistical, machine-learning, or 
optimization focus. A parameterization grid was set to select the optimal values for the 
maximum tree depth (length of the longest path from a root to a leaf) and feature subset size 
(number of features to consider for splits at each node). 

 

Figure 9: Random Forest. It constructs a multitude of decision trees at training and outputs the mode of 
the classes of the individual trees. 

 

Multi-Layer Perceptron (MLP) 

MLP is a class of feedforward artificial neural networks, consisting of at least three layers of 
nodes (input, hidden, and output layers). In MLP, each neuron unit calculates the linear 
combination of its real-valued inputs and passes it through a threshold activation function 
(Figure 10). Learning occurs iteratively, by changing connection weights after each piece of data 
is processed, based on the amount of outputted errors compared to the expected result 
(backpropagation). The use of non-linear activation functions in the neural nodes can be 
implemented to reproduce a nonlinear function mapping, allowing to solve non-linearly 
separable problems, such as network anomaly classification [20] [21]. Using a carefully chosen 
set of features of the Netflow protocol as input signal, we were able to train and compare 
several MLP architectures to classify multiple normal and anomalous states, using the Deep 
Learning Studio platform [22] which leverages the open-source Keras neural network library 
[23].  
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The proposed architecture involves an input layer, a batch-normalisation layer, two hidden 
dense layers consisting of 36 and 12 nodes respectively and the output layer. The rectified 
linear unit (ReLU) is chosen as the activation function of the hidden dense layers, while Softmax 
is used for the output layer. The model was trained for 10 epochs using the Adagrad optimizer 
and categorical cross-entropy as loss function. The selected MLP model was integrated in the 
Cognitive DA module of the DARE, and it was further compared to the Random Forest classifier 
in terms of speed, robustness, and accuracy in capturing the essence of this system. 

 

Figure 10: MultiLayer Perceptron. Each neuron unit calculates the linear combination of its real-valued 
inputs and passes it through a threshold activation function. 

 

Re-Train lifecycle capacity. 

Cognitive models re-train lifecycle management allows the DARE, to re-train different 
algorithms over production environments with fresh datasets obtained during data acquisition 
and storage phase at specific intervals. This new capability of the Cognitive DA module is 
represented in Figure 11 and it can be deployed as a parallel process to avoid delays in the 
detection phase due to training. 

 

Figure 11: Periodic re-train lifecycle management of the DARE modules 

  

The re-training process can be adjusted to occur periodically, and for a specific time period, e.g. 
24h. It utilizes the network data from the ingestion subcomponents to produce new models 
that substitute the original ones. This allows us to update the algorithms over time, accounting 
for any differences in the network patterns, i.e. traffic increase or user behavioural changes. 
This is particularly useful for newly added anomaly detections algorithms. To this end, our new 
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implementation includes the feature of training with data from one specific date and exporting 
the trained model to be used for anomaly detection of the future traffic. 

3.2.2. Security Data Analysis Module 

Traffic Ingestion 

The Security DA Module is configured to ingest traffic from the distributed collector. The 
ingestion is performed by a Python service which monitors the HDFS for new traffic captured 
by the distributed collector. As soon as the traffic becomes available, the service will fetch it, 
transform it and send it to the anomaly detection engine to be ingested. 

 

Anomaly Detection 

The detection capabilities of the security DA module were extended to allow the detection of 
cryptocurrency mining activity inside the monitored network. More specifically, the machine 
learning algorithms that are part of Talaia’s anomaly detection engine were trained to be able 
to identify the Stratum protocol which is the de facto protocol that is currently being used to 
allow the communication between the mining software and the mining pool server. The 
detection of Stratum traffic automatically generates a new anomaly notification that includes 
all the flows that were generated from the mining activity. 

The Stratum protocol is used by a wide range of mining software and for mining different 
cryptocurrencies such as Bitcoin, Ethereum, Litecoin, etc. Therefore, by detecting Stratum 
traffic, the security DA module is capable of identifying cryptocurrency mining activity 
independent of the configuration and the type of the mined currency. Moreover, the detection 
only relies on the analysis of netflow traffic and does not require instrumentation and 
monitoring of the user equipment nor advanced DPI software to analyse the traffic down to 
the packet level. 

Anomaly Notification 

A monitoring service polls the engine frequently for new anomalies and as soon as a new one 
is detected, it is sending all related logs to the Recommendation and Remediation Engine and 
SHIELD’s Dashboard in the form of RabbitMQ messages [24]. 

3.3. Cybersecurity topologies phase 

The cybersecurity topologies component (Figure 12) is in charge of analyzing the attack data 
generated by the machine-learning modules of the DARE, decide an appropriate response to 
mitigate the threat, produce a set of medium-level policies and send them to the dashboard as 
recommendations, so that an administrator can be noticed and take remediation action. 
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Figure 12: Overview of the Recommendation and Remediation Engine 

 

Full RabbitMQ support 

The initial prototype of the cybersecurity topologies module reacted to new attacks by listening 
to a directory where an external entity had to copy a CSV file containing the attack report and 
used a RabbitMQ queue only to send the policies to the dashboard. 

The updated version of this module now fully supports also a RabbitMQ queue that can be used 
to receive the attack CSV data instead of copying a file in a specific watched folder. This has two 
main advantages over the previous approach. First, this method allows multiple attack reports 
to be sent in parallel, since each CSV file line is sent as a separate message. Second, it makes 
more homogeneous the interaction and integration between the DARE and the dashboard 
since now every module uses RabbitMQ queues to exchange the data. 

Constraints for the attack destination 

The attack remediation recipes can contain zero or more constraints that modify the produced 
policies. As an example, these constraints can be used to force the use of the “any port” value 
in the policies (this is useful, for instance, to write node isolation policies). 

The initial prototype of the cybersecurity topologies module allowed to place most of the 
constraints only on the source of the attack, while now it is possible to put these constraints 
also on the attack destination (i.e. the victim). This allows to write more flexible recipes and in 
turn to produce better tailored remediation policies. 
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3.4. Dashboard 

The Dashboard component enables users and applications to access SHIELD’s internal features, 
therefore being the entry point of SHIELD solution. The main architecture of Dashboard has not 
changed since D4.2, however their specified capabilities were implemented, enabling multi-
user lifecycle management, real-time notifications, incident summary, attestation and 
remediation (Figure 13). 

 

Figure 13: Security Incidents summary of the Dashboard 

 

In the current version of the Dashboard, multiple types of users can be created, namely 
Developers, SecaaS Clients and Cybersecurity Agents. For each SecaaS client multiple users can 
be created and associated with it. Each SeccaS client user is tied to a specific role which bounds 
it to perform a set of restricted actions, for instance a SecasS client admin has the ability to 
instantiate a service whereas remaining users can only view the instantiated services.  

Real-time notifications were enhanced, supporting vNSFO service instantiation status 
notifications, Trust Monitor notifications and Store onboarding notifications. 

The security attestation of vNSFs may result in remediation actions which are reported from 
the DARE to the Dashboard. From these actions, the client administrator can now choose the 
remediation and apply it to rectify a particular vNSF. 
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4. REQUIREMENTS MAPPING 

Based on D4.2, we address four types of requirements: i) platform requirements (PF), ii) non-
functional requirements (NF), iii) service requirements (SF) and iv) regulatory compliance 
requirements (ERC). In this section, the compliance of WP4 components to i), ii) and iii) is briefly 
justified from a general point of view (Table 1). The regulatory compliance of the DARE and the 
Dashboard is discussed in the Annex of this document. 

 

Table 1: Compliance of WP4 components to PF, NF and SF requirements. 

Component Requirements Justification 

DARE PF04, PF08, PF12,  
PF13, PF16, PF18, 
PF21, PF22 

The DARE offers real-time monitoring of network 
traffic collected by the vNSFs, by leveraging its set of 
distributed collector and streaming worker modules. 
It also utilizes machine-learning algorithms optimized 
for distributed computing frameworks, to analyse the 
ingested traffic in near-real-time. The platform is 
expandable, having already showcased that it can 
support several analytics engines based on open-
source principles. When an attack is detected, 
information is provided to the Remediation Engine in 
order to construct a recommendation message that is 
then forwarded to the Dashboard in an encrypted 
manner. The platform retains historic data stored in 
its distributed file system, available for processing and 
reporting. 

NF01, NF02, NF03, 
NF04, NF05, NF06, 
NF07, NF08 

The platform incorporates SotA scalable, streaming 
processing technologies (Hadoop, Hive, Spark, Kafka) 
to process and analyse the ingested data in a relatively 
short time, regardless of its volume. When 
performance is degraded due to increasing data 
volume, adding more data nodes to the infrastructure 
can improve the system’s performance significantly. 
Load-balancing and resource management 
functionalities (YARN) are also integrated to its 
infrastructure to ensure a stable user experience. All 
DARE modules are easily installed and maintained, 
following the steps of their detailed documentation. 
Finally, the engine inputs and exports data in ways 
that conform to well-established data input formats 
(Netflow). 
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SF01, SF02, SF03, 
SF04, SF05, SF06, 

 SF07, SF08, SF09, 
SF10, SF11, SF12  

The engine already complies with all mandatory 
service functional requirements: It offers effective 
mitigation mechanisms for malware spreading and 
volumetric Denial of Service attacks. It supports 
advanced processing services, such as L4 traffic 
filtering, multi-source log monitoring, correlation and 
alert generation (Remediation engine). It is capable of 
detecting attacks with a wide range of techniques 
(.nfcapd and .pcap protocols), similar to an IDPS. The 
DARE doesn’t support optional service functional 
requirements such as phishing detection, honeypots 
and sandboxing techniques 

Dashboard PF03, PF05, PF06, 
PF07, PF09, PF12, 
PF13, PF14, PF15, 
PF16, PF17, PF20, 
PF21, PF22 

The operator is able to control the lifecycle of vNSFs 
via GUI, supporting the onboarding, instantiation, 
chaining, configuration, monitoring and termination 
of vNSFs. Different users can be created for the same 
SecaaS client by the SecaaS admin. Any access to the 
SHIELD platform is protected by authentication and 
authorization mechanisms. A particular user, namely 
Cyberagent, is created for each SecaaS instance in 
order to share logs with a third-party identity, namely 
a Cybersecurity Agency. It is possible to trigger 
remediation actions in order to mitigate threats and it 
is also possible to monitor in real-time the detected 
threats in a particular vNSF. 

NF01, NF02, NF03, 
NF07, NF08, NF09 

The notification reports about a particular action take 
place in a matter of seconds, however the triggering 
of actions to third-party modules can take longer, e.g. 
instantiation of a service. The setup and execution of 
Dashboard can be performed by a single command. 

SF05, SF11, SF12 Optional service functional requirements are not 
supported yet, but may be considered for the final 
release. 
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5. ENVIRONMENT SETUP GUIDE 

5.1. CDH framework installation and configuration 

CDH [25] is an Apache-licensed open source framework and is considered as the most popular 
distribution for Apache Hadoop and related projects. CDH delivers the core elements of 
Hadoop, scalable storage and distributed computing, along with a Web-based UI and enterprise 
capabilities (Figure 14). CDH provides multiple benefits in terms of flexibility, integration, 
scalability, security, high availability and compatibility. 

 

 

Figure 14: List of CDH supported services 

 

Hardware specifications 

Our proposed CDH setup comprises of 3 Ubuntu 16.04 VMs running on ESXi hosts. The first VM 
is the Cloudera Master host and runs Hadoop master processes such as the HDFS NameNode 
and YARN Resource Manager. The second VM is the Cloudera Edge Node host and acts as the 
client access point for launching jobs in the cluster.  Finally, the last VM is the Cloudera Worker 
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host which runs DataNodes and other distributed processes such as Impala. Following are the 
resource specifications of the hosts as well as the roles assigned to each host. 

 

Table 2: Resource specifications and assigned roles of hosts. 

Hosts # of CPUs Memory (GB) Disk (GB) Roles 

Cloudera 
Manager 

8 20 400 ·  HDFS DataNode 

·  HDFS HttpFS 

·  HDFS NFS Gateway 

·  HDFS SecondaryNameNode 

·  Hive Gateway 

·  Hive MetaStore Server 

·  HiveServer2 

·  Impala Daemon 

·  Kafka Gateway 

·  Kafka MirroMaker 

·  Activity Monitor 

·  Alert Publisher 

·  Event Server 

·  Host Monitor 

·  Service Monitor 

·  Spark Gateway 

·  YARN JobHistory Server 

·  YARN NodeManager 

·  YARN  ResourceManager 

Cloudera 
Edge Node 

8 20 400 ·  HDFS Balancer 

·  HDFS NFS Gateway 

·  HDFS NameNode 

·  Hive Gateway 

·  Impala Catalog Server 

·  Impala StateStore 

·  Kafka Gateway 

·  Kafka Broker 
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·  Spark Gateway 

·  ZooKeeper Server 

Cloudera 
Worker 

8 20 400 ·  HDFS DataNode 

·  HDFS NFS Gateway 

·  Hive Gateway 

·  Impala Daemon 

·  Kafka Gateway 

·  Kafka Broker 

·  Spark Gateway 

·  Spark History Server 

·  YARN NodeManager 

 

CDH environment setup and configuration 

The installation procedure is sufficiently documented in Cloudera’s installation guide and 
requires 7 main steps as follows: 

Step 1: Configure a Repository:  
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/configure_cm_repo.html
#cm_repo  

Step 2: Install JDK: 
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cdh_ig_jdk_installation.h
tml#topic_29  

Step 3: Install Cloudera Manager Server: 
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/install_cm_cdh.html#cmi
g_topic_6_6  

Step 4: Install Databases: 
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cm_ig_installing_configu
ring_dbs.html#cmig_topic_5  

Step 5: Set up the Cloudera Manager Database: 
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/prepare_cm_database.ht
ml#cmig_topic_5_2  

Step 6: Install CDH and Other Software: 
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/install_software_cm_wiz
ard.html#cm_installation_wizard  

Step 7: Set Up a Cluster: 
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cluster_setup_wizard.ht
ml#concept_b4d_wkh_ycb  

https://www.cloudera.com/documentation/enterprise/6/6.0/topics/configure_cm_repo.html#cm_repo
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/configure_cm_repo.html#cm_repo
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cdh_ig_jdk_installation.html#topic_29
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cdh_ig_jdk_installation.html#topic_29
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/install_cm_cdh.html#cmig_topic_6_6
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/install_cm_cdh.html#cmig_topic_6_6
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cm_ig_installing_configuring_dbs.html#cmig_topic_5
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cm_ig_installing_configuring_dbs.html#cmig_topic_5
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/prepare_cm_database.html#cmig_topic_5_2
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/prepare_cm_database.html#cmig_topic_5_2
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/install_software_cm_wizard.html#cm_installation_wizard
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/install_software_cm_wizard.html#cm_installation_wizard
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cluster_setup_wizard.html#concept_b4d_wkh_ycb
https://www.cloudera.com/documentation/enterprise/6/6.0/topics/cluster_setup_wizard.html#concept_b4d_wkh_ycb
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6. INSTALLATION GUIDE 

6.1. Open Source status 

The WP4 components are available at the SHIELD organization’s public repository in Github: 
https://github.com/shield-h2020. All of them with the exception of the Security DA module are 
shipped under the Apache 2.0 license. The latter is derived from the security module of Talaia’s 
commercial product and is integrated into the SHIELD platform as a closed source, stand-alone 
component. 

The data acquisition components (namely the Distributed Collector and the Streaming Worker) 
are located at the repositories named “vnsfs-collectors” and “dare-workers” respectively, 
under the SHIELD organization, with the link provided above. The analytics components 
(Apache Spot and the anomaly detection and threat classification components of the Cognitive 
DA module) are located at the “dare” repository. Finally, the Remediation Engine component 
is available at the “dare-sec-topo” repository and the Security Dashboard is located at the 
“dashboard” repository. The contents of all these repositories provide the source code of their 
component, the installation and deployment scripts and the documentation regarding setup, 
configuration and deployment. All the developments that were presented in the demos 
corresponding to the year two review have been marked as a release tag v0.2 in the 
repositories. 

6.2. Apache Spot 

The DARE Cognitive DA leverages Apache Spot [6] as a built-in, community-driven cybersecurity 
solution, to bring advanced analytics to all IT Telemetry data on an open, scalable platform. It 
is an open-source software for leveraging insights from flow and packet analysis which 
expedites threat detection, investigation, and remediation via machine learning and 
consolidates all enterprise security data into a comprehensive IT telemetry hub based on open 
data models. Spot’s scalability and machine learning capabilities support an extendable 
ecosystem of ML-based applications that can run simultaneously on a single, shared, enriched 
dataset to provide organizations with maximum analytic flexibility. 

Apache Spot version 1.0 was released in August 7, 2017 and is the latest stable release used by 
the DARE. It can be cloned from the following link (as tarball): 

https://www-us.apache.org/dist/incubator/spot/1.0-incubating/apache-spot-1.0-
incubating.tar.gz 

Alternatively, you can clone our forked repository1 which contains all relevant DARE modules, 
including Apache Spot. 

You can verify this release using 1.0 signatures and checksums[PGP, SHA-512, MD5] with 
project release KEYS. 

In order to validate the build follow the instructions: 

                                                      
1 https://github.com/shield-h2020/dare 

https://github.com/shield-h2020
https://www-us.apache.org/dist/incubator/spot/1.0-incubating/apache-spot-1.0-incubating.tar.gz
https://www-us.apache.org/dist/incubator/spot/1.0-incubating/apache-spot-1.0-incubating.tar.gz
http://www-eu.apache.org/dist/incubator/spot/1.0-incubating/apache-spot-1.0-incubating.tar.gz.asc
http://www-eu.apache.org/dist/incubator/spot/1.0-incubating/apache-spot-1.0-incubating.tar.gz.sha512
http://www-eu.apache.org/dist/incubator/spot/1.0-incubating/apache-spot-1.0-incubating.tar.gz.md5
http://www-eu.apache.org/dist/incubator/spot/KEYS
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 Download the tarball from the above link. 

 Decompress the tarball:  
tar -zxvf apache-spot-1.0-incubating.tar.gz 

 Change directory:  
cd apache-spot-1.0-incubator 

Since Apache Spot is composed of more than one module or sub-projects, some of them need 
compilation, while others (Python or Javascript based) don’t. 

To install each module please follow the below instructions: 

 Decompressed tarball content should be the same with the content located in: 

https://github.com/apache/incubator-spot/tree/v1.0-incubating 

 To install each component please follow the official documentation guide: 

http://spot.apache.org/doc/#installation 

 

 Spot-ingest (centralized), Spot-setup, Spot UI and Spot-OA have specific requirements to 

install manually. 

http://spot.apache.org/doc/#configuration 

http://spot.apache.org/doc/#ingest 

http://spot.apache.org/doc/#oa 

http://spot.apache.org/doc/#ui 

 Spot-ML is the only component to build the binary files using sbt assembly commands. To 

install it follow these instructions: 

http://spot.apache.org/doc/#ml 

We have realised that due to the work that has been done during the first year of the project, 
several subcomponents have been redefined, mainly because of changes in the state-of-the-
art from the moment when the proposal was submitted and because of the more extensive 
knowledge gained within the consortium. However, none of these changes impose a major shift 
from the overall technical approach of the project, as laid out in the DoA. 

Although we expect to acquire new knowledge and get more insights during the development 
phase, the consortium does not envision major adjustments during the updates of the design 
deliverables (D2.2 - M17, D3.2-M19 and D4.2-M19). Note that the work exposed in this 
deliverable perfectly separates the Architecture and Design (blocks and workflows), the 
specifications (requirements from the technical point of view) and the implementation (the 
technologies used). This separation isolates the subcomponents in a way that the implications 
of a change in any of these aspects (architecture, design, specifications and implementation) 
will be minimised. 

As an Innovation Action, SHIELD’s vision is to leverage state-of-the-art techniques and try not 
to reinvent the wheel. To this end, SHIELD has studied the most mature open source 
technologies and has concluded that Apache Spot will be the main solution to be reused and 
improved to build the DARE. Apache Spot has some of the most important functionalities 
needed by the DARE (ingestion, data treatment, extensible analytic framework and a 
dashboard) however, it is missing some relevant aspects needed by SHIELD. Firstly, Apache Spot 
has been built to be a batch solution and although streaming technologies have been 

https://github.com/apache/incubator-spot/tree/v1.0-incubating
https://spot.incubator.apache.org/doc/#installation
https://spot.incubator.apache.org/doc/#installation
https://spot.incubator.apache.org/doc/#installation
http://spot.apache.org/doc/#configuration
http://spot.apache.org/doc/#ingest
https://spot.incubator.apache.org/doc/#oa
https://spot.incubator.apache.org/doc/#ui
http://spot.apache.org/doc/#ml
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considered, the collection of data is completely centralised (workers read a folder for new files). 
This is not enough for SHIELD since one of the envisioned functionalities is the capacity to 
process vNSF logs and alerts in real-time. Secondly, the platform offers an anomaly detection 
algorithm based on probabilities of events however, neither classification of threats is being 
done nor real-time processing. Moreover, since Spot is completely lacking threat mitigation and 
recommendation functionalities, these will be originally developed, so that the capabilities of 
the DARE are in accordance with what was initially envisioned in the DoA.  Finally, as SHIELD 
must integrate information from multiple sources in the Dashboard (Store, vNSF Orchestrator, 
recommendations, and results from Security engine and results from Cognitive engine), it will 
not use the dashboard provided by Spot, but will directly use the API provided by the analytics 
framework. 

With all these aspects in mind, we conclude the second iteration of the project design and we 
enter the second iteration of the development phase, having drafted a clear technical roadmap 
till the end of the project. 

6.3. Distributed Collector and Streaming Worker 

Distributed collector is a daemon that runs in each vNSF (one collector per vNSF). When a new 
file is created, collector detects it and then the file is decoded and translated into comma-
separated output with specific structure. Then, the Apache Avro serialization framework [26] is 
used to convert the output to an Avro-encoded format and send it afterwards to the Apache 
Kafka streaming platform. In the Kafka cluster, published messages are consumed by streaming 
workers daemons in the analytics engine. The role of the Streaming Worker is to listen to a 
particular topic of the Kafka cluster and consume the incoming messages. Streaming data is 
divided into batches (according to a time interval). These batches are deserialized by the 
Worker, according to the supported Avro schema, parsed and registered in the corresponding 
table of Hive. Streaming Worker can be deployed in local, client or cluster mode. 

Installations thus, includes dependencies in Python regarding: 

 Avro serialization framework 

 Kafka-python for the Apache Kafka distributed system 

 Watchdog – a Python API and shell utilities that monitor file system events 

Moreover, in Linux OS there is a dependency with pip the Python package manager and in order 
to process specific pipelines, installation on appropriate tools is needed: 

 Spot-nfdump – a version for processing netflow 

 Tshark – a part of wireshark distribution for processing pcap files. 

Required installation and dependency files along with detailed configuration can be found at 
SHIELD public repositories23. 

                                                      
2 https://github.com/shield-h2020/vnsfs-collectors 
3 https://github.com/shield-h2020/dare-workers 
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6.4. Cognitive DA module 

6.4.1. Anomaly Detection DL 

The Autoencoder is developed using Python and using the PySpark library to run it in SPOT 
architecture based on Spark. Moreover, as the Autoencoder uses neural networks, it is 
necessary to install a deep learning framework. In this case we have used BigDL [27], a 
framework supported by Intel that is focused on Deep Learning in CPUs (in contrast to most 
frameworks that are designed only for GPUs). 

Installation includes the following steps: 

1. Install BigDL 

2. Install Python 

3. Install PySpark and Numpy 

4. Download the code from SHIELD public repository 4 

5. In order to execute the detection use the following command: 
./ml_security_zoo.sh PHASE TYPE YYYYMMDD 

./ml_security_zoo_csv.sh PHASE TYPE YYYYMMDD 

where: 
./ml_security_zoo.sh is for parquet data sources. 

./ml_security_zoo_csv.sh is for csv data sources. 

PHASE can be train or test, for training or detection stages. 

TYPE should be flow. (a.k.a. netflow) 

YYYYMMDD specific date to use for training or current date for detecting anomalies. 

6.4.2. Anomaly Detection ML 

Anomaly detection ML installation expands the algorithms available in the Apache Spot ML 
module from DARE. Installation includes the following steps: 

1. Install python library dependencies such as pandas, numpy or scikit-learn 

2. Clone or download the spot-anomalies module developed from SHIELD public repository. 

3. Edit the Apache Spot configuration file (spot.conf) to customize relevant parameters 

training and testing dataset paths, specific to algorithms parameters (OCSVM, iForest, LOF) 

In order to manage this module, a common command is provided: 

./ml_security PHASE TYPE YYYYMMDD 

where: 

PHASE can be train or test, for training or detection stages. 

TYPE should be flow. (a.k.a. netflow) 

                                                      
4 https://github.com/shield-h2020/dare/ 
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YYYYMMDD specific date to use for training or current date for detecting anomalies. 

Anomaly detection module installation, detailed configuration and management is depicted in 
the public SHIELD GitHub repository5. 

6.4.3. Threat Classification ML 

The Apache Spark distributed-computing framework is leveraged to implement a scalable 
Random Forest classifier using the MLLib library. Our implementation utilizes the PySpark API 
to train a Random Forest model using labeled data, which can then be used to label the outliers 
detected by the Anomaly Detection modules. Since our installation involves an existing CDH 
cluster, our implementation can be executed in a distributed manner across all nodes, with the 
help of the YARN cluster manager. When run on YARN, Spark application processes are 
managed by the YARN ResourceManager and NodeManager roles. 

Please note that this module requires Spark version 2.2.1 or higher and Python 3.4 or higher. 
Follow the instructions below to install the Random Forest classifier to any node of the CDH 
cluster: 

1. Download or clone the Random Forest module developed from SHIELD public repository6.  
2. Install the necessary Python3 libraries, following the module’s documentation.  
3. You can either use the pretrained Random Forest model, or you can train your own using a 

labelled dataset with the following command: 
./classifier3.sh train <HDFS_PATH_OF_LABELED_DATA> <#_OF_TREES(opt.)> 

4. You can make predictions for unlabeled netflow data that is ingested and stored in the Hive 
DB, with the following command: 
./b_sim_anom_class_pub.sh <YYYYMMDD> 

The output of the classification procedure is being saved at the path where the trained model 
exists. You can edit these paths by modifying the threat_classifier0.4.py script. The classification 
report is sent to the correct topics of the Remediation Engine and to the Dashboard via the 
RabbitMQ queue. 

6.4.4. Threat Classification DL 

The MultiLayer Perceptron classifier serves as an alternative to the Random Forest classifier 
described above, and further expands our data analytics solutions. It is developed using the 
desktop version of the Deep Learning Studio, which is compatible with a number of open-
source programming frameworks, popularly used in artificial neural networks, including MXNet 
and Google's TensorFlow.  

Our netflow classification model was developed using the Keras environment, a high-level 
neural networks API, written in Python and capable of running on top of TensorFlow, developed 
with a focus on enabling fast experimentation. The trained model can be imported and 
executed on a node of the CDH cluster, following the steps below: 

1. Download or clone the MLP-classifier module developed from SHIELD public repository7.  

                                                      
5 https://github.com/shield-h2020/dare 
6 https://github.com/shield-h2020/dare/tree/master/classifier_ml 
7 https://github.com/shield-h2020/dare/tree/master/classifier_dl 
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2. Install necessary Python3 and libLAS packages (if not already installed). 
3. Install Tensorflow, Keras and sklearn dependencies 
4. Perform the classification procedure on netflow data using the trained model, by running 

the following command:  
python3 test.py <NETFLOW_FILE.CSV> tensorflow 

The results will be output to test_result.csv on the same directory with the model. 

6.5. Security DA module 

The installation of the Security DA Module depends on the installation of an instance of Talaia’s 
engine8 that is running the latest anomaly detection models. In the same environment it is 
required to copy the two python-based scripts that are responsible for performing the traffic 
ingestion and the anomaly notification tasks, watch_nfcapd.py and anomaly_reporter.py 
respectively.  

The watch_nfcapd.py requires the configuration of the IP address of the HDFS namenode of 
the Apache Spot cluster and the directory in which the distributed collector saves the collected 
traffic. 

The anomaly_reporter.py requires the configuration of the RabbitMQ settings so that the 
logs from the anomaly reports can be sent to the correct topics and subsequently read by the 
Dashboard and the Recommendation and Remediation engine. 

As soon as the configuration is complete, these two scripts can be ran from the command line 
without any further arguments. 

6.6. Recommendation and Remediation Engine 

The Remediation Engine is a collection of Python 3 scripts, available at the SHIELD public 
repository9 and they require a quick and minimal setup in order to be configured and running. 
You can find the  

Installation steps: 

1. First, you need a working Python 3 environment. Installing the pip3 package is also 
suggested. In a Debian/Ubuntu Linux environment this can be accomplished by typing: 
# apt install python3 python3-pip 

2. Once the remediation engine source code has been downloaded, the additional Python 
packages can be installed by issuing the command: 
$ pip3 install -r requirements.txt 

3. Now, the actual remediation engine component can be installed in the current Linux box: 
$ python3 setup.py install 

4. It is also suggested to launch the integrated tests by issuing the command: 
$ python3 setup.py test 
All the tests must succeed. 

5. The module can be used as a standalone daemon by using the following command: 
$ python3 daemon.py -c /path/to/cybertop.cfg -l /path/to/logging.ini 

                                                      
8 https://www.talaia.io/Big-Data-Engine 
9 https://github.com/shield-h2020/dare-sec-topo 
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The two files cybertop.cfg and logging.ini are used to respectively configure the 
daemon itself and the verbosity of its logs. Some examples are already provided in the 
tests folder. 
Alternatively, the module can also be installed as a system service so that it is automatically 
started when the system boots. This can be achieved by executing: 
# daemon/cybertop_systemd_install.sh 

6. To setup the service the configuration file /etc/default/cybertop must be manually 
edited. In particular it must be modified in order to find the cybertop.cfg and 
logging.ini configuration files for the actual daemon configuration. 

6.7. Dashboard and APIs 

The Dashboard component is deployed as a multi-container application using the Docker 
Compose tool. The only requirements for the host system are Docker (17.06.0 or later) and 
Docker Compose (3.0 or later). 

You can download or clone the Dashboard module from SHIELD public repository10. The setup 
and execution of the Dashboard can be performed using the provided “run.sh” script, for 
instance:  
./run.sh --environment .env.production --verbose 

This command will raise the application containers and use the configuration environment for 
production. Different environment configurations can be added or modified by creating or 
changing “.env” files. 

In the case of Dashboard being setup for the first time the following additional command 
must be executed in order to initialize the database:  
docker exec -it docker_dashboard-persistence_1 bash -c 

"/usr/share/dev/dashboard/docker/setup-datastore.sh --environment 

.env.production" 

To be noted that the “setup-datastore.sh” script also uses an environment configuration 
(.env.production in this example) which should be the same of the one used in the “run.sh” 
script. 

From this point on, the ISP operator can access the Dashboard frontend in 
http://DASHBOARD_GUI_HOST_WEB , where the “DASHBOARD_GUI_HOST_WEB” is the 
IP/hostname defined in the environment configuration file. The default ISP operator credentials 
are: 

username: admin 

password: adminpass 

client:   default 

 

                                                      
10 https://github.com/shield-h2020/dashboard 

http://dashboard_gui_host_web/
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7. CONCLUSIONS 

7.1. Present status 

This document presents the final version and the technical details of the information-driven 
Data Analysis and Remediation Engine as well as of the Dashboard. The document starts with 
describing the final layout of the DARE architecture, along with all major updates and additions 
to the WP4 components, since the last deliverable (D4.2). This facilitates the reader to keep 
track of all the development work that has been done to extend the engine’s capabilities in the 
last phase of the project. 

After this, we provide the final mapping of requirements and how does each component fulfil 
them. That covers platform functional and non-functional requirements, as well as service 
functional and ethical compliance requirements (the latter being described at the following 
Annex). The environment and virtual infrastructure setup, as well as the installation and 
configuration guides are provided to give a high-level view on how to deploy the SHIELD 
platform from scratch, by following the provided steps, related to the environment and 3rd 
party tools required for the platform and to the deployment and configuration for the WP4 
components described above. 

7.2. Future work 

The work of all WP4 tasks (i.e., mostly on the development side) concludes with the delivery of 
this report. The integration and assessment procedures of the WP4-based components with 
the rest of components in the SHIELD platform will continue until the end of WP5 and the 
termination of the project itself. The results of the WP4 activities will be provided in the final, 
upcoming demonstrations; and may be advertised and exposed through dissemination efforts 
like events (Winter School) and papers. 
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Acronym Meaning 

API Application Programming Interface 

DARE Data Analysis and Remediation Engine 

DDoS Distributed Denial of Service 

DNS Domain Name System 

DoS Denial of Service 
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GDPR General Data Protection Regulation 
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HDFS Hadoop Distributed File System 
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 REGULATORY COMPLIANCE 

D4.2 provides an overview of the EU regulatory ecosystem that affects SDN/NFV adoption such 
as GDPR, ePrivacy, net neutrality etc. A set of regulatory compliance specifications was created, 
for each WP4 component that parses personal data in any form. D2.3 also provides compliance 
requirements. This Annex provides the mapping of Requirements to the individual 
components, as of Year 2. 

 

Table 3: Compliance of WP4 components to PF, NF and SF requirements. 

Components Requirements Justification 

DARE ERC01, ERC02, ERC04, 
ERC05, ERC06, ERC09 

The DARE storage and processing components 
expose methods for accessing and deleting 
personal identifiable information, as all relevant 
data (stored in the HDFS and in the Hive DB) is 
easily retrieved by IP address which can be 
associated to persons. In terms of analytics, since 
the DARE offers multi-user support, each user 
can gain access only to threat results that are 
relevant to his organisation. This data can be 
erased upon request or after a user-defined 
period of time, without affecting the efficiency of 
the ML-based modules. Moreover, all anomaly 
detection and threat classification modules are 
based on open-source technologies and are thus 
transparent in terms of data processing. The 
Security DA module is a commercial product and 
as such some specific details related to the exact 
algorithmic implementations may not be 
disclosed. 

Dashboard ERC03, ERC04, ERC05, 
ERC06, ERC09 

 

The Dashboard provides transparent procedures 
with regard to all its available services: It 
presents simple information when a NS is 
selected, including (contact details of the data 
controllers, data protection and regulatory 
compliance info, as well as a log of any action to 
throttle or block traffic). In case of personal data 
breach, it conveys a notification to the contact 
associated with the tenant.  

 


