
SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
1

Deliverable D4.2

Updated specifications, design, and
architecture for the usable
information driven engine

Editor F. Ferreira (Ubiwhere)

Contributors G. Gardikis, S. Pantazis, G. Kolonias (Space Hellas), R.
Preto (Ubiwhere), C. Fernandez, B. Gaston (i2Cat), P.
Adamidis, A. Litke, N. Papadakis, D. Papadopoulos
(INFILI), G. Dimopoulos (Talaia), M. De Benedictis
(POLITO), O. Segou (ORION), J. N. Mendoza (TID).

Version 1.0

Date March 31st , 2018

Distribution PUBLIC (PU)

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
2

Executive Summary

Following the work done in D2.1/D2.2, where the requirements of the SHIELD platform were
elicited and the high-level design and architecture of the platform was exposed, a detailed
study of the different components has been done in order to obtain the low-level architecture
and design (subcomponent granularity), the specifications (transformation of the user
requirements into technical requirements/specifications) and the implementation guide
(technologies to use). This work has been divided into the two technical development work
packages of SHIELD namely WP3 and WP4. Hence, this deliverable covers the two components
developed within WP4, i.e. the data analysis and remediation engine (DARE) and the security
dashboard.

From the point of view of the low-level architecture, we expose some changes in
subcomponents from the technical architecture exposed in the Description of the Action (DoA)
of the project. Firstly, we have simplified some subcomponents with the objective to avoid
using technologies with specifications that SHIELD does not use. For example, the Enterprise
Service Bus (ESB) has been replaced by a streaming service, since it is only needed to
communicate information from the Virtual Network Security Functions (vNSFs) to the central
DARE and hence, no bidirectional flow or multi-cast is needed. It is worth mentioning that
SHIELD already identified several phases for the information treatment and valorisation, the
main task of the WP4. These phases are defined in detail from the bottom (data ingestion) to
the top (data visualisation) of the data valorisation stack. Between them, we define the data
analysis phase to detect anomalies in the network and classify them, and the cybersecurity
topologies phase, which recommends specific remediations to the detected threats in the form
of new network services (sets of vNSFs) or reconfiguration of existing ones.

In terms of design, we have identified the five user stories behind the three use-cases of SHIELD,
namely: i) vNSFs deployment, ii) vNSF withdrawal, iii) anomaly detection, iv) recommendation
deployment and v) monetisation definition. From these user stories, we have exposed and
updated the workflow between subcomponents and also between the subcomponents of the
WP4 and the components of WP3. These workflows identify the flow of information and tasks
that define and compose every user story.

One of the main aspects exposed in this deliverable is the transformation of the user
requirements into specifications or technical requirements. Since SHIELD’s engineering process
is based on two iterations of the requirements elicitation, the final specifications and design of
these components is herein provided, based on the preliminary work in D4.1 and the updated
requirements in D2.2. This work concludes the transformation of user requirements into a high-
level design and architecture, that later evolves to technical specifications. The deliverable is
also updated with ethical and regulatory compliance (ERC) requirements and a Regulatory
Compliance section that focus on maintaining the platform’s alignment with the EU regulatory
landscape, mainly regarding the General Data Protection Regulation (GDPR). The possible
implications of these updated requirements in every phase and subcomponent have been
identified and the requirements have been translated from the business language used in
D2.1/D2.2 to the technical language needed for the developments. As a further evolution from
D3.1, this deliverable also focuses on the Dashboard’s Role-Based Access Control (RBAC) and
on the implemented billing framework.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
3

Finally, following the detailed research on the most relevant technologies in the fields of
cybersecurity, big data and data visualisation, our conclusion remains that Apache Spot [1] is
currently the best choice for the technical base for the DARE. In the context of SHIELD, Spot is
currently being used as the starting point for the DARE developments. The necessary extensions
to the core Spot platform in order to fulfil the SHIELD requirements are currently under
development and involve functionalities such as: distributed data collection; near-real time
operation; alternative anomaly detection methods; threat classification and labelling;
mitigation capabilities; multi-user support and visualisation; optimised operation in a Network

Function Virtualisation (NFV) environment and enhancement of the data model to support for
more types of information. All technical advancements and specification updates since D4.1
can be found in Annex A.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
4

Table of Contents

1. INTRODUCTION ... 6

1.1. SHIELD project overview .. 6

1.2. Scope of this document ... 9

1.3. Organisation of this document .. 10

2. DESIGN AND ARCHITECTURE .. 11

2.1. Guiding principles ... 11

2.1.1. Multi-user aspects in SHIELD.. 11

2.1.2. Security concerns .. 12

2.1.3. Billing rationale ... 12

2.1.4. Untrusted nodes policy .. 13

2.2. Low-level Architecture ... 13

2.2.1. The DARE ... 13

2.2.2. The Security Dashboard ... 15

2.3. Design ... 16

2.3.1. vNSF Deployment and Withdrawal .. 17

2.3.2. Anomaly Detection ... 18

2.3.3. Recommendation deployment .. 20

2.3.4. Monetisation definition .. 21

2.4. Data acquisition and storage Phase .. 22

2.5. Data analysis phase .. 24

2.6. Cybersecurity topologies phase .. 28

2.6.1. The recommendation and remediation subcomponent .. 28

2.6.2. The Dashboard API subcomponent ... 30

2.7. Security Dashboard .. 30

3. SPECIFICATIONS AND IMPLEMENTATION... 34

3.1. Data acquisition and storage ... 38

3.2. Data analysis phase .. 42

3.3. Cybersecurity topologies phase .. 49

3.4. Dashboard .. 56

4. REGULATORY COMPLIANCE SPECIFICATIONS ... 68

4.1. EU regulatory framework .. 68

4.2. Best practices ... 71

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
5

4.3. Regulatory compliance specifications ... 73

4.3.1. DARE Compliance Specifications .. 74

4.3.2. Dashboard Compliance Specifications ... 77

4.4. Compliance and Certification .. 79

5. CONCLUSIONS .. 83

5.1. Status of the usable information-driven engine ... 83

5.2. Future work .. 84

6. REFERENCES .. 85

LIST OF FIGURES ... 89

LIST OF TABLES... 90

LIST OF ACRONYMS ... 91

 TECHNICAL UPDATES AND REVISIONS ... 93

A.1. The DARE .. 93

A.2. Data acquisition and storage ... 94

A.3. Data analysis ... 94

A.4. Cybersecurity topologies ... 95

A.5. The Security Dashboard ... 95

A.6. Listing of changes from D4.1 ... 96

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
6

1. INTRODUCTION

1.1. SHIELD project overview

This document presents the low-level architecture, design and specifications of the
components involved in the usable information-driven engine, within WP4. This deliverable
starts from the high-level architecture, design and requirements presented in D2.2 [2], and
provides specific details of the components’ design, definition and their suitability regarding
the SHIELD requirements.

SHIELD, as a use case driven project, aims to cover the functionality required by the following
three use cases (already defined in D2.2 but briefly recalled here for the sake of completeness):

 Use case 1: An Internet Service Provider (ISP) using SHIELD to secure its own
infrastructure. This UC involves the ISPs deploying vNSFs in their network to detect
incidents (Figure 1).

Figure 1: High-level picture of the use-case 1

 Use case 2: An ISP leveraging SHIELD to provide advanced SecaaS services to customers.
This UC assumes that network security services (consisting of vNSFs), along with real-
time incident detection and management, are offered as-a-Service to ISP clients, such
as enterprises, public bodies, etc. (Figure 2).

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
7

Figure 2: High-level picture of the use-case 2

 Use case 3: Contributing to national, European and global security. This UC assumes
that incident information is exposed, in a secure and private manner, to public
cybersecurity authorities (Figure 3).

Figure 3: High-level picture of the use-case 3

Although the three use cases act as the basis of the analysis, the resulting architecture, design,
specifications and implementation have been elaborated to produce a unified and universal
solution i.e. a single cybersecurity solution that can be used for multiple purposes. To this
intent, the SHIELD platform enables the actors in the different use cases with different views
and roles on the network. For example, while an ISP (use case 1) can view the big picture of the
cybersecurity analysis and can deploy a vNSFs in any location of the network, the ISP client (use
case 2) only has access to a limited vision of the cybersecurity picture (information that is

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
8

offered by the ISP and/or paid by the client) and can deploy vNSFs in specific places of the
network (i.e. to its gateways).

Figure 4: High-level architecture of SHIELD, with components per WP

Based on these use cases and the requirements highlighted in Deliverable D2.2 [2], the
designed high-level architecture for the SHIELD platform is articulated around six different
components, illustrated in Figure 4 (vNSFs, Trust monitor, vNSF Orchestrator, vNSF Store,
Security overview dashboard and DARE). The components corresponding to WP4 are described
at a low level in this deliverable. From the point of view of the usable information-driven engine
(WP4), the DARE stores and analyses the security logs and events provided by the network
services (NSs) and vNSFs running in the network and these results are presented to the
operator in the Security overview dashboard. These components collaborate with the vNSF
ecosystem (WP3), specifically with i) the vNSF Store, which holds a registry of NS and vNSF-
related information; ii) the vNSF Orchestrator, which deploys and manages the lifecycle of the
NSs and vNSFs; iii) the monitoring vNSFs which produce the information to detect the threats;
and iv) the Trust Monitor, which verifies that both NSs and vNSFs, as well as other nodes from
the infrastructure, are trusted at all times.

The high-level design presented in D2.2 states that the network infrastructure provides a
trusted environment for supporting the execution of vNSFs. For attestation purposes, the
network infrastructure interacts with the Trust Monitor to authenticate the integrity of each
network component. The network infrastructure is interconnected with the vNSF Orchestrator
through the vNSF Manager Engine. This interaction allows the deployment of vNSFs, the vNSF

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
9

lifecycle management and the collection of monitoring information. Moreover, in case of
attestation incidents, the Trust monitor can act on the network to solve the issue and inform
to the DARE of the arisen situation. Monitoring vNSFs inspect captured data and provide
valuable information to the DARE. The network status is reported periodically since events, not
detectable by individual vNSFs, are inferred by centralising all the information in the DARE.
Then, the data analytics framework analyses all the heterogeneous network information
previously collected via monitoring vNSFs and Trust monitor. It features cognitive and analytical
components capable of predicting specific vulnerabilities and attacks. Finally, the remediation
engine provides recommendations in the form of medium level policies, i.e. configurations of
vNSFs that compose the different Network Services available in the catalogue (for a specific
user), to remediate the detected threats. These recommendations and the attack information
is given to the intuitive and appealing graphical user interface implemented in SHIELD, which
allows authenticated and authorised users to access SHIELD’s functionalities. From this
dashboard, operators have access to monitoring information showing an overview of the
security status. Furthermore, this dashboard allows operators as well as SecaaS clients to take
actions and react to any detected vulnerability.

In D3.2 [3], a detailed view of the vNSFs ecosystem components is provided. However, with the
aim to provide self-explained deliverables, we summarise their main functionalities:

There are two types of vNSF functionalities in SHIELD, monitoring and reacting vNSF.
Monitoring vNSFs are configured to send, in an efficient manner, the collected traffic to the
DARE, while reacting vNSFs are configured to stop an ongoing attack or to remediate a detected
vulnerability. However, this classification is not strict; many vNSFs are exposing both capabilities
(i.e. monitoring and reacting).

The vNSF Store acts as a nexus between the vNSF Orchestrator and third-party vNSF
providers/developers, who can register and manage vNSFs to be available through the SHIELD
platform. The Store handles all the vNSF data related with the service, the software images and
the information required to validate the integrity of itself.

The vNSF Orchestrator, is responsible for managing the lifecycle of vNSFs. Among others, this
allows to deploy (instantiate and place) vNSFs in specific points of the network infrastructure.
The vNSF Orchestrator interacts with each of the other modules to obtain data on the vNSFs,
to receive deployment requests or to convey information of specific vNSFs to enable analysis
processes.

The Trust Monitor is the component in charge of monitoring the trust of the SHIELD
infrastructure. This is achieved by a combination of authentication and integrity: each node
joining the infrastructure must be properly authenticated and provide also a proof of the
integrity of its software stack, by leveraging Trusted Computing (TC) mechanisms.

1.2. Scope of this document

SHIELD dedicates WP4 (“Usable information-driven engine”) to the technical work required
towards achieving the following key goals: (a) to develop acquisition and storage capabilities
for data associated with cyberattacks; (b) to develop data analytics capabilities for anomaly
detection, by employing machine learning techniques for traffic classification; (c) to develop
cyberattacks mitigation capabilities, providing remediation policies to be deployed in specific

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
10

places of the network; and (d) to develop a graphical user interface with operations and
management capabilities, making SHIELD a cybersecurity platform able to dynamically deploy
network security services for a SecaaS client.

This document (D4.2 “Updated specifications, design, and architecture for the usable
information driven engine”) details the final design choices regarding the DARE and the
Dashboard components. During M1-M19, SHIELD has developed the foundation and proof-of-
concept for the data acquisition and storage, the analysis and anomaly detection, and the
recommendation and remediation modules. A GUI was also developed to convey to the user a
remediation, in the form of a set of security policies, to mitigate an ongoing cyberattack, along
with the option to have such policies automatically applied on the vNSFs, at the touch of a
button. Such features were first demonstrated during the Y1 review.

D4.2 draws inputs from the following deliverables:

 D2.1 “Requirements, KPIs, design and architecture” [4] defines high-level requirements
for the SHIELD platform and the overall architecture, including the KPIs to use in
evaluation phase. D2.2 “Updated requirements, KPIs, design and architecture” [2] is the
final, updated version of D2.1, which was drafted concurrently with this document.

 D4.1 “Specifications, design and architecture for the usable information-driven engine”
[5] contains the first version of the design and specifications for the SHIELD DARE and
Dashboard. This document builds upon D4.1 and provides the finalized specifications
and design.

 D3.1 “Specifications, design and architecture for the vNSF ecosystem” [6] contains the
detailed design and specifications for SHIELD’s DARE components, including analysis
and remediation.

 D5.1 “Integration results of SHIELD HW/SW modules” [7] provides guidelines for the
integration and testing of vNSF ecosystem components.

1.3. Organisation of this document

This document is organised as follows:

 Section 1 (present section) serves as a basic introduction to this document and its scope.

 Section 2 provides an overview of the design and architecture of the usable information-
driven engine.

 Section 3 lists the specifications and implementation details for the usable information-
driven engine.

 Section 4 discusses the regulatory and ethical compliance specifications for the usable
information-driven engine and is a new addition to this document.

 Section 5 concludes the document and lists future WP4 work.

 Annex A lists the technical updates and the history of changes from D4.1 to D4.2.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
11

2. DESIGN AND ARCHITECTURE

In this section, the design and architecture of SHIELD are presented for those components
defined within WP4, i.e. the DARE and the Security dashboard. This description is more detailed
than in D2.2 [2], as it specifically addresses low-level details, as the subcomponents for the
vNSF environment, their detailed workflows and relation between these and the other
components in the SHIELD platform.

2.1. Guiding principles

The WP4 components to develop for SHIELD must embrace certain considerations and follow
some common principles in order to facilitate integration, interaction and operational issues,
as well as to foster future platform enhancements and evolutions. This section highlights
specific top-level and cross-component aspects to be considered and, where applicable, to be
taken into account during the component design and implementation phases.

2.1.1. Multi-user aspects in SHIELD

SHIELD targets a multi-user environment, where several users have access to the same platform
but with functionalities and views tailored to their needs. SHIELD foresees three main
categories of users:

 Security clients: These are clients that have requested specific cybersecurity services to
the ISP. According to the SHIELD SecaaS model, the client requests a specific service,
e.g. protection against a Distributed Denial of Service (DDoS) attack, but the
implementation of this services is on the ISP side. Hence, apart from the basic account
information and administration of cybersecurity services (i.e. service acquisition,
removal, etc.), the client will only be granted with limited visualization services. This
visualization will allow him/her to see what has happened to the network service (and
only in his/her network services) according to the services hired. For example, if a client
has bought DDoS protection, he/she will see information like the number of attacks
rejected, the severity of such attacks, the IP addresses involved, etc.

 Cybersecurity agencies: These are expert users from cybersecurity agencies that, after
an agreement with the ISP, can access limited visualizations of the information. In this
case, the information will not be about one client, but aggregated of all the clients of
the ISP and the ISP itself. For example, if a cybersecurity agency has agreed with the ISP
access to 0-day threat propagation, it will have access to information like the number
of infected devices, the number of new infections per minute, propagation maps, etc.

 ISP’s security department: These are security expert users from the ISP which will have
administration roles. They can:

o Accept or reject a SecaaS service requested by a client.
o Set up or withdraw cybersecurity services for clients, as per the previous

requests.
o See all the cybersecurity information, being able to filter by user, by range of IPs,

or by other characteristics.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
12

o Apply recommendations either to clients or to the ISP itself.
o Give or remove permissions to other users.
o Consult network topology and status per vNSF.
o Retrieve information on trust status per node in the infrastructure.
o Access to any historical logs.

In general, these will be the administrators of the system and hence, they will be able
access to all the functionalities needed to manage the platform.

2.1.2. Security concerns

There are some inter-component and user-interaction security concerns that should be
considered, namely:

 Any connection between the different components (VNFs, Orchestrator, Store, Trust
Monitor, DARE and Dashboard) should be encrypted using an adequately strong
algorithm such as Rivest–Shamir–Adleman (RSA), employing encryption keys of at least
256 bits.

 Information sharing is considered from SHIELD framework only to the defined users
inside the platform. Hence, no information can be downloaded or further processed
outside of SHIELD.

 Users will be authenticated with password and registration which must be explicitly
accepted by the ISP.

 Information of the users and the attacks should be considered private allowing access
to it only to authenticated and authorized users.

2.1.3. Billing rationale

The platform SHALL be compatible with a billing framework for the use of the SecaaS Services.
The clients will select one cybersecurity service (e.g. DoS protection, malware protection, etc.)
which will be internally linked to one or more Network Services (NS). Hence the user will not
be able to access directly to the network or to the vNSFs but to access to the functionalities
defined by their payment modality and to the data associated with this service (number of
threats blocked, attacker IPs, etc.).

The SecaaS Client will acquire a SecaaS service through the services store and then the SecaaS
Client will be able to have access to this new SecaaS Service. The billing will be an offline
method. In the scope of the project, we consider a billing model of a fixed amount, per
cybersecurity service, per month. Moreover, we also consider the paying model to the vNSF
developer of a fixed amount, per proprietary vNSF deployed, per month.

For this reason, before the ISP can do the onboarding of a SecaaS Service, a client must
purchase it beforehand. The client will be able to access a list of available services through the
dashboard and buy the ones it wants to use. The ISP will then be responsible for the
deployment, maintenance and management of the network services that perform the
functionality associated with such services.

The bill will be shared with an invoicing framework (external ones will be possible to use). This
bill will identify the SecaaS Client, the SecaaS Service with its description, its begin and end

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
13

dates for usage, and the amount to invoice. This data will be provided through a REpresentational

State Transfer (REST) service.

2.1.4. Untrusted nodes policy

Untrusted nodes shall be isolated from the rest of the infrastructure at the network level. The
same process could be applied to untrusted vNSFs, although it might not be sufficient in case
the attacker manages to harm the host by exploiting vulnerabilities at the virtualisation level
(e.g. privileges escalation in Docker). To do so, the Trust Monitor will interact with the vNSF

Orchestrator (vNSFO) to notify the trust status of the node. In addition, the platform should be
able to re-deploy the Network Services formerly deployed on the untrusted node with the
proper configuration.

2.2. Low-level Architecture

As explained in Section 1, the high-level design elaborated in D2.2 has stated that SHIELD is
composed by 6 components. Four of them belong to WP3 (vNSFs, Orchestrator, Store and Trust
Monitor), while two of them belong to WP4 (DARE and Dashboard). Although D2.2 was only
exposing high-level architecture and design, there were some references to the envisioned
subcomponents. Namely, the high-level architecture was exposing a Data Services Centre for
data format transformation, an Enterprise Service Bus for data transportation, etc. However,
as D2.2 was high-level architecture, these subcomponents, which are actually part of the low-
level design, were not described in detail.

During T4.1 the consortium has studied conscientiously the requirements elicited in D2.2
together with the specifications needed to fulfil them. Moreover, several technologies that are
currently used for threat detection and remediation have also been considered. The results of
this detailed study extensively explained in Section 3, imply some adjustments in the low-level
architecture of the modules and hence, some changes in the envisioned components from
D2.1.

2.2.1. The DARE

The Data Analysis and Remediation Engine (DARE) is one of the three central innovation pillars
of SHIELD, together with the vNSF ecosystem and the hardware attestation (both in WP3). The
DARE centralises the management information of SHIELD and exchanges information with all
the other components of the solution, as described below:

 the vNSFs, since the DARE centralises the information obtained from the monitoring
vNSFs;

 the vNSF Orchestrator, since the DARE needs information of the network per SecaaS
client (e.g. ISP, ISP clients using SecaaS or a Cybersecurity agency) to provide accurate
and complete recommendations;

 the Trust Monitor, since the DARE needs to know if a vNSF, or even a complete node,
has been compromised;

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
14

 the Dashboard, since the DARE notifies to the dashboard the detected network
anomalies and one or more recommendations of network services (set of vNSFs) with
their appropriate high-level policies for configuration;

 the Store, since the DARE needs to know the vNSFs and NS for deployment or
reconfiguration.

The data flow diagram of the DARE is shown in Figure 5.

Figure 5: Data flow diagram of the DARE

The DARE will be composed by a central data analytics engine and a distributed set of data
collection components. It is worth mentioning that it has been designed following a Big Data
approach where the data value elicitation is divided into three different phases, as shown in
Figure 6:

1. Data acquisition and storage
2. Data analysis
3. Cybersecurity topologies

In this section, each one of the subcomponents of the DARE will be explained and the
differences with the ones envisioned in D2.2 will be detailed.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
15

Figure 6: Architecture of the DARE

Data Collector: it is responsible for acquiring the data generated in a monitoring vNSF, using the
specific format of the technology provided by such vNSF. The collector is part of each
monitoring vNSF and integrated into the diagram for clarification purposes.

Data transformation: it is responsible for transforming the format-specific data into a generic
format.

Streaming service: it sends the information from the monitoring vNSF to the data analytics
central engine, assuring reliability on the communication.

Distributed File System / Cache: it is responsible for storing the collected data for both, batch
(i.e. hard disks) or real-time (i.e. cache) processing.

Data analytics framework: it is responsible for classifying the traffic for anomaly detection using
machine learning techniques.

Recommendation and remediation: it proposes, given a specific anomaly or threat detected, a
set of vNSFs with the appropriate policies to be deployed in specific places of the network.

Dashboard API: it pushes all the generated information to the Dashboard.

2.2.2. The Security Dashboard

The Dashboard has been designed to be the unique interface with the users of the platform.
Hence, the Dashboard must unify all the needs of the users for all the SHIELD use-cases (ISP,
SecaaS, and cybersecurity agency).

The low-level architecture presents the different subcomponents that compose the Dashboard
as shown in Figure 7.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
16

Figure 7: Subcomponents of the Security Dashboard and interactions

2.3. Design

SHIELD is committed to solve three relevant use-cases. Firstly, an ISP which uses SHIELD to
secure its own infrastructure. Secondly, an ISP using SHIELD to provide SecaaS to their clients.
Thirdly, a cybersecurity agency collaborating with an ISP to research on attacks and
vulnerabilities.

This means that the SHIELD must take into consideration the following user interactions:

1. Allow users to deploy network services (after payment, if necessary).
2. Allow users to manage and withdraw network services.
3. Provide insights about what is happening in the network to detect anomalies.
4. Provide a system to display and dispatch DARE recommendations in the form of

network services including (completely or partially):
a. The detailed set of vNSFs recommended.
b. The description of the specific places of the network where they will be

deployed.
c. The policies that will be used to configure the vNSFs.

5. Allow privileged users to implement monetisation methods.

These features can be modelled as user use-cases (called user cases to avoid confusion with
the top-level SHIELD use cases), showing also the components that are related to each one of
them (Figure 8). Note that the three SHIELD use-cases share most of the envisioned features.
The difference between them is the level of access (e.g. the ISP will have access to all the
infrastructure and vNSFs while the ISP client has access only to their subnetwork and to the
paid services).

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
17

Figure 8: UML user case diagram.

In this section all these user cases will be explained in detail and the differences between the
SHIELD use cases will be also stated.

2.3.1. vNSF Deployment and Withdrawal

The processes of deployment and withdrawal of NSs are explained in D3.2 [3] since such tasks
are covered by the Store and the Orchestrator components developed in WP3. Since the
Dashboard also plays a role in this process (as it interacts with the aforementioned
components), we will explain them only from the WP4 perspective.

All the SHIELD use-cases expect the ISP to be able to deploy or withdraw any available NS in
any available location in the Network. From the WP4 perspective, the process is very simple,
and it is shown in Figure 9.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
18

Figure 9: Flow diagram of the vNSF deployment / withdrawal task.

2.3.2. Anomaly Detection

The process of anomaly detection is divided in two different phases. In phase one, information
is collected from the monitoring vNSFs. This information is stored in the Distributed File System
subcomponent for further analysis. In the case of real-time analytics, the information will be
loaded into cache instead of stored in hard disks, but the workflow is identical. As already
explained, the Data Transformation subcomponent can either be distributed, where data is
transformed to a generic format (e.g. CSV) before being sent to the (Figure 10); or centralised,
so specific formats (e.g. PCAP files) are sent to the central engine (Figure 11).

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
19

Figure 10: Flow diagram of the data acquisition phase with distributed transformation.

Figure 11: Flow diagram of the data acquisition phase with centralised transformation.

Once the data has been loaded into the distributed file system (either in batch or real time) the
phase two (Figure 12) implies that the data analysis framework will use the machine learning
algorithms to detect anomalies and inform the remediation and recommendation
subcomponent. At its turn, this subcomponent will use this information, together with the
information gathered from the vNSF Orchestrator, to provide recommendations to the user in
the form of specific network services with the configurations and the locations to be deployed.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
20

Figure 12: Flow diagram of the anomaly detection phase.

2.3.3. Recommendation deployment

The process of recommendation deployment is driven by the user. Whenever an anomaly is
detected in the client infrastructure, a recommendation is generated according to the type of
attack and severity. This recommendation must be deployed by the user. The anomaly context
information (e.g. type of attack, severity and timestamp) are forwarded to the dashboard and
presented to the user along the recommendation. The process is shown in Figure 13.

Figure 13: Flow diagram of the recommendation implementation.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
21

2.3.4. Monetisation definition

In the SecaaS SHIELD use-case, the ISP client can buy specific SecaaS Services to be deployed in
the gateway that joins the client network with the ISP network. It is important to note that,
apart from the direct access to the information gathered from its own monitoring service, the
ISP will run the monitoring and the remediation actions, allowing the SecaaS Client to monitor
the security events.

The monetisation system will be variable. It can be based on a "pay per use”, price per SecaaS
Service, or "flat rate” that includes all the needed monitoring and mitigation SecaaS to solve a
security incident. Business models have been exposed in D2.3 [8] where several billing models
have been discussed. In SHIELD, the implementation will focus on the fixed billing model, where
a client is charged according to a fixed price per cybersecurity service per month. Moreover,
the vNSF developer will be also paid per proprietary vNSF deployed per month.

Even if we will implement only one business model, it is important to include as part of the
design some metadata required for possible future improvements. Several parameters must
be included. Price, license types, terms of use, period of validation are some potential options.
All these parameters will be supported as optional and included in the metadata of the vNSF,
within its package. Some examples can be the price defined by the vNSF developer and added
as metadata in the vNSF Store (WP3). Another example would include the price defined by the
ISP, who can charge the user by adding fixed price to a vNSFs and/or define a subscription
system for using the SecaaS. The workflow of this task is shown in Figure 14, BSS is an acronym
for Business Support Service, an Application Programming Interface (API) used to implement the
business models.

Figure 14: Flow diagram of the monetisation definition.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
22

2.4. Data acquisition and storage Phase

The Data Acquisition phase is responsible for the efficient and reliable capture and storage of
various heterogeneous data. It will involve mechanisms and methods to capture and transfer
files generated by network tools to the central data analytics engine. This phase is of high
importance for ensuring the integrity of the data and their quality in further processing steps.

Heterogeneous network information is captured via specialised vNSFs, which collect overall
networking events that are relevant to threat detection. This information is transferred to the
central data analytics engine, where it is stored for further processing. This phase will gather,
transform and store the acquired network data to a format that can be processed by analytics
components.

There are two (2) options for describing the low-level architecture of the Data Acquisition and
Storage phase:

● Option 1 – Centralised architecture (Figure 15): only the collection of the data is
distributed, while all the other functionalities are centralised in the Data analysis phase.

● Option 2 – Distributed architecture (Figure 16): the data collection and the data
transformation are distributed per vNSF and hence, the data is sent to the central
engine in a standard format (e.g. CSV).

Figure 15: Architecture for centralised acquisition

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
23

Figure 16: Architecture for distributed acquisition.

The objective of the data acquisition phase is to gather all the network information produced
by the vNSFs, transform it into a generic format, ingest it into the data analytics central engine,
and store it for further processing. The low-level architecture of the Data Acquisition and
Storage phase is divided in four main subcomponents.

Data Collector

The data collector subcomponent is the only one which is distributed (one collector per vNSF)
in both options. Each vNSF uses a daemon, called data collector, which is responsible for
monitoring the vNSF and detecting new files produced by it.

Streaming Service

The acquisition of network data is achieved via a distributed streaming service that splits the
network data into smaller specific topics and smaller partitions, while creating a data pipeline
for each topic. It must be reliable and fault tolerant for ensuring the integrity of the data and
their quality in further processing steps.

Data Transformation

This is the subcomponent that determines the chosen option for the low-level architecture. If
the data transformation is centralised, the architecture will be considered to address option 1,
while if it is distributed, the architecture will be considered to address option 2.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
24

In the case of option 1, each pipeline created by the streaming service transfers the stored data
to specific daemons which exist inside the central data analytics engine. These daemons are
subscribed to a specific topic and partition of the streaming service and transform the raw
network data into a human-readable format, by using dissection tools. They are tasked with
reading, parsing and storing the data in a specific distributed format to be consumed by the
machine learning algorithms.

In the case of option 2, each network data file that is captured by the Data Collector, is sent to
specific daemons which exist inside each vNSF (distributed). These daemons transform the raw
network data into a human-readable format, by using dissection tools.

Distributed File System / Cache

Once the network data has been transformed, the input is stored in a distributed file system in
both the original and modified formats (in the case of option 1) or only the modified (in the
case of option 2). The distributed file system is responsible for storing the collected data and
making them available, so that it can be accessible by search queries.

2.5. Data analysis phase

The data analysis phase is composed only by one subcomponent, the data analytics framework.
This subcomponent features cognitive and analytical functionalities capable of detecting
network anomalies that are associated with specific vulnerabilities or threats, offering batch
and streaming incident detection. The processing and analysis of large amounts of data is
carried out by using Big Data analytics and machine learning techniques. By processing data
and logs from vNSFs deployed at specific strategic locations of the network, the data analytics
framework can link traffic logs that are part of a specific activity in the network and detect any
possible anomaly. In case malicious activity is detected, it informs the remediation and
recommendation engine.

Figure 17: Data Analytics Framework overview.

The Data Analysis Engine leverages two different data analytics modules (Figure 17) (while
remaining open for the inclusion of others in the future), that use a wide range of

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
25

complementary detection techniques along with open source frameworks and solutions, a
cognitive Data Analytics module based on open-source technologies and a proprietary Security
Data Analysis module. The individual functionalities of each module are described in detail.

Since the network data provided by the Data Acquisition phase is required for the functionality
of both the cognitive Data Analytics module and the proprietary Security Data Analysis module
in the same distributed format, the accessing method is shared between these two modules.

Below we describe the two main Data Analytics modules that comprise the DARE, namely the
cognitive Data Analytics module and the Security Data Analysis module.

Cognitive Data Analytics module

The cognitive Data Analytics module is an entity of elements that can produce packet and flow
analytics by using scalable machine-learning techniques. To this end, it involves state-of-the-
art Big Data solutions as well as the latest distributed computing technologies to allow batch
and stream processing of large amounts of data, scalability and load balancing, utilisation of
open data models (ODM) and concurrent running of multiple machine-learning applications on
a single, shared, enriched data set. The above technologies will ideally allow for tailor-made
security analytics and will lead to predicting attacks by correlating network anomalies to
specific threats. The cognitive Data Analytics module consists of two main entities that
comprise the overall detection procedure. These discrete entities are shortly referred to as
machine learning and operational analytics and are configured either as separate
computational nodes (physical or virtual machines) or as a part of a larger distributed
computing system. A description of each entity is given below:

● Machine learning
The machine learning entity (Figure 18) is responsible for the detection of anomalies
in network traffic that will lead to the prevention or mitigation of potential threats.
For this purpose, DARE uses a combination of open-source tools to run scalable
machine learning algorithms. The machine learning entity works not only as a filter for
separating bad traffic from benign, but also to characterise the unique behaviour of
network traffic. It contains routines for performing suspicious connections analytics on
flow, DNS, proxy logs, security event data and metrics gathered from the Data
Acquisition phase and the built-in Distributed storage system subcomponent. These
analytics consume a collection of network events to produce a list of the events that
are considered to be the least probable, and these are considered the most
suspicious. Below are listed the main types of analytics that are utilised by the
machine learning component inside a cluster computing framework.
Anomaly Detection algorithms: The statistical model being used for discovering
incongruences or rare behaviours by examining network traffic.
Additional algorithms: The machine learning entity is open for the inclusion of
additional algorithms to enhance the overall detection capabilities of the platform as
well as allow the correlation between the detected anomalies and specific threats by
classifying the results of the anomaly detection algorithms.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
26

Figure 18: Machine learning entity overview.

● Operational Analytics (OA)
The OA entity (Figure 19) consists of several context enrichments, noise filtering,
whitelisting and heuristics processes to produce a list of the most likely patterns which
may comprise security threats. It provides utilities to extract and transform data, by
loading the results into output files. It supports basic data types such as flow, DNS and
proxy logs that correspond to the most common types of network threats. The output
of the OA entity can be used in the Remediation Engine, to provide recommendations
to the users or to optionally activate task-specific countermeasures in the form of
security functions from the vNSF Store. It also offers a combined view of the above
information in the form of information to be pushed to the Dashboard for better
visualisation purposes. A description of each element is given below.
Threat interaction tools: An interactive tool that allows for a comprehensive interaction
with the network anomalies detected by the machine-learning component.
Ingest summary: It presents the amount of network data that has been ingested on the
cluster.
Filtering tools: A set of tools that provide the ability for customised results based on
time, source/destination, severity, type etc.
Whitelisting tools: A convenient set of tools to exclude some of the detected anomalies
from the results, thus dealing with potential false-positives.

Figure 19: Operational analytics subcomponent overview.

Security Data Analysis module

The Security Data Analysis module (Figure 20) is an entity based on a combination of Big Data
analytics and machine learning techniques that can efficiently process and analyse a vast
amount of network data online and automatically discover and classify cybersecurity threats.
This engine follows the architecture designed by the commercial network anomaly detector

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
27

commercialised by Talaia Networks, which has received very good feedback from customers
around the world because of its comprehensive detection of network attacks and its low false
positive rate.
The Security Data Analysis module has four subcomponents that are described in more detail
later. Briefly, this module receives the network data from the distributed storage system /cache
subcomponent. The main input used is flow aggregated data (e.g., NetFlow [9]), however, it
also can utilise other sources of information (e.g., DNS, network logs). This data is provided to
the Event Clustering and the Service Profiling subcomponents that compute several
measurements and statistics that are used in the Alarm Correction subcomponent to detect
anomalous behaviours related to security issues. Once an anomalous behaviour is detected the
Anomaly Classifier subcomponent oversees classifying it among different network attacks (e.g.,
DDoS, network scan). All this information is then outputted from the Security Data Analysis to
the Remediation module.

Figure 20: Security Data Analysis module overview.

● Event Clustering
The Event Clustering entity consists of the adaptation of data mining techniques able to
discover multi-dimensional patterns of network usage in the data provided. This entity
detects clusters of events in the data which are frequent and share a specific behaviour.
The detected clusters, although they can be related to benign traffic, are suspicious of
being anomalous traffic that can be related to security issues. The data involved in the
cluster and the specific statistics and measurements shared by the events of the cluster
are sent to the Alarm Correction to decide if the detected cluster is related to a security
issue.

● Service Profiling
The Service Profiling entity performs a thorough and detailed analysis of the data
provided to create profiles of all the services contained in such data. To perform this
analysis in real-time, the engine is relying on extremely efficient data structures
combined with cutting-edge data mining techniques. The objective of this entity is to
identify and understand the behaviour of the different services in the data. In addition,
this entity is also able to discover the services that are prone to be affected by networks
attacks. Similarly, to the Event Clustering entity, the information related to the services
identified is then forwarded to the Alarm Correction entity for further analysis.

● Alarm Correction

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
28

The Alarm Correction entity receives as input the output from the Event Clustering and
the Service Profiling entities. By comparing and enriching this information with a
proprietary methodology, this entity can identify anomalous behaviours in the traffic
and discern with very high accuracy between benign and malign behaviours related to
security issues. The malign behaviours detected, and the data related to them are
forwarded to the Anomaly Classifier entity.

● Anomaly Classifier
Once a malign anomalous behaviour is detected by the Alarm Correction entity, the
Anomaly Classifier entity oversees identifying the type of the anomaly. To that end, the
Anomaly Classifier entity uses the measurements and statistics as input for a machine
learning technique that can classify the anomaly between different volumetric attacks
(e.g., DDoS) and zero-day attacks. All the resulting information is then provided to the
Remediation module, that based on the characteristics and the anomaly type can better
provide accurate counter-measurements to mitigate the security issues.

2.6. Cybersecurity topologies phase

The DARE includes two subcomponents on top of the data analytics framework which oversee
defining the remediation and recommendations actions to be presented to the final user via
the Dashboard. A Remediation action consists in a cybersecurity topology responsible for
addressing a specific network security threat. These actions will ultimately be translated into a
set of vNSFs with proper configuration and deployment location, therefore allowing its
instantiation in the secure network environment. Configurations are specified as a set of high-
level, technology-independent policies with a uniform description regardless of the targeted
vNSF type or implementation.

The recommendation and remediation subcomponent is aware of the current state of the
network infrastructure to optimise the security impact of the vNSFs of the different Network
Services. This awareness is built upon information regarding running instances for both vNSFs
and NSs retrieved from the Orchestrator per SecaaS client. A cybersecurity topology will be
generated by a detected threat, which is converted into a high-level abstraction of a
remediation recipe. However, the actual remediation is not to be performed directly in this
subcomponent, which is not oversee directly modifying the status of the infrastructure, but to
be proposed to the SHIELD operator via the Security dashboard (using the Dashboard API), that
oversees accepting or declining it. If accepted, the remediation action is applied in the network
infrastructure of the SecaaS client through the Orchestrator, which also forwards the request
for the translation of policies to low-level configurations, carried out within each vNSF.

2.6.1. The recommendation and remediation subcomponent

The high-level block diagram representing the architecture of the recommendation and
remediation engine and its interaction with other SHIELD components is depicted in Figure 21.
The engine’s internal subcomponents are described as follows.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
29

Figure 21: The recommendation and remediation subcomponents.

High-level Policy Recipe Provider

This module receives an event from the data analytics framework of the DARE, containing alerts
and contextual information related to an occurring threat. Starting from it, this module will
define a “recipe”, consisting of a set of security requirements specified in a high-level policy
abstraction targeting the mitigation of the detected threat. The recipes will be stored in an
internal repository, to allow their update/addition/removal by a security analyst.

Security Capability Identifier

Using the information created by the previous module, this module will be responsible for
mapping each remediation high-level recipe to a set of security capabilities. A capability is
defined as a basic feature that can be configured to enforce a security action (e.g. address
translation, authentication, data protection, authorisation, routing, resource protection,
resource analysis).

NS Identifier

This module oversees selecting the sets of vNSFs (the NSs) that match the required security
capabilities. To do so, it requires the knowledge of the security capabilities offered by each of
the NS in the NS Catalogue, hence it directly interacts with the vNSF Store.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
30

Store Connector

This module oversees connecting the subcomponent with the vNSF Store, by consuming its API
to retrieve the information about the available NSs in the catalogue.

NS Optimiser

This module will oversee selecting the best NS that matches the required capabilities, according
to an optimisation criterion. In addition, this module will be able of verifying if a NS has been
already deployed for the SecaaS client, to optimise the deployment of the remediation by
providing only the updated configuration.

vNSFO Connector

This module oversees connecting the subcomponent with the vNSF Orchestrator, by
consuming its API to retrieve information about the already deployed NSs for the SecaaS client.

Forwarding Graph Generator

This module oversees describing the list of vNSFs into a topological arrangement that would
allow the vNSF Orchestrator to deploy them into the network infrastructure.

Medium-level Policy Generation Engine

This module generates the medium level policy abstraction starting from the Forwarding Graph
and the list of capabilities identified to address the security threat. Each vNSF capability is
associated to a policy, expressed in an application-independent syntax.

2.6.2. The Dashboard API subcomponent

This subcomponent consists of an interface in charge of presenting the result of the
recommendation and remediation decisions to the Dashboard. The information to be provided
will consist of an optimised cybersecurity topology and a set of application-independent rules
to implement the mitigation.

2.7. Security Dashboard

The Security Dashboard (Dashboard from now on) is SHIELD’s topmost component enabling
users and third-party applications to use SHIELD’s internal features. The Dashboard is therefore
the entry point of SHIELD solution, seamlessly encapsulating the access and use of all its
information and features in this component. Being the only point of access for the SHIELD users,
it eases the integration and builds a more secure application, since the access control is more
robust and protected. Besides integrating with all SHIELD’s components, the Dashboard is also
responsible for the implementation of a set of support features. It will provide user and SecaaS
client with management features, billing and monetisation capabilities as well as a remediation
subcomponent responsible for persisting and dispatching (upon validation by authorised users)
all SHIELD’s remediation suggestions.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
31

Displayed in Figure 22, are the currently envisioned Dashboard’s internal subcomponents,
considering the requirements and responsibilities associated with it.

Figure 22: Dashboard internal subcomponents.

As depicted in the previous figure, the Dashboard architecture is divided into multiple
subcomponents, each one with a well-defined scope implementing its set of features. Each one
of these subcomponents is described below, allowing the understanding of both how this
component interacts with other SHIELD components as well as the internal workflows of the
Dashboard.

GUI

The Dashboard user interface will provide an appealing and intuitive web-based interface
exposing the security-related features to end users. Different permission levels will be
attributed to different users, thus allowing the graphical user interface to adapt the provided
features to the ranking of the logged user. By using a web browser, end users will then be able
to see SHIELD’s monitoring system thus perceiving an overview of the security status of their
services. Moreover, this interface will also display detected vulnerabilities as well as
remediation suggestions that allow to mitigate each detected vulnerability. The end user will
be able to analyse the proposed actions of a remediation and decide whether to apply or not
the suggestion. SecaaS client, user and billing features will also be present in the security
dashboard graphical user interface (taking into consideration each user’s permission level)
allowing to control the access to SHIELD’s features as well as the monetisation of SHIELD’s tools.
This subcomponent, as illustrated in the previous figure will interact only with API Service as

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
32

well as Push Notifications Service subcomponent providing an entry point for SHIELD’s end
users as depicted in the previous figure.

API Service

API Service provides an abstraction from the GUI as well as potential third party applications
aimed to interact with SHIELD solution. It interacts with all Dashboard’s internal
subcomponents forwarding a given user request to an entity responsible either for
implementing a feature or forwarding the request to another component. Following what was
previously described in the current section, the authorisation of the type of request performed
by the user will firstly be validated through authorisation and authentication features provided
by AA subcomponent.

Push Notification Service

This subcomponent is responsible to push notifications/events from the bottom layers of
SHIELD to either the graphical user interface or third-party applications. The current
subcomponent will therefore enable information visible by end users to be updated without
the need of the user to request its refresh, therefore allowing interested and authorised end
users to always perceive the security status of their services.

AA

AA subcomponent stands for Authentication and Authorisation providing a set of features
regarding these two scopes. This subcomponent therefore ensures that SHIELD’s available
resources are only accessible to users that have the needed rights to access them. To do so,
this subcomponent will first validate the authentication and then the authorisation for each
request. Authorisation encompasses the steps needed to identify the user responsible for a
given request and to check if the user-associated token can access a given resource, therefore
enabling different sets of operations to be accessible to different user roles. Only if both,
authentication and authorisation are assured, a specific request will be forwarded and access
to the Dashboard’s internal components will be provided.

User Management

As previously mentioned, the access to SHIELD’s internal features will be controlled in each
request made to the API Service, taking into consideration the authorisation and authentication
level access of the responsible user. Hence, there is a need of a subcomponent that is
responsible for the management (creation, edition, deletion) of users in the scope of SHIELD.
User Management subcomponent will be responsible to implement this management features
ultimately providing and defining the access level of each user in the solution.

Remediation Queue

This subcomponent will be responsible for persisting and providing the suggested actions
originated in the DARE’s remediation subcomponent. As mentioned before, end users will be

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
33

responsible for the validation/rejections of these recommendations (unless automatic
remediation is selected). Moreover, if a validation is received regarding a given
recommendation, this will then be forwarded to the Orchestrator for application through the
Orchestrator Connector, therefore allowing SHIELD to act upon and solve a specific security
thread.

Billing

Billing subcomponent is responsible for providing a set of features that enable all the SHIELD’s
monetisation features. Following what will be defined in SHIELD’s business model, this
subcomponent will allow SHIELD operators to charge for instance a "pay per use”, price per
vNSF, or "flat rate” whenever a new NS, vNSF or remediation action is applied.

Store Connector, Orchestrator Connector, DARE Connector

Since Dashboard component is envisioned to interact with all SHIELD’s components, an
abstraction layer of these connections was added in the Dashboard’s architecture to minimise
the implementation’s dependencies across Dashboard’s internal subcomponents. These three
subcomponents (Store, Orchestrator and DARE connectors) will allow different SHIELD’s
Dashboards to interact with these three mentioned components.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
34

3. SPECIFICATIONS AND IMPLEMENTATION

To drive and properly guide the development of the platform, apart from the overall
architecture and design presented in the previous section, there is a need of transforming the
requirements elicited in D2.1 [4] and D2.2 [2] into technical specifications for each one of the
phases. As stated in D2.1 and D2.2, there are three types of requirements: i) platform
requirements (PF), ii) non-functional requirements (NF), and iii) service requirements (SF). As i)
and ii) have different implications in each phase in the data value chain (ingestion, analytics,
decision and visualisation), they will be transformed into specifications per phase. For iii) we
analyse them from a general point of view since they have implications in a general way into
the components of the WP4. This transformation is shown in Table 1.

Table 1: General service specifications and fulfillment of service requirements.

Numbering Title Description

SF01 Content filtering A security service COULD provide URL filtering
based on different configurable categories (e.g.
political, violence, sex, social networks, etc.) in
the internet web browsing.

S_SPEC_1 The platform may be enriched with topic modelling algorithms that will
provide the necessary insight for the Remediation Engine to proactively filter
specific content, depending on the desired configuration provided by the user
through the dashboard.

SF02 Detect/Block access to
malicious websites

A security service SHALL control access to
malicious websites, such as phishing servers,
malware spreading, C&C servers, etc.
The user must be alerted and the access to the
site could be blocked/allowed depending on the
configured policy rule.

S_SPEC_2 The platform will incorporate algorithms that will detect malicious
connections and will provide relevant information to the Remediation Engine
and the Dashboard. The Remediation Engine will recommend specific medium
level policies (MSPL – Subsection 3.3) and/or vNSFs to stop these connections.

SF03 Security assessments A security service COULD provide continuous
vulnerability assessment on the network, hosts
or applications.

S_SPEC_3 The platform may include automated security check routines that will scan the
network for vulnerabilities (e.g. open ports) and remediate the threats by
recommending the deployment of medium level policies and/or new vNSFs to
remediate the vulnerabilities.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
35

SF04 L4 traffic filtering A security service SHALL monitor traffic based
on configuration rules.
Traffic packets are filtered, and specific traffic is
either allowed, rejected or blocked based on a
predefined set of rules (usually based on source
IP, destination IP, destination port, etc.).
Commonly called firewall.

S_SPEC_4 The platform will monitor network connections by deploying cognitive
analytics and will provide feedback about the level of suspicion of each
connection. The Remediation Engine will recommend medium level policies to
apply to the vNSFs or directly the deployment of new vNSFs to stop these
connections.

SF05 Central log processing/SIEM A security service COULD collect and correlate
security logs from different legacy user sources
and generate alerts.
This service is intended to provide the user with
a way to process its security logs that are not
generated by a vNSF in SHIELD.

S_SPEC_5 All the logs of the system must be centralised ingested into the system and
tagged as log information. This log information can be analysed in batch at
best effort. Using probability of an anomaly and anomaly classification new
alarms can be generated.

SF06 Malware detection A security service COULD detect (and optionally
clean) files with malware downloaded from
Internet.

S_SPEC_6 The platform will incorporate a threat classification algorithm that will
correlate network anomalies to specific threats, including malware detection.
Remediation Engine can recommend new vNSFs or new policies to existing
vNSFs to stop connections from the infected machine and isolate it from the
network. Later, the malware may be cleaned, or user will be requested to
manually clean it.

SF07 Spam protection A security service SHALL protect against
unwanted emails, based on source reputation
lists and content analysis.

S_SPEC_7 The platform will incorporate a threat classification algorithm that will
correlate network anomalies to specific threats, including spam activities.
Network connections can be stopped by using middle policies and/or vNSFs
recommended by the Remediation engine.

SF08 DoS Protection A security service SHALL protect against
volumetric Denial of Service attacks. Detect the

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
36

DoS attack and divert the traffic for filtering.
Forwarding the good traffic flows to the
destination.

S_SPEC_8 The platform module will incorporate a threat classification algorithm that will
correlate network anomalies to specific threats, possibly including volumetric
DoS attacks. Remediation Engine can recommend the deployment of new
middle policies (e.g. specific IPSs to be isolated) and or new vNSFs (e.g.
firewalls).

SF09 Intrusion
Detection/Prevention
System

A security service SHALL detect attacks with a
wide range of techniques such as network flow
or behaviour analysis and deep packet
inspection.
Allow traffic flows according to IPS rules.
Monitor traffic network traffic at OSI layer 7 and
generate alerts for security policy violations,
infections, information leakage, configuration
errors and unauthorised clients.

S_SPEC_9 The platform will analyse the main types of ingested network traffic (NetFlow,
DNS, proxy) and will combine the detected results with those provided by
network monitoring vNSFs. The Remediation Engine will be able recommend
to the user either to deploy new IDPS vNSFs or middle policies to the already
deployed ones.

SF10 Honeypots A security service COULD provide a Honeypot
service that simulates or impersonates specific
services (e.g., Windows computer, Web server,
IoT or SCADA device, etc.) to detect malicious
behaviours in the network.

S_SPEC_10 The platform will incorporate a threat classification algorithm that will
correlate network anomalies to specific threats, possibly being able to
distinguish incidents that would require the deployment of a Honeypot
service. The Remediation Engine will be able to recommend the deployment
of a Honeypot vNSF in a specific PoP and redirect the traffic there through the
deployment of L4 or L7 filtering vNSFs or the configuration of already existing
ones using medium level policies.

SF11 Sandboxing A security service COULD provide a sandbox
service for executing and analysing programs.
Must provide the possibility to install different
OSs.

S_SPEC_11 The platform will incorporate a threat classification algorithm that will
correlate network anomalies to specific threats, possibly being able to
distinguish incidents that would require the deployment of a sandbox service.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
37

SF12 VPN A security service COULD provide a secure
tunnel service to connect the branch of a client
with users in Internet or other branches.

S_SPEC_12 The platform will incorporate a threat classification algorithm that will
correlate network anomalies to specific threats, possibly being able to
distinguish incidents that would require the deployment of a secure tunnelling
service.

Apart from the transformation of the requirements into specifications, this section also defines
the specific technologies that will be used to develop every subcomponent. Although each
phase exposes several technologies that can be used to fulfil the specifications (and hence the
requirements), Apache Spot [1] has been selected as the main technology for the entire DARE.
Apache Spot is an in-development, open-source platform for network telemetry and anomaly
detection. Apache Spot provides tools to accelerate the ability to expose suspicious
connections and previously unseen attacks using flow and packet analysis technologies. It also
features a built-in ingestion subcomponent that is responsible for handling and transferring the
raw network data into the data analytics engine. Spot is built over very mature technologies
like:

 Cloudera CDH [10] for data ingestion and storage (which uses Hadoop HDFS [11] and
Apache Hive [12]). CDH is an Open Source platform distribution that helps to perform
end-to-end Big Data workflows.

 Spark [13] for machine learning and streaming. Apache Spark is a fast and general
engine for large-scale data processing.

 ReactJS [14] and Flux [15] for the web components. ReactJS is a JavaScript framework
for building user interfaces. Flux is the application architecture that Facebook uses for
building client-side web applications.

 IPython [16] for the Spot virtualisation server. IPython is a command shell for interactive
computing in multiple programming languages.

 GraphQL [17] for query data from HDFS Parquet [18] files. GraphQL is a query language
for custom API’s, and a server-side runtime for executing queries by using a user-
defined type system.

 Hadoop [19] for distributed file system. Apache Hadoop allows for the distributed
processing of large data sets across clusters of computers using simple programming
models.

 Hive for data storage. Apache Hive facilitates reading, writing, and managing large
datasets residing in distributed storage using SQL.

Using Spot, SHIELD will benefit in several aspects:

 Leveraging the on-going efforts of the community,

 Taking advantage of the dissemination potential offered by Spot,

 Increasing the exploitation possibilities of SHIELD,

 Collaborating with experts on cybersecurity to provide better solutions,

 Following a methodology and good practices in code development.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
38

On the other side, Spot will also benefit by the SHIELD developments since they will help the
project to quickly achieve a more mature state. The choice of an integral, open-source and
active cybersecurity solution like Spot goes perfectly in line with the concept an Innovation
Action. It must be stressed out, at this point, that Spot is still far from suitable to be adopted
“as-is” in SHIELD; in the context of SHIELD, Spot will be just used as the starting point for the
DARE developments. The SHIELD team has already identified several extensions, which will be
needed to the core Spot platform to fulfil SHIELD requirements, mostly related to
functionalities such as: mitigation capabilities; near-real-time operation; classification of
threats; optimised operation in an NFV environment; and enhancement of the data model to
support for more types of information. These extensions are described in detail in the following
sections.

In Figure 23, the subcomponents envisioned in the architecture are shown together with the
technology that will be used to develop them.

It is worth to mention that Spot is not “yet another IDPS” but a platform that offers to the
clients the possibility to develop their own machine learning engines. This approach allows
SHIELD to focus the effort on the innovative algorithms that will be used for threat detection
and mitigation.

Figure 23: List of subcomponents and used technologies

3.1. Data acquisition and storage

The Data Acquisition and Storage phase involves mechanisms and methods to capture and
transfer heterogeneous network information, from the monitoring vNSFs, into the central data
analytics engine. This phase is described by two different low-level architectures, the
centralised and the distributed (Section 3.2).

Specifications

The requirements elicited in D2.2 are here transformed into specifications from the point of
view of the Data acquisition and storage phase (Table 2).

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
39

Table 2: Specifications of the Data Acquisition phase and fulfillment of requirements.

Req.
number

Requirement Name Requirement description

PF04 Security data
monitoring and
analytics

The platform SHALL be able to collect and analyse
metrics and logs from the vNSFs in real time in order
to detect security incidents

I_SPEC_01 The Data Acquisition and Storage framework utilises collector daemons to
detect, capture and transfer heterogeneous network data from vNSFs into the
central data analytics engine through a streaming service in real time. Worker
daemons are also used, to transform the collected data into human readable
format before storing it to a distributed file system. After being stored in the
distributed file system, the data is available for further processing analysis.

PF16 Historic reports The platform SHALL generate reports of past incidents
based on historic data.

I_SPEC_02 Report generation is supported by using the abstraction layer of the Data
Acquisition and Storage framework, to run queries on tables, where the
historic data is stored.

PF22 Management
communication
security

The platform SHALL encrypt all the management
communications.

I_SPEC_03 Dispatch of data to the DARE will be authenticated and encrypted.

NF01 Response time The platform SHALL report the incident within a
relatively short time (in the order of seconds).

I_SPEC_04 The Data Acquisition and Storage framework has a distributed architecture,
which allows fast data access and processing and returns results in a relatively
short time (in the order of seconds).

NF04 Data Volume The platform SHALL be able to handle data in the
order of Terabytes.

I_SPEC_05 The Data Acquisition and Storage framework is fully scalable and can handle
increasing data volume by adding more data nodes to the infrastructure.

NF06 Performance factors The platform SHALL offer an availability-related
performance similar to carrier grade system. It
includes recovery time and redundancy capability.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
40

I_SPEC_06 The technologies used to implement the acquisition and storage phase will
allow redundancy (e.g. N+1) and resilience against failures.

NF07 Compliance to
standards

The platform SHALL conform to well-established
standards, in particular with respect to data export
(e.g. STIX) and input (e.g. NetFlow).

I_SPEC_07 The ingestion chain will support NetFlow format as input, as well as various log
formats.

ERC01 Access to and
portability of personal
data

All components that process and/or store personal,
identifiable information SHALL provide data subjects
with a way to access and review their personal data.

I_SPEC_08 The storage component will expose methods for retrieving data by IP address
and/or by URL parts (which can be possibly associated to persons)

ERC02 Data rectification and
erasure

All components that process and/or store personal,
identifiable information SHALL provide data subjects
with a way to request that their data be rectified or
erased.

I_SPEC_09 The storage component will expose methods for deleting data by IP address
and/or by URL parts (which can be possibly associated to persons)

Implementation details

The centralised architecture of the Data Acquisition and Storage phase (refer to Figure 15) will
feature a built-in ingestion framework of the Apache Spot platform, which will be responsible
for handling the raw network data that will be transferred directly to a specific path of the data
analytics engine. Ingestion framework consists of several edge nodes, running on Linux OS and
handling the incoming network traffic. It also supports Apache Kafka [20] as a streaming
platform, for handling all the real-time network data feeds.

Inside each vNSF there are daemons, called data collectors, which monitor the vNSF for new
files with network data generated by it. In the case of centralised architecture, once new data
files are detected, collectors capture them from local file system and publish them to Apache
Kafka. Apache Kafka splits the raw network data into specific topics and smaller partitions, while
creating a data pipeline for each type of data. Each pipeline sends the network data, stored by
data collectors, to specific daemons, called workers. Workers are running in the background
inside the data analytics engine, as part of the data transformation subcomponent. Each worker
is subscribed to a specific topic and partition of Apache Kafka. It reads raw network data from
the partition, decodes and translates it into comma-separated files (CSV), by using dissection
tools. Once the data has been transformed, worker stores the input in HDFS with both the
original and human-readable format, making it available to Hive tables, so it can be accessible
by SQL queries.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
41

The Data Acquisition and Storage phase also supports a distributed architecture (refer to Figure
16). The main difference between the centralised and the distributed architecture is that in the
centralised one, collectors are running inside the data analytics engine, while in the distributed
one, there is one collector per vNSF. When a vNSF generates a new data file, the collector of
the vNSF will detect it and will fork a new child process. The child process will decode and
translate the raw network file into a comma-separated output with specific structure. Then,
using the Apache Avro serialization framework, it will convert the processed output to an avro-
encoded format and will send it to the Apache Kafka streaming platform. The collector does
not publish the entire processed output to Kafka, but divides it into smaller chunks of bytes,
providing a steady flow of data through Kafka. In addition, using parallel processes, delays are
significantly reduced when there is a huge load of incoming network files, optimizing the
performance of the collector. Published messages in the Kafka cluster are consumed by worker
daemons in the analytics engine. A worker process listens to a specific partition of the Kafka
topic, consumes messages, deserializes and stores them in HDFS, to be imported directly into
Hive tables. Unlike the centralised architecture, which stores both the original and the human-
readable formats inside the data analytics engine, only the transformed version of the files is
stored in the distributed architecture.

As the Data Acquisition and Storage phase will be based on the Apache Spot platform, the
heterogeneous network information that will be captured via specialised vNSFs shall be
compatible with the following structure and format:

 NetFlow [9]: data files which contain network traffic as it enters or exits from a
monitoring interface. By analysing NetFlow data, a network administrator can
determine things such as the source and destination of traffic, class of service and the
causes of congestion.

 DNS: PCAP files (packet capture) [21] out of DNS servers. PCAP files contain network
packet data, created during a live network capture. By analysing PCAP files, vital
information can be retrieved regarding the monitored network and its characteristics.

 Proxy: popular proxy format logs will be supported like the bluecoat format.

By default, Apache Spot uses specific open-source decoders to transform raw network data
into comma-separated files. According to the data type, a different dissection tool is being used.
For flow traffic, a modified version of nfdump [22] is used to dissect the flow packets into
comma-separated files. For PCAP files (packet captures) the TShark [23] tool is used with a
combination of options to generate the comma-separated files. The proxy log files are parsed
using Apache Streaming [24] before being inserted into Hive tables.

Apart from the above, it is possible to take advantage of other data types produced by the
vNSFs, such as possible alerts, to collect extra information which could be helpful in further
processing by the machine learning algorithms (e.g. data obtained from the hardware
attestation). Apache Spot’s Ingestion Framework does not support those type of data and for
this reason a new submodule has been implemented under SHIELD’s scope. New collectors
capture alerts produced by the vNSFs and new workers store these alerts to HDFS. In addition,
Apache Kafka’s configuration needed to be extended to support these types of data. This
submodule can be used in both centralized and distributed architecture, without any further
modification of the original implementation. Moreover, along with alerts, measurements could
also be sent on the load and usage of each vNSF, to prevent machine failures or data loss.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
42

By gathering data from different vNSFs in the central infrastructure, it is important to know
which vNSF has sent each data record. For this reason, a new feature has been added in the
current implementation: the Universally Unique IDentifier (UUID) of the current vNSF will be sent
among the data to know from which machine these data originate. This information is also
stored in Hive tables, to be accessible in the future if needed.

Note also that a collector will be implemented inside the Trust monitor consuming the API
provided by it.

Comparison with similar technologies

Both centralised and distributed architectures use Apache Kafka as streaming service. Kafka is
a unified platform for handling all the real-time data feeds. It supports low latency message
delivery and guarantees fault tolerance in the presence of machine failures. Kafka is distributed,
partitioned, replicated and can scale easily without any down time.

Another streaming service that could be used is Apache Storm [25], a free and open-source,
distributed, real-time computation system. Storm is designed to process vast amount of data
in a fault-tolerant and horizontal scalable method. It is a streaming data framework that has
the capability of high ingestion rates. However, Storm is mostly a computation unit, meaning it
can execute all kind of manipulations on real time data in parallel. In our implementation, all
the computations are taking place inside the data analytics engine and not on streaming
process. In addition, Storm does not have the ability to share data with multiple systems,
something that may be useful in the future, since Kafka can provide the same data to multiple
storage systems (e.g. a new data analytics engine that does not use Hive but uses Pig).

Storage is done in Hive tables over HDFS. Using Hive, it is possible to launch SQL queries over a
Distributed File System like HDFS which facilitate the work of accessing the data. A possibility is
to use Spark directly, which works over HDFS without the need of any abstraction layer like
Hive. However, this will imply that access to data will be more difficult since SQL like language
cannot be used. Apache Pig [26] is another abstraction layer on top of HDFS that facilitates the
task of accessing the data. Pig is flow-based, instead of table-based like Hive. Although Pig is a
possibility, Spot uses Hive because of the convenience of developers that are used to SQL.

3.2. Data analysis phase

The DARE will leverage two different data analytics modules that will export their findings to a
shared Remediation engine, to produce optimal results. The Cognitive Data Analytics module
will be based on the Apache Spot platform, an in-development, and open-source project for
network telemetry and anomaly detection. The Security Data Analysis module will implement
a version of Talaia’s proprietary network visibility solution based on the SecaaS architecture.
The aforementioned modules will be modified and functionally enriched, with respect to the
fulfilment of the SHIELD’s requirements. The Remediation Engine will exploit the Data Analytics
Engine’s output to detect security incidents and will recommend the triggering of actions to
mitigate the threats, utilizing open-source technologies and implementing the security policies
defined in the next section. Next follows a specifications and implementation subsection for
each module involved in the DARE.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
43

Specifications

The requirements elicited in D2.2 are here transformed into specifications from the point of
view of the Data analysis phase (Table 3).

Table 3: Specifications of the Data Analysis phase and fulfillment of requirements.

Req.
number

Requirement
Name

Requirement description

PF04 Security data
monitoring and
analytics

The platform SHALL be able to collect and analyse metrics
and logs from the vNSFs in real time in order to detect
security incidents

A_SPEC_01 The platform will include worker nodes that will utilise the ingested network
traffic to implement batch (historic) and streaming (real-time) machine-
learning algorithms to detect security threats.

PF08 PF08. Platform
expandability

The SHIELD platform offers well-documented APIs and
interfaces as well as SDKs and guidelines so that third
parties can easily develop new security functions and
services.

A_SPEC_02 The developed platform will be developed using open-source and each
module will be isolated through APIs. Several analytics engines can be used.
Specifically, two analytic engines will be developed. One open source and
based on cognitive principles and another one privative and based on pattern
discovery techniques.

PF13 Mitigation The platform SHALL be able to trigger, in the case of an
event, proper actions in order to mitigate the threat.

A_SPEC_03 The platform will provide information of the detected threats to the
Remediation engine, to initiate the mitigation procedure.

PF16 Historic reports The platform SHALL generate reports of past incidents
based on historic data.

A_SPEC_04 The detected threats from this phase will be stored in the distributed file
system and will be available for processing and reporting.

PF17 Interoperability All interfaces of the vNSFO, the vNSFs and the DARE are
publicly documented and compliant to open standards to
the maximum possible extent.

A_SPEC_05 The Cognitive Data Analytics module is based on open-source state-of-the-art
technologies that comply to open standards and industry's best practices. The
proprietary engine is used as a “black box” that will implement the given APIs
to connect it to the platform.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
44

PF18 Service
composition

The platform SHALL be able to compose security services
by combining one or more of the available vNSFs.

A_SPEC_06 The platform will communicate with several vNSF collectors to ingest network
traffic required for performing security analytics

NF01 Response time The platform SHALL report the incident within a relatively
short time (in the order of seconds).

A_SPEC_07 The platform will incorporate state-of-the-art streaming processing
technologies to process the ingested data.

NF03 Scalability The storage and processing capabilities of the platform
SHALL be able to increase merely by adding resources to
the system.

A_SPEC_08 The data analytics modules are based on state-of-the-art distributed storage
and computing technologies (e.g. HDFS, Spark, Hive, etc.) which are scalable
by design and associated with big data processing. The security DA module
leverages a distributed architecture where the different components used for
storage and processing can dynamically and independently allocate new
resources and can scale to accommodate large volumes of data.

NF05 Impact on
perceived
performance

When network traffic is proxied or analysed, the user
experience SHALL not be degraded.

A_SPEC_09 The platform will be based on a distributed computing framework that will
feature scalable storage and processing, load-balancing and resource
management functionalities.

NF06 Performance
factors

The platform SHALL offer an availability-related
performance similar to carrier grade system. It includes
recovery time and redundancy capability.

A_SPEC_10 The technologies used to implement the data analysis modules phase are by
design resilient against failures and ensure that all processing activities
remain consistent even in the presence of network and node failures.

NF07 Compliance to
standards

The platform SHALL conform to well-established
standards, in particular with respect to data export (e.g.
STIX) and input (e.g. NetFlow).

A_SPEC_11 The two data analysis modules of the DARE will conform to well-established
data input formats, in order to provide information to the Cybersecurity
topologies phase.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
45

ERC01 Access to and
portability of
personal data

All components that process and/or store personal,
identifiable information SHALL provide data subjects with
a way to access and review their personal data. If the data
processing does not require identification, the
component is not required to provide access, unless the
user can provide additional information enabling their
identification (according to Article 11 of the GDPR).

A_SPEC_12 In terms of analytics, since the DARE offers multi-user support, each user will
gain access only to threat results that are relevant to his organisation. This
could be achieved by correlating the IP addresses of each SHIELD-monitored
organisation to the overall analysis results, to provide tailored information, in
compliance with the GDPR.

ERC02 Data rectification
and erasure

All components that process and/or store personal,
identifiable information SHALL provide data subjects with
a way to request that their data be rectified or erased. If
the data processing does not require identification, the
component is not required to provide this functionality,
unless the user can provide additional information
enabling their identification (according to Article 11 of the
GDPR).

A_SPEC_13 All network traffic collected by the DARE could be erased upon request
(platform website) and/or after a set period of time. The threat detection
functionalities of the data analytics modules (e.g. training of the ML-based
models, threat detection, results visualisation etc.) are not affected by the
deletion of past data.

ERC04 Transparency in
data processing

The platform SHALL present visibly and transparently the
technical information pertaining to the components’ data
processing. Data processing activities should be logged.

A_SPEC_14 Information regarding the data processing procedures followed by the DARE’s
two analytics modules will be logged and available to the users upon request.

ERC05 Data retention The components storing and processing personal
identifiable data SHALL define a specific data retention
period.

A_SPEC_15 The data analytics modules will retain data for a user-defined time period.

ERC06 Transparency in
traffic
classification

Components with the ability to classify traffic and apply
throttling/limiting measures SHALL provide detailed
information.

A_SPEC_16 The Cognitive DA module is based on open-source technologies. Thus, all
traffic classification information is available to the public. The Security DA

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
46

module is a commercial product and as such some specific details related to
the exact algorithmic implementations may not be disclosed.

Cognitive Data Analytics module

The Cognitive Data Analytics module infrastructure consists of a cluster of nodes running on
open-source OS and virtual machines. Each node will perform several operations and will be
orchestrated by cluster and resource management technologies, specifically designed for big
data applications. The specifications of the Cognitive Data Analytics module include:

 A cache system for real time analytics.

 Unified services for orchestration, operations and resource management.

 Machine Learning modules that provide scalable ML algorithms for network traffic
filtering, as part of a cluster-computing framework.

 An Operational Analytics module that allows for the implementation of whitelisting and
filtering techniques that will help reduce false positives and offer remediation
recommendations to the users.

The module will consist of several nodes (physical or virtual machines), each of them
performing a designated task. The worker nodes receive the ingested network traffic from the
Data Acquisition Phase and are responsible for the operation of the machine learning entity.
The Operational Analytics nodes execute the filtering and whitelisting functionalities and are
intended to operate as the final editing step, before pushing the detection results to the
Remediation Engine.

Implementation details

The cognitive Data Analytics module performs anomaly detection analytics, following the Spot
architecture, by deploying a collection of state-of-the-art technologies (Hadoop, Spark, Kafka,
etc.) in the form of an integrated ecosystem, the Cloudera Distribution for Hadoop. CDH is an
Apache-licensed open-source framework that delivers the core elements of scalable storage
and distributed computing, along with a Web-based UI and enterprise capabilities and is
considered the most popular distribution for Apache Hadoop and related projects. Spot utilises
CDH as a general dependency package for the development of its three main parts: ingestion
(Subsection 3.1), machine-learning and operational analytics.

 Machine Learning: The machine learning entity is responsible for the detection of
anomalies in network traffic and the prevention or mitigation of potential threats.
Apache Spot already contains routines for performing anomaly detection on NetFlow,
DNS and proxy logs and there is the intention to develop additional algorithms that will
handle security event data and metrics gathered from the vNSFs. These routines
consume a collection of network events and produce a list of the events that are
considered to be the least probable, these being considered the most suspicious. The
statistical model that is currently used for discovering abstract topics of these events
and ultimately discovering normal and abnormal behaviour is a topic modelling
algorithm called Latent Dirichlet Allocation [27]. LDA is a generative probabilistic model
used for discrete data that is applied to network traffic by converting network log
entries into words through aggregation and discretisation, to discover hidden semantic
structures. Spot executes LDA routines using a Scala Spark implementation from MLlib,

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
47

Apache Spark's scalable machine learning library. It should be noted that Spot’s current
capabilities do not include any anomaly classification algorithms that would interpret
the detected outliers as specific threats/attacks, thus such an algorithm will be originally
developed to meet this requirement. The module will exploit Spot's existing batch
processing capabilities, coupled with the development of streaming analytics
functionalities currently missing from Spot, to achieve real-time (or near real-time)
visibility for threat detection.

 Operational Analytics: The operational analytics entity will exploit Spot’s built-in results
editing capabilities, as well any additional features that will result from the developed
machine-learning features. Spot uses the Jupyter/IPython [16] notebook, a server-client
application that allows editing and running notebook documents via a web browser, to
apply filtering and whitelisting services thus providing a more accurate view of the
overall anomaly detection procedure, by reducing false-positives.

Comparison with similar technologies

The Cognitive Data Analytics module was initially planned to be developed by leveraging
machine learning techniques (e.g. Naive Bayes classification [28], Support Vector Machine [29]
) to analyse events and network data. This would include the selection, configuration and
deployment of several state-of-the-art frameworks for Big Data analysis (e.g. Apache Mahout
[30], Scala [31] frameworks). The Apache Spot framework can be considered a superset of the
above frameworks, as it features a combination of distributed computing (Hadoop), data lake
management (Hive) and machine learning (Spark) frameworks along with auxiliary services to
ingest, analyse and present the detected anomalies in network traffic. It being maintained by a
large community is a strong indication that Spot will continue to evolve its cybersecurity
capabilities, while the open-source nature of the project will allow for contributions regarding
all its main components.

A similar framework that could be deployed for network analytics within the scope of SHIELD is
Apache Metron/OpenSOC [32]. Metron is a cybersecurity application framework that provides
the ability to ingest, process and store diverse security data feeds at scale to detect cyber
anomalies. Metron and Spot have similar objectives and approaches from an ingestion, storage
and user interface perspective. The key differences relate to the Open Data Model that is
utilised only by Spot and the fact that Spot leans towards a machine-learning approach to
provide results, while Metron is currently more focused on traditional deterministic
(rules/signatures/patterns) analytics.

Other open source/commercial products not very close to the network traffic analysis that try
to simplify the cognitive analysis closing the algorithms available or lock to their own sources
(Splunk, Machine Learnings, ToolKit app) or on the contrary just offer wide open Machine
Learning tools (Google TensorFlow, Amazon ML) where the client must setup the dataset
injection model and create their algorithm from scratch. Apart from the fact that created
trained algorithms code is not exportable, these products are not specialised in network
security, such as Apache Spot.

Finally, Spot uses Spark instead of Hadoop. Spark is an extension of Hadoop in the sense that
for batch processing it uses Hadoop, but it adds the possibility to work with cache and
streaming. This will be mandatory for processing real-time traffic.

Security Analysis Module

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
48

The Security Analysis module is derived from the security module of Talaia’s commercial
product and will be integrated into the SHIELD platform as a stand-alone component. That
module will be extended and integrated within the SHIELD framework. To this end, and similarly
to the Cognitive Data Analysis module, the specification of the Security Analysis module
includes functionalities for real-time detection and classifications of network performance
anomalies with a low false positive ratio.

The different entities inside this module can run in a distributed infrastructure or in a stand-
alone node (physical or virtual machine) depending on the scenario requirements. The
operation will start with the reception of the data by the Data Ingestion framework that will
transform and adapt the data, so it can be understood by the Security Analysis module. Then,
the data is stored in a distributed storage system to assure no data is lost while the Security
Analysis module is processing them.

Implementation details

From the implementation point of view, the Security Analysis module is a stand-alone black box
integrated into the SHIELD framework. As previously mentioned, the Security Analysis module
is derived from Talaia’s commercial product. Because of this, some specific details related to
the exact implementation cannot be published.

The original Security Analysis module only uses NetFlow-derived data to perform the detection
and classification of network performance anomalies (e.g., DDoS, network scans). In this
project, this module will be extended to use the data provided by the Apache Spot framework
(e.g., DNS, proxy logs) and by the monitoring vNSFs developed within the SHIELD project.
All the data available will then be transformed so the different entities in the Security Analysis
module can take advantage of the new information. As a result, the data mining and machine
learning techniques used in the four entities of the Security Analysis module will enrich and
improve the detection and classification of network anomalies. In addition, the new
information provided will also allow the detection and classification of new anomalies not
detected in the original version.

Once new anomalies are detected and classified, the Security Analysis module will adapt its
output (e.g., anomaly detected, traffic involved in the anomaly), so the Dashboard can
represent it and the Remediation Engine can actuate on it.

Comparison with similar technologies

The technologies used in the Security Analysis module consist of a set of cutting-edge data
mining and machine learning techniques from the literature combined with proprietary
methods.

On the one hand, as part of a commercial product, similar solutions can be found in Talaia’s
competitors. However, similarly to Talaia, competitors are always very reticent to share the
details of part of its core business. Among the different competitors, we can highlight Kentik
[33] and DeepField/Nokia [34] because both solutions are software-based solutions
commercialised from the cloud and that are currently being adapted to the NFV paradigm. In
addition, similarly to the Security Analysis module, these solutions base their classification and
detection of anomalies in data mining and machine learning techniques enriched with
proprietary methods. There are also hardware-based solutions as the one provided by Arbor
Networks [35] that can detect network anomalies by using deep packet inspection techniques.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
49

On the other hand, the open-source Apache Spot framework used in this project and the
Metron framework are also similar solutions.

3.3. Cybersecurity topologies phase

The policy engine leverages the policy specification and optimisation techniques developed in
the scope of the EC-funded project SECURED [36]. The SECURED project aimed at the definition
of an abstract configuration for each security capability, which could be consistently
transformed into specific settings by the actual implementation of the security control.

Specifications

The requirements elicited in D2.2 are here transformed into specifications from the point of
view of the Cybersecurity topologies phase (Table 4).

Table 4: Specifications of the Cybersecurity topologies phase and fulfillment of requirements.

Req.
number

Requirement Name Requirement description

PF02 vNSF lifecycle
management

The platform SHALL be able to manage the full
lifecycle of vNSFs (on boarding, instantiation,
chaining, configuration, monitoring and
termination).

T_SPEC_01 The Recommendation and Remediation subcomponent will oversee defining
configurations, using a high-level, application-independent syntax, for each
vNSF. To do so, it will provide pre-defined recipes to address each supported
threat. These recipes will define the protection requirements to be
implemented by the vNSFs to address the network security threat. The recipes
will be stored in a database and an API will be provided to interact with it.
Starting from the protection requirements, a set of security capabilities will be
derived. Each vNSF will have to support one or more capabilities, allowing this
subcomponent to select the optimal set of vNSFs (the Forwarding Graph). The
Remediation and Recommendation subcomponent will then translate each
capability into a high-level policy for configuring the vNSF and will provide the
suggested mitigation to the final user via Dashboard, by interacting with the
Dashboard API subcomponent.

PF06 Ability to offer different
management roles to
several users

The platform SHALL provide domain management
with accessibility to the resources of a domain by
different users.

The admin of a domain has to be able to create
management users with different roles.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
50

T_SPEC_02 The Recommendation and Remediation subcomponent will provide mitigation
actions to be applied in the user’s domain. No information will be gathered
regarding other SecaaS clients during this operation.

PF08 Platform expandability The platform SHALL be easily extended to support
new security services.

T_SPEC_03 The Recommendation and Remediation subcomponent will be able to interact
with the vNSF Store to select the best set of vNSFs to address a security threat
with a generic pull interface. In this way, the subcomponent will be able to
choose among all the different and evolving implementations for the NSs.

PF12 Threat data sharing The platform SHALL allow to share threat data with
a third entity. The granularity of such data depends
on the severity and type of each attack.

T_SPEC_04 The Cybersecurity Topologies phase of the DARE will for forward
recommendations to the Dashboard along contextual information about the
detected threat. This information could be used by a third entity, such as a
cybersecurity agency, to identify the attacks in the ISP network.

PF13 Mitigation The platform SHALL be able to trigger, in the case
of an event, proper actions in order to mitigate the
threat.

T_SPEC_05 The Cybersecurity Topologies phase of the DARE will implement the complete
workflow to derive a mitigation action, consisting in a topology of vNSFs and
their configuration (expressed in an application-independent syntax) starting
from an occurring threat.

PF21 Operation Traceability The platform SHALL provide profile-related event
generation for each of the user actions. E.g.:
platform administrator, domain administrator,
management user, etc.

T_SPEC_06 The Cybersecurity Topologies phase will not require user driven actions for the
mitigation of incoming threats, as the recipe will be automatically selected
according to the attack and severity. User actions may occur only at the
generation/update of recipes hence they will be tracked via application logs.

PF22 Management
communication security

The platform SHALL encrypt all the management
communications.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
51

T_SPEC_07 The Cybersecurity Topologies phase of the DARE will result in a
recommendation message that will be forwarded to the Dashboard in a secure
way, i.e. by means of encryption of the TLS protocol.

NF01 Response time The platform SHALL report incidents within a
relatively short time (in the order of seconds).

T_SPEC_08 The Cybersecurity Topologies phase of the DARE will provide mechanisms to
aggregate mitigation rules, if possible, to reduce the response time in reporting
incidents and mitigating them.

NF02 Availability The storage and processing capabilities of the
platform SHALL be able to increase merely by
adding resources to the system.

T_SPEC_09 The Cybersecurity Topologies processing components, as well as the recipes
database, can be deployed on several nodes in a load-balanced scenario to
increase their availability.

NF03 Scalability The storage and processing capabilities of the
platform SHALL be able to increase merely by
adding resources to the system.

T_SPEC_10 The Cybersecurity Topologies processing components, as well as the recipes
database, can be deployed on several nodes in a load-balanced scenario to
increase their scalability.

NF06 Performance Factors The platform SHALL offer an availability-related
performance similar to carrier grade system. It
includes recovery time and redundancy capability.

T_SPEC_11 The Cybersecurity Topologies processing components, as well as the recipes
database, can be deployed on several nodes in a redundant scenario, as it
performs as a stateless component of the platform.

NF07 Compliance to standards The platform SHALL conform to well-established
standards, in particular with respect to data export
(e.g. STIX) and input (e.g. NetFlow).

T_SPEC_12 The Cybersecurity Topologies phase of the DARE will process data provided by
the analytics engine, which conform to well-established data input formats, and
forward mitigations in lightweight messages to the Dashboard.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
52

NF08 Deployment and support
simplicity

The platform SHALL be easily installed and
maintained, without the need of specific expertise.

T_SPEC_13 The Cybersecurity Topologies components are implemented as a standalone
application that can be deployed separately from the other DARE sub-systems.

SF01 Content filtering A security service COULD provide URL filtering
based on different configurable categories (e.g.
political, violence, sex, social networks, etc.) for
internet web browsing.

T_SPEC_14 The Cybersecurity Topologies phase will provide a recipe to configure vNSFs
that address this security issue.

SF02 Detect/Block access to
malicious network
locations

A security service SHALL control access to malicious
network locations, such as phishing servers,
malware spreading websites, Command & Control
(C&C) servers, etc. The user must be alerted and
the access to the site could be blocked/allowed
depending on the configured policy rule.

T_SPEC_15 The Cybersecurity Topologies phase will provide a recipe to configure vNSFs
that address this security issue.

SF03 Security assessments A security service COULD provide continuous
vulnerability assessment on the network, hosts or
applications.

T_SPEC_16 The Cybersecurity Topologies phase could provide a recipe to configure vNSFs
that address this security issue.

SF05 Central log
processing/SIEM

A security service COULD collect and correlate
security logs from different legacy user sources and
generate alerts. This service is intended to provide
the user with a way to process its security logs that
are not generated by a vNSF in SHIELD.

T_SPEC_17 The Cybersecurity Topologies phase could provide a recipe to configure vNSFs
that address this security issue.

SF08 Denial of Service (DoS)
Protection

A security service SHALL protect against volumetric
Denial of Service attacks.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
53

T_SPEC_18 The Cybersecurity Topologies phase will provide a recipe to configure vNSFs
that address this security issue.

SF09 Intrusion
Detection/Prevention
System

A security service SHALL detect attacks with a wide
range of techniques such as network flow or
behaviour analysis and deep packet inspection.

T_SPEC_19 The Cybersecurity Topologies phase will provide a recipe to configure vNSFs
that address this security issue.

SF10 Honeypots A security service COULD provide a Honeypot
service that simulates or impersonates specific
services (e.g., Windows computer, Web server, IoT
or SCADA device, etc.) in order to detect malicious
behaviours in the network.

T_SPEC_20 The Cybersecurity Topologies phase could provide a recipe to configure vNSFs
that address this security issue.

SF11 Sandboxing A security service COULD provide a sandbox service
for executing and analysing programs

T_SPEC_21 The Cybersecurity Topologies phase could provide a recipe to configure vNSFs
that address this security issue.

SF12 Virtual Private Network
(VPN)

A security service COULD provide a secure tunnel
service in order to connect the branch of a client
with users on the Internet or other branches.

T_SPEC_22 The Cybersecurity Topologies phase could provide a recipe to configure vNSFs
that provide a secure tunnel service.

ERC09 Lawful Interception The vNSFs SHALL support LI capacities, or integrate
a LI system, if the vNSF changes the public IP
address (for Internet connection) or encrypts the
internet traffic. LI capacities are defined by ETSI.
Law enforcement agencies may require access to a
number of transmitted telecommunications
regarding a particular subject, target, date, etc. If
network operators/service providers initiate
encoding, compression or encryption of
telecommunications traffic, law enforcement
agencies require the network operators/service

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
54

providers to provide intercepted communications
in clear.

T_SPEC_23 The Cybersecurity Topologies phase of the DARE will process anomaly
detection results but will not change public IP addresses neither encrypt any
traffic.

Implementation details

The policy engine to be developed in the Cybersecurity Topologies phase will leverage the
functionalities provided by several modules developed within the SECURED project, but it will
aim to extend their capabilities and adapt the workflow to what is expected in the DARE.

The different layers of policy abstraction, as expressed in the specifications for this
subcomponent, will be mapped to different languages, namely:

 High-level Security Policy Language (HSPL), suitable for expressing the general
protection requirements without specifying configuration rules;

 Medium-level Security Policy Language (MSPL), suitable for expressing configuration
rules in an application-independent syntax.

The policy abstraction layers will be relevant for the SHIELD recommendation and remediation
engine, as they will be used to describe the mitigation action starting from the general
protection requirements to the configuration rules to be applied by each vNSF. The first will be
utilised by the High-level Policy Recipe Provider to describe one or more rules that compose
the recipe. The latter will be used to describe configuration rules for each vNSF, whose
functionalities will be mapped on the security capabilities. It is to be noted that each vNSF in
the catalogue will have to provide this information embedded in its metadata, to allow the
recommendation and remediation engine to choose the best set of vNSFs for a specific threat.

The SECURED project also designed and developed different transformation tools to ease the
configuration of security functions, namely:

 H2M Service for HSPL to MSPL transformation;

 M2L Service for MSPL to low-level configuration transformation.

Hence the transformation from MSPL to low-level configuration will not be part of the
recommendation and remediation engine, no integration of the M2L Service is needed in this
component.
The recommendation and remediation engine will leverage the functionalities offered by the
H2M Service to provide an optimal set of vNSFs with proper MSPL configuration starting from
the set of HSPL rules in input.

The two modules that will be implemented from scratch, namely the High-level Policy Recipe
Provider and the Dashboard API subcomponent, will follow the best practices in development,
testing and documentation and will leverage the functionalities offered by several frameworks,
such as Swagger [37] for the API provisioning and different technologies for No-SQL database
(e.g. MongoDB [38], Redis [39], Apache Cassandra [40]), required to store the HSPL-based
recipes in a key-value structure (where the key would be the threat “signature”). A REST API

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
55

with Create, Read, Update, and Delete CRUD capabilities will be provided to let a system
administrator interact with the recipes’ database.

Dashboard API operations

The following table (Table 5) describes the envisioned operations of the Dashboard API.

Table 5: Operations of the Dashboard API.

Operation Arguments Description

post_mitigation threat context
information, network
service, recommendation

Send the list of MSPL policies to be applied,
along with contextual information of the
attack and the identifier of the Network
Service to be deployed to address the
incoming threat.

Comparison with similar technologies

The configuration of vNSFs in an orchestrated, distributed environment has received great
attention in literature, but there are not currently open-source, widespread technologies that
provide this capability because of the lack of formal representations for the type of data
needed. The policy specification engine, as originally designed and developed in SECURED, has
been considered as a fitting solution for the DARE’s recommendation and remediation
subcomponent, as it provides both the two-level abstraction for policies and the functionalities
to identify, optimise and configure vNSFs running in a SDN/NFV environment. In addition, the
MSPL language is defined as a meta-model, which may be extended to support different
security functions, other than the ones defined in SECURED. Other solutions, which will be
briefly introduced in this section, are either too specific for a security function (e.g. packet filter)
or don’t provide a convenient way of describing configurations in an application-independent
syntax. Proprietary solutions, if any available, are not described in this section as they would
provide translation mechanisms for vendor-specific network security functions. Firmato [41] is
a proposal for translating high-level security requirements into packet filter configurations,
based on an entity-relationship model to represent the knowledge base (e.g. the protection
requirements and the topology of the network. Its applicability to large and heterogeneous
networks, which may be typical for NFV environments, has not been proven, as the technology
has been applied only to a network with a single border firewall. FACE [42] is another model for
configuring a firewall in an NFV environment. It takes as input the topology and a global high-
level policy, and outputs the packet filter rules. MIRAGE [43] is a tool for analysis and
deployment of security policies, which is not limited to supporting packet filter’s rules, but also
configurations for VPN gateways and IDSs. The SECURED’s solution is considered to be more
generic, as it adopts an extensible capability-based language, and it is also supported by an
open-source implementation that has been already tested in a NFV scenario, close to the one
envisioned in SHIELD.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
56

3.4. Dashboard

Based on the requirements elicitation available in D2.2 as well as on the specification of the
Dashboard component previously provided in the current document, this section will explain
the requirements currently addressed by the Dashboard component as well as the
implementation details currently envisioned for this component (Table 6).

Specifications

The requirements elicited in D2.2 are here transformed into specifications from the point of
view of the Dashboard (Table 6).

Table 6: Specifications of the Dashboard component and fulfillment of requirements.

Req.
number

Requirement Name Requirement description

PF03 vNSF status
management

The operator SHALL be able to control the lifecycle via
a graphical user interface. The vNSF lifecycle should
support events like DEPLOY, START, STOP, MODIFY,
DELETE.

D_SPEC_01 Dashboard has connectivity with Orchestrator component (Orchestrator
connector subcomponent) allowing lifecycle features to be provided to the end
user through the Graphical User Interface.

PF05 Analytics visualisation The operator SHALL be able to see the analytics
visualised in e.g. a dashboard.

D_SPEC_02 DARE connector subcomponent will allow GUI to expose monitoring
information persisted in this component. Furthermore, Remediation Queue
subcomponent will stage recommendation sent by the DARE waiting for
acceptance/rejection from the end user.

PF06 Ability to offer
different
management roles to
several users

The platform SHALL provide domain management with
accessibility to the resources of a domain by different
users.

The admin of a domain has to be able to create
management users with different roles.

D_SPEC_03 User management and AA subcomponents will provide Authentication,
Authorisation and user management features allowing creating and using
different roles with different sets of permissions. SHIELD’s features and
information will be filtered based on the role and permissions of each
authenticated user.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
57

PF07 Service elasticity The platform COULD provide the mechanism to allow
scalability of the vNSFs.

D_SPEC_04 Dashboard will allow triggering this mechanism through its interface, using the
Orchestrator connector to ensure this feature.

PF09 Access control The platform SHALL provide a secure environment.
Authentication mechanisms that should control the
access and restrict access only to authenticated users.

D_SPEC_05 User management and AA subcomponents will provide authentication,
authorisation and user management features. Only authenticated users will
have access to SHIELD’s internal features and information.

PF12 Log Sharing Sharing logs with a third entity SHALL be allowed. The
granularity of the data provided by the logs depends
on the severity and type of each attack.

D_SPEC_06 The Dashboard will provide access to APIs that will allow the sharing of logs
between the DARE and other entities.

PF13 Mitigation The platform SHALL be able to trigger, in the case of an
event, proper actions in order to mitigate the threat.

D_SPEC_07 The Dashboard will allow the deployment of vNSFs and policies via the GUI.

PF14 Multi-tenancy The platform SHALL accommodate multiple users, with
isolated services and secured access to analytics

D_SPEC_08 User management and AA subcomponents will provide authentication,
authorisation and user management in a multi-user environment.

PF15 Service store The store SHALL allow selecting security services from
the catalogue.

D_SPEC_09 Store connector subcomponent will allow GUI to expose Store’s security
service catalogue features.

PF16 Historic reports The platform SHALL generate reports of past incidents
based on historic data.

D_SPEC_10 Historic reports will be available in the dashboard using DARE connector to
fetch this information.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
58

PF17 Interoperability The platform SHALL expose openly-defined APIs for
information exchange with third parties.

D_SPEC_11 Dashboard will provide an open API allowing third party applications to use it.

PF20 Billing framework The platform SHALL implement a billing framework for
the use of the security services. The clients should be
able to access to the functionalities defined by their
payment modality.

D_SPEC_12 Billing features will be assured by Dashboard’s Billing subcomponent enabling
SHIELD’s monetisation features.

PF21 Operation
Traceability

The platform SHALL provide profile-related event
generation for each of the user actions. E.g.: platform
administrator, domain administrator, management
user, etc.

D_SPEC_13 All User actions logged and the records available to the appropriate profiles.
The log shall store at the very least the username, the profile, the action and a
timestamp for the occurrence.

PF22 Management
communication
security

The platform SHALL encrypt all the management
communications.

D_SPEC_14 The communication with the Dashboard is done using HTTPS, where the
messages are encrypted using the Transport Layer Security protocol.

NF01 Response time The platform SHALL report incidents within a relatively
short time (in the order of seconds).

D_SPEC_15 The Dashboard will provide a message queue for incidents notification. As soon
as an incident is placed in the queue the user is notified through a visual alert.

NF02 Availability The core platform SHALL be able to recover in case of
hardware failures.

D_SPEC_16 The Dashboard will employ technologies resilient to failure and support failover
when in the event of a node failure.

NF03 Scalability The storage and processing capabilities of the platform
SHALL be able to increase merely by adding resources
to the system.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
59

D_SPEC_17 The Dashboard will be embrace the scalability by design principle, be it scale
in/out, concurrency, rate limiting or data storage. These requirements must be
present in the technology stack selected for the implementation.

NF07 Compliance to
standards

The platform SHALL conform to well-established
standards, in particular with respect to data export
(e.g. STIX) and input (e.g. NetFlow).

D_SPEC_18 The Dashboard will provide a mechanism for data exchange. It will only as a
vessel whereby the data contents or format are agnostic to the Dashboard.

NF08 Deployment and
support simplicity

The platform SHALL be easily installed and maintained,
without the need of specific expertise.

D_SPEC_19 The Dashboard will provide installation scripts to ease and automate all the
steps required for the deployment process.

NF09 vNSF hardening The vNSFs SHALL be hardened.

D_SPEC_20 The Dashboard will provide an option for an authorised User to mark a vNSF as
ready for deployment. It is expected the User only performs this action once
the sandboxed vNSFs goes through some verification procedure.

SF05 Central log
processing/SIEM

A security service COULD collect and correlate security
logs from different legacy user sources and generate
alerts. This service is intended to provide the user with
a way to process its security logs that are not
generated by a vNSF in SHIELD.

D_SPEC_21 The Dashboard will provide a way for the authorised user to deploy the
appropriate NS to handle this scenario.

SF11 Sandboxing A security service COULD provide a sandbox service for
executing and analysing programs.

D_SPEC_22 The Dashboard will provide a way for the authorised user to deploy the
appropriate NS to handle this scenario.

SF12 Virtual Private
Network (VPN)

A security service COULD provide a secure tunnel
service in order to connect the branch of a client with
users on the Internet or other branches.

D_SPEC_23 The Dashboard will provide a way for the authorised user to deploy the
appropriate NS to handle this scenario.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
60

ERC01 Access to and
portability of
personal data

All components that process and/or store personal,
identifiable information SHALL provide data subjects
with a way to access and review their personal data. If
the data processing does not require identification, the
component is not required to provide access, unless
the user can provide additional information enabling
their identification (according to Article 11 of the
GDPR).

D_SPEC_24 The Dashboard will only require minimal data from any user. For the platform
operation users, it will collect no personal data aside from an e-mail for
communication purposes. As for billing the SecaaS clients are only identified by
an ID, any personal data will live in an external invoicing system.

ERC03 Access to related
Data Protection
information

The platform SHALL provide the data subject with easy
access to the following information:

- The identity and contact details of the data
controller(s)

- The identity and contact details of the Data
Protection Officer

- The purpose of processing and categories of
data concerned

- The recipients of the collected data

- A statement on transfer of data to third parties
(including cross-border)

- An interface that allows the user to lodge a
complaint to the Data Protection Officer

D_SPEC_25 The Dashboard will provide a user interface to enter Data Protection
information, to display said information and to allow lodging a complaint.

ERC04 Transparency in data
processing

The platform SHALL present visibly and transparently
the technical information pertaining to the
components’ data processing. Data processing
activities should be logged.

D_SPEC_26 When onboarding a vNSF the developer will provide information on the data
protection regulatory compliance. When browsing for vNSFs to use in a NS, the
user will be presented with such information in simple and clear way, so an
informed selection can be made.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
61

ERC05 Data retention The components storing and processing personal
identifiable data SHALL define a specific data retention
period.

D_SPEC_27 When browsing for vNSFs to use in a NS, the Dashboard will present to the user
the data retention period defined by the developer.

ERC06 Transparency in
traffic classification

Components with the ability to classify traffic and apply
throttling/limiting measures SHALL provide detailed
information.

D_SPEC_28 When browsing for vNSFs to use in a NS, the Dashboard will present to the user
information on the data protection regulatory compliance. It will also present
a log of any action to throttle or block traffic (provided such information is
conveyed to the Dashboard).

ERC07 Notification
obligation

In the case of a breach in a component that processes
personal data, the platform SHALL produce a breach
notification. Data rectification or erasure should be
accompanied with a notification to the data subject
unless it is difficult or involves disproportionate effort,
as per article 19 of the GDPR.

D_SPEC_29 The Dashboard will convey the breach notification to the contact associated
with the tenant. Such notification is provided by the component which detects
the breach.

ERC08 Net Neutrality The platform SHALL not recommend actions that lead
to user traffic penalization, unless explicitly required
for threat mitigation.

The net neutrality rules adopted by the European
Parliament on 30 April 2016 aimed to strengthen net
neutrality by requiring internet service providers (ISPs)
to treat all traffic equally, without favouring some
services over others. For this reason, no service could
be used by an ISP to punish or to favour the traffic of a
user respect the rest of the users.

D_SPEC_30 The Dashboard will convey to the user a visual warning associated with any
threat mitigation which may lead to traffic penalization.

ERC09 Lawful Interception The vNSFs SHALL support LI capacities, or integrate a LI
system, if the vNSF changes the public IP address (for

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
62

Internet connection) or encrypts the internet traffic. LI
capacities are defined by ETSI.

D_SPEC_31 The Dashboard will include a role for users associated with LI. Such role will
allow the user to add LI-capable NSs to an existing chain.

Implementation details

The Dashboard contains a set of subcomponents that together allow providing all the features
envisioned for the component. Regarding its Graphical User Interface subcomponent, it will be
based on web technologies allowing end users to access it using a common web browser.
Hence, standard technologies will be used such as Hyper Text Markup Language (HTML),
JavaScript and Cascading Style Sheets (CSS). The use of web frameworks based on these
technologies such as AngularJS [44] is also envisioned allowing to boost development efficiency,
productivity, data handling and maintenance. Regarding visual styling, technologies such as
Sass will be incorporated as an extension to CSS enabling new manipulation methods as well as
an efficient code structuring. The GUI subcomponent will leverage results achieved in previous
and running EC-funded projects namely T-Nova [45]and SELFNET [46]. The features provided
by the Graphical User Interface of each one of these projects will be merged and extended
taking advantage of the result of all discussions and conclusions that took place in each project.
More precisely, the web interfaces associated with the vNSF catalogue, store, permission
management and vNSF orchestration will be based on the conjunct result provided by these
two projects. Regarding network topology visualisation, SHIELD’s GUI will leverage the work
done in both SELFNET and SONATA [47] in an attempt of providing an appealing and intuitive
interface for this feature. While SELFNET focused on the physical and virtual connectivity of the
virtual machines instantiated across the Network Infrastructure, SONATA implemented a
hierarchical visualisation on the resources associated with each Network Service. For the
implementation of this visualisation, the use of Scalable Vector Graphics (SVG) [48] is
envisioned with the support of D3js framework [49] providing a set of relevant tools allowing
its manipulation. The use of both D3js and SVG is enforced by the fact that both SELFNET and
SONATA use this combination to implement its topology visualisation features.

The interaction between GUI and API Service is envisioned to be implemented using REST
technology. Consequently, a REST client will be developed in the GUI subcomponent allowing
the connection to a REST Service to be developed and provided by API Service. Regarding the
real time push of information coming from API Service to the GUI, websockets technology is
envisioned allowing the seamless implementation of the envisioned workflow.

As previously mentioned, API Service will be based on REST technology providing a set of
endpoints allowing the use of features provided by SHIELD’s internal components. These
endpoints will interact with a specific Dashboard’s internal subcomponent (User Management,
Remediation Queue, Billing, Store Connector, Orchestrator Connector, and DARE Connector)
responsible for sanitizing data as well as for interacting with the correct connector. Regarding
the connector subcomponents, their goal is to abstract the interaction with a given SHIELD
component so the use of technologies like real time messaging, advanced message queuing,
REST or SOAP technologies will depend on the interfaces and workflows provided by it.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
63

AA - Role-Based Access Control (RBAC)

The authorization and authentication for the Dashboard is based on the definition of users and
roles to associate with a user. The user is authenticated against a set of credentials and
authorised to use resources provided he/she holds the proper role. This is the basis for Role-
based Access Control and the available roles for SHIELD are described next. A diagram framing
the roles within SecaaS client is presented in Figure 24.

Roles:

Developer. He/she can submit vNSFs for onboarding into the platform. It is also the role with
the least privileges granted in the entire platform.

Lawful Interception. He/she can list all the vNSFs and NSs, as well as the recommendations
history, and be notified of any events targeted for vNSFs instances, for all the SecaaS clients in
the platform.

Platform Administrator. He/she performs all the Operations & Maintenance (O&M) tasks
available for a SHIELD instance, having the highest level of privileges granted to a user.

Service Management. He/she performs all the O&M tasks associated with Network Services
and vNSFs from creation, to deployment, to configuration, and to decommissioning. This role
has the absolute control over which NSs are available for a SecaaS client and thus deployable
by a less privileged user associated with the SecaaS client.

SecaaS Administration. He/she performs all the O&M tasks associated with a specific SecaaS
client, having the highest level of privileges granted to a user tasked with managing a SecaaS
client.

SecaaS Auditing. He/she can explore data related to auditing purposes such as statistics, access
and high-level operational logs, billing information and the likes, to determine the resources
used and the overall service provided to a SecaaS client.

SecaaS Maintenance. He/she performs all the maintenance tasks associated with a SecaaS
client, be it backups, periodic cleanup tasks, scheduling of any kind, etc. It is bared from
performing any tasks concerning NSs or vNSFs.

SecaaS Monitoring. He/she gets notified of any events targeted for vNSFs instances associated
with a SecaaS client. This role can list recommendations and inspect its contents and status,
but it is bared from performing any action on said recommendations.

Cyber Agency. He/she has the same role as SecaaS Monitoring with the significant difference
that he/she can access information for all the SecaaS clients in the platform.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
64

Figure 24: Role-based access control

Operations

The operations the several roles can perform on the Dashboard are described next. A mapping
showing which roles are allowed for each operation is presented in Table 7.

Apply recommendations. Apply a security recommendation for a SecaaS client.

CRUD on NSs. Create, list, update and delete NSs.

CRUD on Users/Roles. Can create, list, update and delete Users and assign Roles to Users.

CRUD on SecaaS clients. Create, list, update and delete SecaaS clients in the platform.

Deploy NSs on a SecaaS client. Deploy a NS for a SecaaS client it can manage.

Events notification. Receive notifications for events produced by vNSFs assigned to a SecaaS
client.

List NSs for a SecaaS client. Enumerate all NSs deployed (either past or present) for a SecaaS
client.

List recommendations. Enumerate all recommendations applied to a SecaaS client.

List vNSFs for a SecaaS client. Enumerate all vNSFs deployed (either past or present) for a
SecaaS client.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
65

Manage NS status. Start, stop, modify or delete a NS for a SecaaS client.

Manage vNSFs status. Start, stop, modify or delete a vNSF for a SecaaS client.

Onboard NSs. Onboard NSs, so they are available for all SecaaS client to use.

Onboard vNSFs. Onboard vNSFs, so they are available for all SecaaS clients to use.

Query NS status. Request the status for a NS instance associated with a SecaaS client.

Query vNSF status. Request the status for a vNSF instance associated with a SecaaS client.

Submit vNSFs. Submit (SecaaS client-agnostic) vNSFs to the Store.

Table 7: RBAC Operations and associated Roles

 SecaaS

Operation

A
u

d
it

in
g

M
o

n
it

o
r.

M
ai

n
te

.

M
n

gm
t

A
d

m
in

.

P
la

tf
o

rm

A
d

m
in

.

D
ev

el
o

p
er

C
yb

er

A
ge

n
cy

La
w

fu
l

In
te

rc
ep

.

General

CRUD on Users/Roles x

CRUD on SecaaS clients x

vNSFs

Submit vNSFs x x

Onboard vNSFs x

Manage vNSFs state x x

Query vNSFs status x

List vNSFs for a SecaaS client x x x x

Network Services

CRUD on NSs x x x x

Onboard NSs x x x

Deploy NSs on a SecaaS client x x x

Manage NS state x x

Query NSs status x x x

List NSs for a SecaaS client x x x x x

Recommendations

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
66

Events notification x x x x x x

Apply recommendations x x x

List recommendations x x x x x

Billing

The billing implementation shall focus on gathering data on vNSF and NS usage for a SecaaS
client and compute the associated monthly amount of money to pay. The same holds for
developers’ revenue. The actual bill and payment system to handle monetary transactions and
payment records is considered outside the scope of the project, as well as discounts,
promotions, sales, offers, etc. SHIELD produces all the fundamental data for bill documents that
another system (either part of the SHIELD ecosystem or an external one) can use as input for
invoicing and payments management.

The billing model to implement shall provide for:

Developers

When onboarding a vNSF, the developer defines the price charged to the platform operator for
using it. This price shall be based on usage and can be defined as:

 One-time payment, where a fee is due just for having the vNSF available in the
catalogue.

 Monthly payment, where a fee is due for every month the vNSF is used, regardless of
how many times it is instantiated during the span of the month.

 Instantiation-based, in which a fee is due for every time the vNSF is instantiated, even
if during the same day.

Platform Operator

When validating a sandboxed vNSF, the platform operator may define a price to be charged for
the vNSF. This price shall be based on instantiation and uses the same model defined for a
developer.

The final price to charge for the instantiation of a vNSF is the fee defined by the developer, plus
the one set by the operator. To be noted that the price set by the operator may be none, a
fixed value, or a percentage based on the developer’s fee, either positive or negative, to
accommodate potential price increase or reduction.

When a NS is onboarded, the price is set by the platform operator. This price shall be based on
instantiation and resorts to the same model defined for a developer. To be noted that the price
set by the operator may be none, a fixed value, or a percentage based on the overall amount
computed for the vNSFs instantiated in the service.

The total price to charge for the instantiation of a NS is the sum of the fees defined for every
vNSF instantiated in the scope of the service, plus the fee defined for the actual service.

SecaaS clients

The price for a security service is set by the platform operator. This price shall be based on
instantiation and resorts to the same model defined for a developer. To be noted that the price

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
67

set by the operator may be none, a fixed value, or a percentage based on the overall amount
computed for the NSs instantiated in the service.

The total price to charge for the instantiation of a security service is the sum of the fees defined
for every NS instantiated in the scope of the service, plus the fee defined for the actual service
bundle.

Comparison with similar technologies

Security Dashboards are currently available both in private and open source initiatives. These
dashboards are often based in web browser technologies however desktop or mobile
applications are also used. Looking at the features commonly provided by both private and
open source initiatives the main goal seems to be allowing end users to quickly understand the
status of the controlled environment by flagging the last incidents reported as well as the last
remediations suggested/implemented. SHIELD’s dashboard aims to align with this approach
providing an interface that allows authorised users to quickly check the last events detected by
the platform as well as remediation action to mitigate each one of them. Regarding open source
initiatives, the most prominent solution is Apache Spot, which is providing a security dashboard
that enables the quick visualisation of the last threads detected by its framework. Looking into
the private sector, one of the most relevant solutions is the Security dashboard of IBM providing
a view on the security health, by showing the top 10 attacks/intruders/victims as well as the
blocked actions performed by the security tool. SHIELD aims to extend the features provided
by these dashboards, allowing not only the end users to have an intuitive and appealing
interface for visualizing the last events detected in the network but also to orchestrate its
environment as well as control the available mitigation actions through a NS and vNSF
catalogue.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
68

4. REGULATORY COMPLIANCE SPECIFICATIONS

Ensuring the regulatory compliance of the DARE is a key activity that removes barriers towards
the adoption of the SHIELD platform. This section discusses the regulatory framework that
applies across EU member states that is relevant to the operational aspects of the DARE. Based
on the analysis first provided in D3.2 [3] (some findings are also contained in this deliverable to
make it self-contained), SHIELD extracts the regulations-based specifications for the key
components of the DARE and illustrates how to start implementing compliance mechanisms.
The key focus of this work is on:

 Privacy and Data Protection,

 Obligations of the service provider to Law Enforcement/CERTs,

 Non-discrimination and protection of the individual’s rights against behavioural
profiling, and

 (to a smaller extent) to EU’s Net Neutrality laws.

4.1. EU regulatory framework

General Data Protection Regulation: Regulation (EU) 2016/679 of the European Parliament and
of the Council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation) (Text with EEA relevance) [50]

The EU General Data Protection Regulation is in place to safeguard the rights of the data
subjects and enable them to better control their personal data. The Regulation aims to alleviate
the fragmentation in data protection law across EU member states and replace the previous
Directive with a unified set of rules. A detailed presentation of the GDPR is included in D3.2.

The network data that are being processed by SHIELD’s DARE components may include
personal data in the form of IP addresses, emails, requested URIs, etc. SHIELD’s DARE, however,
does not profile a natural person’s behaviour but rather provides a user-agnostic profile of the
network. The DARE does not asses a natural person’s behaviour (e.g. buying patterns, religious
beliefs, health or insecure practices in their employer’s network etc.). The DARE monitors the
network activity and finds anomalies in atypical traffic patterns. The DARE can then take
remedial action against the anomaly (if identified as an attack) and can provide indication of
endpoints that are compromised e.g. by malware.

As is also the case with the vNSF ecosystem, processing for the explicit purpose of security can
considered lawful. Cybersecurity and protection of network infrastructures against intrusions
and breaches can be considered as vital interests of the data subject and as tasks carried out in
the public interest. The ISP that uses SHIELD’s DARE to secure their network need to inform
their clients accordingly and ask for their consent within their contract. In the case of ISP
offering services to organisations as SecaaS clients, the processing of network data is required
to fulfil a contract. The SecaaS client needs to ensure that the persons utilising their network
are informed of the specific network monitoring activities. In this case, the service provider and
the SecaaS client act as joint controllers. Article 7 of the GDPR also states that when consent is
given in the context of a written declaration which also concerns other matters (e.g. a contract)

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
69

it must be presented in a form that is easily distinguishable and comprehensible, otherwise the
declaration will not be considered binding. A full analysis of the roles of each actor within the
SHIELD use cases is provided in D3.2 (Section 4).

Open Internet Regulation: Regulation (EU) 2015/2120 of the European Parliament and of the
Council of 25 November 2015 laying down measures concerning open internet access and
amending Directive 2002/22/EC on universal service and users’ rights relating to electronic
communications networks and services and Regulation (EU) No 531/2012 on roaming on public
mobile communications networks within the Union (Text with EEA relevance). [51]

The Open Internet Regulation establishes the circumstances where traffic classification and
management are legitimate. It lays down specific net neutrality rules and governs the way ISPs
may choose to manage the traffic that passes through their networks, while ensuring equal and
non-discriminatory treatment of traffic. The SHIELD DARE does not apply rate limiting rules.
However, the remediation engine may recommend such an action. The action, and the related
security event are logged in the Dashboard, where the user may select to apply it (or roll back
a previous selection). If the rate limiting action is applied, it is enforced by a SHIELD vNSF.

ePrivacy Directive: Directive 2002/58/EC of the European Parliament and of the Council of 12
July 2002 concerning the processing of personal data and the protection of privacy in the
electronic communications sector (Directive on privacy and electronic communications) [52]

The ePrivacy Directive, also known as the EU Cookie Law, sets the rules for the collection of
cookies and ensures confidentiality of electronic communications. Currently there is a proposal
[53] for a revision of the ePrivacy Directive, to better align it with the GDPR, consider continuing
technical innovation, and to transform it into a Regulation. This would mean that the EU
Member States would implement the Regulation as-is, as opposed to a Directive which can be
implemented in any way considered suitable by the Member States. The proposal for the
Regulation was released on January 2017. The SHIELD Dashboard shall request the user consent
on the use of cookies. Such cookies shall only be used in the scope of a web session
management and will not be persisted once the session is over. Furthermore, no user or
browsing data is collected for tracking user preferences or behaviour patterns.

Data protection in criminal investigations: Directive (EU) 2016/680 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data by competent authorities for the purposes of the prevention,
investigation, detection or prosecution of criminal offences or the execution of criminal
penalties, and on the free movement of such data, and repealing Council Framework Decision
2008/977/JHA. [54]

Network Information Security Directive: Directive (EU) 2016/1148 of the European Parliament
and of the Council of 6 July 2016 concerning measures for a high common level of security of
network and information systems across the Union [55]

Although these directives do not apply directly to SHIELD, they are relevant as service providers
may be required to cooperate with law enforcement in a criminal investigation or with
appropriate cybersecurity agencies in case of a cyberattack. The DARE may expose APIs for
exchange of information with relevant third parties under these directives, although the exact
use of such APIs would be defined by the ISP or SecaaS client and their internal policies
regarding statutory process (unless access is court-mandated).

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
70

Non-discrimination:

Council Directive 2000/78/EC of 27 November 2000 establishing a general framework for equal
treatment in employment and occupation. [56]

European Charter of Fundamental Human Rights [57], esp. Article 8(1) on the protection of
personal data

Treaty of Amsterdam [58] (1997/1999 establishing the protected grounds against
discrimination) & Treaty of Lisbon [59] (2007/2009 making the ECHR Bill of Rights legally
binding)

Council of Europe recommendations on profiling: Recommendation CM/Rec(2010)13 of the
Committee of Ministers to member states on the protection of individuals with regard to
automatic processing of personal data in the context of profiling. [60]

Non-discrimination is particularly relevant in the case of SHIELD since the DARE components
utilise advanced machine learning algorithms to identify anomalies in data traffic. Although the
non-discrimination body of law in the EU regards access to employment, education etc. which
are out of the scope of SHIELD, we can consider some basic principles and definitions to be
free-standing. Access to the Internet can be regarded as a basic service that should be available
to all citizens and any discriminatory practices should be abolished. Although SHIELD’s DARE
does not profile the user’s behaviour for cybersecurity, some definitions should be in place, for
future reference:

 The entry into force of the Treaty of Amsterdam in 1997, enabled the European
Commission to legislate on non-discrimination based on defined protected grounds
which include gender, age, race, ethnicity, religion, belief, age, disability and sexual
orientation. The GDPR considers data that may expose these aspects of the data subject
as “special category” data.

 Protection against discrimination is not only present in EU Law but also within the
European Charter of Human Rights (ECHR) that was proclaimed by the European Union
and the Member States in 2000. The ECHR declared the fundamental human rights to
be protected and became legally binding after the 2009 Treaty of Lisbon.

 Most definitions in EU law and ECHR regard cases of direct discrimination. The EU
Agency of Fundamental Rights (FRA) [61], however, further defines indirect
discrimination, when a rule that appears to be neutral affects a specific group of citizens
in a significantly more negative way, by comparison to others in a similar situation. It
also defines harassment and instruction to discriminate as violating the dignity of a
person.

Hence, any data processing component that profiles aspects of the data subject with respect
to these protected grounds, should have safeguards in place to ensure that processing is lawful
and that such information cannot be misused and lead to discriminatory practices. The Council
of Europe has published a recommendation on safeguards for processing that leads to profiling,
although this predates the GDPR and there was no legal definition of profiling at the time.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
71

4.2. Best practices

D3.2 initiated an analysis of best practices with respect to privacy and data protection. Although
the work was performed for the vNSF ecosystem, there are a lot of parallels with the DARE. In
summary, the principle of Privacy-by-design focuses on maintaining a user’s privacy by
introducing appropriate safeguards as a software product is being developed. This is based on
design improvements such as data anonymization, data minimization, etc. and is distilled in the
following foundational principles [62]:

1. Proactive not reactive; preventative not remedial: the approach should be characterised
by proactive measures that come before-the-fact.

2. Privacy as the default setting: Even if a user does not set specific policies, their privacy
is still, automatically protected.

3. Privacy embedded into design: Privacy is integral to the system without diminishing
functionality and not “bolted on as an add-on”.

4. Full functionality – positive-sum, not zero-sum: False dichotomies (“privacy vs security”)
should be avoided and no unnecessary trade-offs should be made.

5. End-to-end security – full lifecycle protection: Strong security measures are essential and
should apply to the entire data lifecycle. This extends to the introduction of Security-
by-design.

6. Visibility and transparency – keep it open: Trust is easier to build when there is
transparency and the stated promises can be verified across all stakeholders.

7. Respect for user privacy – keep it user-centric: Keep in mind the interests of the
individual and provide privacy defaults, notices and empowering user-friendly options.

The development of a system according to Privacy-by-Design principles, should be
complemented by a Data Protection Impact Assessment that clearly maps the possible risks to
possible mitigation measures, and provides detailed information on how data are being stored,
handled etc. within the DARE. OWASP maintains a list of top 10 Privacy risks and related
countermeasures [63]. In the following table we analyse these risks, adapt them to the SHIELD
DARE (like the work performed in D3.2 for the vNSF ecosystem) and propose countermeasures
to account for the platform’s specificities, which can be adopted in an operational deployment
of SHIELD in a production network.

Table 8 Privacy risks and countermeasures.

Privacy Risk Application to SHIELD Countermeasures

P1 Web
Application
Vulnerabilities

Attention should be payed to the virtual
machine’s hypervisor technology since
the DARE modules are hosted in VMs.
This applies to the Security Analytics
Module and the Data Analysis module
that store data in HDFS.

Perform penetration tests, monitor
vulnerabilities (including those related to
the VM hypervisors), train developers in
secure development, install updates,
fixes etc.

P2 Operator-
sided Data
Leakage

Failure to prevent a data leak can result
in loss of confidentiality. This applies
especially to the HDFS that stores
information.

Access control and Identity management
following the principle of least privilege,
strong encryption for personal data,
awareness training, data classification

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
72

 and handling policies, data leak
prevention/early warning, privacy-by-
design, data
anonymization/pseudonymization.

P3 Insufficient
Data Breach
Response

The persons affected by a data leak
should be informed. Immediate action
should be taken to limit a data breach,
which should be followed by
remediation measures. This applies to
the modules that utilise the HDFS for
storage. Breach notification should exist
as a feature.

Develop/Test/Maintain an incident
response plan, a data breach notification
system, determine the scope/scale of the
breach, notify the Data Protection
Officer, investigate the data breach and
provide documentation and reports.

P4 Insufficient
Deletion of
Personal Data

Appropriate data retention periods
should be defined. After the retention
period is over the data should be
deleted, (or upon request by the data
subject). If retention is not necessary,
the data should be deleted after
processing.

Follow the data minimization principle
and adhere to GDPR data subject rights
(e.g. right of deletion, restriction of
processing, right to be forgotten etc.),
document data retention policies,
deletion should be verifiable.

P5 Non-
transparent
policies, terms
and
conditions

This relates to not providing sufficient
information to describe how data is
collected, processed, stored, managed
etc. This information should always be
easily accessible and understandable.
SHIELD provides this information in the
specifications for each data processing
component.

Develop terms and conditions for the
SHIELD services, make information
available and comprehensible, separate
terms and conditions for GDPR in a
contract, use visual materials (icons,
pictograms etc.), document changes to
terms and conditions, keep track of user
consent, provide opt-out policies (when
feasible). Data Protection information
should be available to the client in the
dashboard.

P6 Collection
of data not
required for
the primary
purpose

The collection of user-related data that
are not necessary for the purposes of
the system is a major privacy risk. This
applies to data that were collected
without the data subject’s knowledge or
consent. Consent procedures are not in
place.

The purpose of data
collection/processing should be
transparent. Data should only be
collected for the specified purpose (data
reduction/minimization), opt-out policies
should be set when feasible, apply
conditioned collection (only under
specific circumstances). Consent
procedures should be available (From the
data controller to the data subject – see
D3.2 for a detailed explanation of roles
and obligations, Section 4)

P7 Sharing of
Data with
third party

Provision of a user’s data to a third party
without the user’s knowledge and
consent. The existence of APIs for third
party data exchange should be clear. If
data are being monetized the user
should be aware.

Proxy the content on self-hosted servers
and not directly with a third party, apply
tokenization or anonymization, develop a
monitoring framework that can
whitelist/blacklist third parties, develop
appropriate contractual arrangements,
monitor user complaints, special

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
73

 provisions should be made for cross-
border sharing.

P8 Outdated
personal data

The use of outdated, incorrect or bogus
user data, failure to update or correct
the data. In SHIELD this applies
particularly to the IPs involved in
remediation actions and to the login
credentials of the data processors.

Implement a procedure to obtain input
from users and update their data, ability
to roll back a remediation action in case
of false positive attack detection, in case
of updates all related subsystems should
be aware.

ML algorithms should be re-trained with
accurate data.

P9 Missing or
insufficient
Session
Expiration

Failure to effectively enforce a session
termination. May result in additional
data collection without the user’s
consent or awareness or even to theft of
credentials. In SHIELD this applies
particularly in the user interfaces
requiring login credentials (e.g.
administrators, dashboard users etc.)

Automatic session expiration should be
set with appropriate expiration times
based on the criticality of the application
and the data. Session timeout could be
configurable, reminder messages to log
out can be implemented.

P10 Insecure
Data Transfer

Failure to provide data transfers over
encrypted and secured channels, may
lead to data leaks, failure to limit the leak
surface. In SHIELD this applies to the
data transfer between vNSF-DARE,
DARE-vNSFO.

Send personal data through secure
protocols, apply secure configurations,
allow connections over secure protocols
and disallow unsafe connections, avoid
inclusion of personal information in
session ID/URL, activate privacy
extensions (e.g. in IPv6)

P11 Privacy
rights
compromise

The use of accumulated network traffic
for profiling purposes, and exposure of
personally identifiable information by
combining such information with other
metadata such as IP addresses, URI
queries etc.

The DARE deploys transparent
procedures that require network data
collection for specific cybersecurity-
related tasks only. User behavioural
profiling is not part of any DARE
functionalities.

P12 Multi-
user support
data leakage

Failure to provide an isolated
environment to each user, so as to gain
access only to threat results that are
relevant to his organization, thus
exposing personal information of other
users.

The DARE will correlate the IP addresses
of each SHIELD-monitored organisation
to the overall analysis results, to provide
tailored information to the Dashboard, in
compliance with the GDPR.

4.3. Regulatory compliance specifications

Based on the analysis performed in D3.2, SHIELD developed a template for the definition of the
regulatory compliance specifications for each vNSF. This template is herein adapted to the key
DARE components and the Dashboard that store or process personal data.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
74

4.3.1. DARE Compliance Specifications

According to the template that was presented, SHIELD provides the compliance specifications
of the SHIELD DARE components Table 9, Table 10 and Table 11.

Table 9 Compliance specifications for the DARE Security Analytics module.

1
General

Information

Component Name Security Analytics module

Version 6

Developer Talaia

Description Analyses network traffic and detects anomalies

Certification &
Standardisation

None

2
Interfaces and

Formats

Data Inputs NetFlow

Data Outputs Identified Anomalies

Data Formats Nfcapd (input), csv (output)

3
GDPR

applicability

Personal Data Y IP addresses

Special Categories N

Identifiability N

4 Data Storage

Data Storage N

Data Retention N/A

Data Encryption N/A

Pseudonymisation N/A

Anonymisation N/A

5 Data Processing

Purpose Cybersecurity, Network Anomaly Detection

Profiling N Relies on network pattern profiling, not user profiling

Monetisation N

Data Processing Proprietary, closed source

Data Processor Proprietary, closed source

Data Protection
Officer

Appointed by the Service Provider

Data Controller Service Provider/network operator

Consent processes Agreement between user and service provider

Lawfulness The identification and analysis of network anomalies is a lawful
activity

6 Data sharing

Other SHIELD
components

Y vNSFs

Third parties N

Law enforcement N

Cross-border data
sharing

N

CERT/CSIRT N

7
Data Subject

Rights

Right of access

N/A

Right of rectification

Right to be
forgotten

Restriction

Notification

Data portability

8 Open Internet
Traffic Classification N

Rate Limiting Y

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
75

9
Non-

Discrimination
Potential for misuse N/A

10

ePrivacy

Protection of the
contents of a

communication
N/A

Not applicable, the module does not parse
communication contents

Use of cookies to
provide a user
experience and

track user
preferences

N/A Not applicable, the module does not utilise cookies

Table 10 Compliance specifications for the DARE Data Analysis module.

1
General

Information

Component Name Data Analysis module (Apache Spot)

Version V1.0

Developer Infili, Space Hellas, Telefonica

Description Ingests network data and performs anomaly detection

Certification &
Standardisation

None

2
Interfaces and

Formats

Data Inputs NetFlow, DNS, Proxy data

Data Outputs Identified Anomalies

Data Formats Nfcapd, pcap (inputs), csv (output), bluecoat logs

3
GDPR

applicability

Personal Data Y IP addresses

Special Categories N N

Identifiability N

4 Data Storage

Data Storage N

Data Retention N/A

Data Encryption N/A

Pseudonymisation N/A

Anonymisation N/A

5 Data Processing

Purpose Cybersecurity, Network Anomaly Detection

Profiling N Does not profile the user, but the whole network

Monetisation N

Data Processing Ingestion by Spot Workers, Latent Dirichlet Allocation (LDA) for
anomaly detection

Data Processor Spot admin, Appointed by the Service Provider (SP)

Data Protection
Officer

Appointed by the Service Provider (SP)

Data Controller Service Provider (SP)

Consent processes Within SP contract

Lawfulness Cybersecurity anomaly detection is a lawful use of Apache Spot

6 Data sharing

Other SHIELD
components

Y vNSFs forward

Third parties N

Law enforcement N

Cross-border data
sharing

N

CERT/CSIRT N

7 Right of access N/A

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
76

Data Subject
Rights

Right of rectification

Right to be
forgotten

Restriction

Notification

Data portability

8 Open Internet
Traffic Classification N

Rate Limiting Y

9
Non-

Discrimination
Potential for misuse N/A

10

ePrivacy

Protection of the
contents of a

communication
N/A

Use of cookies to
provide a user
experience and

track user
preferences

N/A

Table 11 Compliance specifications for the Recommendation and Remediation Engine.

1
General

Information

Component Name Recommendation and Remediation Engine

Version V1.0

Developer POLITO

Description Parses the analytics results and creates security configurations
to be applied by the NSs in a medium-level policy abstraction.

Certification &
Standardisation

None

2
Interfaces and

Formats

Data Inputs Anomalies reports

Data Outputs Medium-level Security Policy Configuration (MSPL) rules

Data Formats CSV, XML

3
GDPR

applicability

Personal Data Y IP address of machines that are part of the anomaly
report

Special Categories N

Identifiability N

4 Data Storage

Data Storage N

Data Retention N/A

Data Encryption N/A

Pseudonymisation N/A

Anonymisation N/A

5 Data Processing

Purpose Cybersecurity, Mitigation

Profiling N

Monetisation N

Data Processing Parsing of the anomalies reports, mapping to pre-defined
“recipes” of configuration rules targeted for the detected
anomalies.

Data Processor Appointed by the Service Provider

Data Protection
Officer

Appointed by the Service Provider

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
77

Data Controller Service Provider

Consent processes Within the Service Provider contract

Lawfulness Recommendation generation is a lawful use of the
Recommendation and Remediation engine.

6 Data sharing

Other SHIELD
components

Y Dashboard receives the mitigation rules

Third parties N

Law enforcement N

Cross-border data
sharing

N

CERT/CSIRT N

7
Data Subject

Rights

Right of access

N/A

Right of rectification

Right to be
forgotten

Restriction

Notification

Data portability

8 Open Internet
Traffic Classification N

Rate Limiting Y

9
Non-

Discrimination
Potential for misuse N/A

10

ePrivacy

Protection of the
contents of a

communication
N/A

Use of cookies to
provide a user
experience and

track user
preferences

N/A

4.3.2. Dashboard Compliance Specifications

According to the template that was presented, SHIELD provides the compliance specifications
of the SHIELD Dashboard components in Table 12.

Table 12 Compliance specifications for the Dashboard.

1
General

Information

Component Name Dashboard

Version v1.0

Developer ubiwhere

Description Provides a web-based Graphical User Interface

Certification &
Standardisation

None

2
Interfaces and

Formats

Data Inputs User login credentials, identified anomalies

Data Outputs None

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
78

Data Formats

3
GDPR

applicability

Personal Data Y login credentials, IP addresses

Special Categories N

Identifiability N

4 Data Storage

Data Storage N

Data Retention N/A

Data Encryption N/A

Pseudonymisation N/A

Anonymisation N/A

5 Data Processing

Purpose Cybersecurity

Profiling N

Monetisation N

Data Processing Parsing of anomalies detection data to present to the user

Data Processor SecaaS Client admin, Appointed by the Service Provider (SP)

Data Protection
Officer

Appointed by the Service Provider (SP)

Data Controller Service Provider (SP)

Consent processes Within SP contract

Lawfulness Providing remediation data to the user, which falls into the
Recommendation and Remediation engine lawfulness

6 Data sharing

Other SHIELD
components

Y Send remediation rules to the vNSFO

Third parties Y On-demand to Cybersecurity Agencies, and once vetted
by the Service Provider

Law enforcement Y On demand, and once vetted by the Service Provider

Cross-border data
sharing

N

CERT/CSIRT N

7
Data Subject

Rights

Right of access

Y
Only applicable to user credentials as no other data is
stored

Right of rectification

Right to be
forgotten

Restriction

Notification

Data portability

8 Open Internet
Traffic Classification N

Rate Limiting Y

9
Non-

Discrimination
Potential for misuse N/A

10

ePrivacy

Protection of the
contents of a

communication
Y

The communication with the Dashboard is done using
HTTPS, where the messages are encrypted using the
Transport Layer Security protocol

Use of cookies to
provide a user
experience and

track user
preferences

N/A

Despite the use of cookies, these are strictly limited to
session management and have absolutely nothing to
do with tracking any kind of user preferences or
behaviour

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
79

4.4. Compliance and Certification

D3.2 has addressed certification with respect to the vNSF ecosystem. The same basic
assumptions are also herein presented for the sake of delivering a coherent document. GDPR
Certification of DARE components can be crucial towards their adoption. In SHIELD’s case,
certification requires the existence of a trusted third party that inspects each of the
components and can verify that it is compliant with GDPR and that the information provided in
its specifications are accurate.

In checking the compliance of DARE application with the General Data Protection Regulation-
GDPR- and its relevant provisions, it is necessary to bear in mind its scope and configuration.
DARE function, is the storage and elaboration of data through the deployment of algorithms,
so that to derive conclusions concerning any spotted suspicious messaging and circulation of
data, which aim for instance to the illegal extraction of data, the defrauding of other users and
the conduct of cyber-attacks. Again, the compliance test will make sure to comfort the
cornerstone principles of Data and Privacy Protection, the fulfilment of any laid obligations
toward the Law Enforcement, the net neutrality in accordance with the laid legislation demands
and the non-discrimination and protection of the individual's rights against behavioural
profiling.

Specifically, and with respect to the relevant provisions of the GDPR, the following remarks
must be made:

Article 2 of the GDPR, which provides for the Material Scope of the Regulation. It is evident that
DARE falls within its scope given that apart from the procession of personal data, it uses, DARE,
automated means (which are being referred in the first paragraph of the article) and algorithms
in implementing the aforesaid procession. Furthermore it is important to be noted that the very
scope of DARE’ application which is the detection of illegal practices, which pose threats to the
interests of third parties and the public interest by and large, is being identified as one of
particular importance, which could also entail its exemption from the Regulation’s scope, as
long as it is being contacted by the competent authorities (article 2, para 2 (d) of the
Regulation). This admission sets an important parameter concerning the compliance test of
DARE with the GDPR and its scope of application.

Article 5, concerning the Principles relating to processing of personal data. DARE by its scope
and design is fully compliant with the principles enumerated in the Article concerning the
processing of personal data. The data are being collected and processed lawfully, fairly and in
a transparent manner and in order exclusively to detect illegal and detrimental behaviour. To
this end the collected data and the way they are being processed will be adequate, relevant
and limited to what is necessary for the attainment of the prescribed aforesaid goals.
Furthermore, and to avoid false conclusions the collected data will be accurate and updated
and every reasonable measure, especially through the deployment of the most suited
algorithms, will be taken to this direction. Accordingly, their storage will be last for as long as it
is necessary for the scope of their collection and procession. In addition, they will be processed
in a manner that ensures their security and their protection from unlawful and unauthorized
access and intrusion. All appropriate checks and safeguards, through the sophisticated design
of DARE, are being applied to this end. The aforesaid qualities of DARE can be verified by the
competent authorities in every given case and request.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
80

Article 6, concerning the lawfulness of processing. DARE’s design and application serve the
scopes and interests as they are prescribed by the GDPR and especially the protection of the
interests of the data subject and any other natural person, while it might also serve the
fulfilment of a task assigned in the public interest, along with the instructions of the data subject
and/ or in accordance which has given thereto. In any event DARE will be applied in full
conformity with the considerations mentioned in Article 6, para.4 and especially the possible
consequences of the intended further processing of the data along with the existence of
appropriate safeguards, which may include encryption and pseudonymisation.

Article 9, concerning the processing of special categories of personal data. DARE will not be
applied, but for the enlisted exceptions and especially the substantial public interest and public
health, in the processing of special categories of personal data.

Article 13, concerning information to be provided where personal data are collected from the
data subject. DARE enables-by its design and application- its controller to provide the data
subject with all the information referred in the Article, in accordance with the laid rules and
legislation.

Article 15, concerning the right of access by the data subject. DARE by its design and application,
enables the controller to provide the data subject with the information referred in this Article,
in accordance with the law and the goals of the processing to the extent they are respectively
protected by the provisions of the GDPR.

Article 17, concerning the right to erasure. DARE by its design and application enables the
controller to meet all the requests put forward by the data subject, in accordance with the
Article and the exceptions thereto.

Article 20, concerning the right (of the data subject) to data portability. DARE by its design and
application, enables the controller to meet the requests prescribed in the article, but for the
exceptions thereto.

Article 23, concerning the restrictions. DARE by its design and application, can easily adapt to
the requests mentioned in the Article and enables its controller or processor to correspond
accordingly to the measures adopted by the Union or Member State law. Besides the design
and application of DARE serve the very same goals, like the ones endeavoured by the
restrictions. DARE operates as a safeguard of legitimacy and facilitates the detection of unlawful
and detrimental practices to public order and individuals’ legitimate interests.

Article 25, concerning the Data protection by design and by default. DARE by design and to
serve its scope deploys efficient methods in the processing of the data, including where
appropriate pseudonymisation, as an additional safeguard. Besides the pursuit of its scope
presupposes discretion in the collection and processing of data. Hence the principles of data
minimization, in terms of their amount, period of storage and range of accessibility, duly apply.

Article 30, concerning the records of processing activities. DARE by design and operation,
enables the controller and where applicable his representative, to maintain a record of the
processing activities referred in the Article.

Article 32, concerning the Security of processing. DARE by design meets all the requirements of
Security mentioned to this Article. To this end, besides the system’ s availability to adhere to
an approved code of conduct or an approved certification mechanism, once they are
established, it possesses the capabilities of pseudonymisation and encryption of personal data

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
81

along with the specifications to ensure its ongoing confidentiality, integrity, availability and
resilience. Accordingly, it has the capabilities to restore the availability and access to personal
data in a timely manner, in the event of a physical or technical incident, along with the means
for regularly testing, assessing and evaluating the effectiveness of its security of the processing.

Article 35, concerning data protection impact assessment. Although DARE is designed to
operate in full compliance with the laid legislation and the safeguards provided by the GDPR,
especially with respect to the data subject rights, it has the readiness to proceed with the
assessment mentioned in the Article. To this end the assessment will include, once it is so
required by the authorities to be established, a systematic description of the envisaged
processing operations and their purposed, which fundamentally are the detection of illegal
practices and behaviours, the proportionality and necessity of the processing operations in
relation to the purposes, the risks to the rights and freedoms of data subjects and the measures
envisaged to address these risks, including the safeguards and security measures to be
deployed to this end, taking into account the legitimate interests of the affected persons.

Article 37, concerning the designation of the data protection officer. DARE by design and scope,
can be easily checked and controlled by the Data protection officer, provided by the Article.

Article 40, concerning the Codes of Conduct. DARE by design and operation, possess all the
specifications and safeguards to fulfil the checks and requirements included in the Codes of
Conduct of this Article.

According to the GDPR Article 42, “the Member States, the supervisory authorities, the Board
and the Commission shall encourage the establishment of data protection certification
mechanisms and of data protection seals and marks”. The certification should be voluntary and
transparent, and the certification body should be granted cooperation and access to the
processing.

Article 43 of the GDPR states that certification bodies should be accredited (ISO 17065). DARE
by design and operation, has all necessary qualities and specifications to withhold the
certification test, provided therein and to fulfil all respective requirements. Accordingly, it has
the readiness to provide the competent Bodies and Authorities, once they are established, with
all requested information, as it is prescribed by the Article.

Articles 44 and Article 49, concerning the transfers of personal data to third countries or
international organizations. DARE, as it is legally operated and supervised will not proceed in
any transfer of personal data to third countries or international organizations, unless a decision
on the adequacy of the third country or international organization has been issued by the
Commission, or appropriate safeguards, based on laid legislation or prior authorization by the
competent supervising authorities, have been given. In any event enforceable data subject
rights and effective legal remedies for data subjects, must be adequately ensured, before any
transfer. Taking into account the primary goal of DARE, which is the protection of legitimate
interests, through the detection of illegal practices and behaviours, it is perfectly suited to serve
the exception of Article 49,para1 ,d ,concerning the transfer of data to third countries and
international organizations, in cases of important reasons of public interests, even in the
absence of the preconditions envisaged in Article 44 through 46.

Article 82, concerning the right to compensation and liability. DARE by design and operation
fully respects the provisions of the GDPR. Its application does not leave room for infringements

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium

82

which could expose the controller or processor to liabilities. Thus, the consequences of any
damages caused by the illegal processing of data, are fully acknowledged.

Article 85, concerning the processing and freedom of expression and information. DARE by
design and scope of action, is not processing data for journalistic, academic, artistic or literary
purposes and is not oriented to take advantage of the relevant derogations, mentioned in the
Article.

Article 88, concerning the processing in the context of employment. DARE, is being designed
and will be operated in full respect of the specificities of employees’ rights and the respective
limits in the processing of their data in the employment context. It pursues its goals, striking a
delicate balance with the sensitivities concerning the employees’ status and the employers’
and customers’ rights as well.

Article 89, concerning the safeguards and derogations relating to processing for archiving
purposes in the public interest, scientific or historical research purposes or statistical purposes.
DARE notwithstanding does not pursue the purposes identified in the Article, possess the
capabilities and technical safeguards to fulfil the relevant requirements and to enable the
pursuit of the aforesaid purposes in the public interest.

DARE by design and operational capabilities, fulfil in their entirety the provisions of GDPR, to
the extent they apply and regulate its operation and safeguards both the fundamental rights of
the data subject and the legitimate interests of the affected, by the processed data, persons. It
is a tool for the efficient operation of the cyber transactions and –while fully respects the
fundamental rights of the data subject, in accordance with the laid legislation, checks and
balances -contributes in the boosting and safeguarding of the digital economy.

As GDPR is being implemented in each Member State, it is expected that multiple data
protection certification providers will be accredited with the relevant national authorities. Thus,
it will be possible in the future for DARE developers to get their products certified for GDPR
compliance. At consortium level, SHIELD partners intend to reach out to certification bodies
that are accredited for GDPR compliance certifications, but it is uncertain if certifications will
be available across all member states by the date of the project’s completion (February 2018).

Apart from the GDPR, compliance with well-known standards and privacy reference
frameworks can be considered. ISO/IEC 27001 Information Security Management Systems is a
well-known international standard for information security that provides a set of
standardised requirements for an information security management system (ISMS). ISO/IEC
270181 similarly defines guidelines for implementing personal data protections and specifies
controls within ISO/IEC 27001. ISO certification in this context can be considered suitable for
SHIELD’s case. ISO/IEC 291002 provides a privacy framework. The OASIS Privacy Management
Reference Model3 can also be considered, as an open standard for privacy and data protection.

1 Information technology -- Security techniques -- Code of practice for protection of personally identifiable information (PII) in
public clouds acting as PII processors https://www.iso.org/standard/61498.html
2 ISO/IEC 29100:2011 https://www.iso.org/standard/45123.html
3 OASIS PMRM https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pmrm

https://www.iso.org/standard/61498.html
https://www.iso.org/standard/45123.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pmrm

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
83

5. CONCLUSIONS

5.1. Status of the usable information-driven engine

Using the requirements and the high-level design of D2.2, T4.1 has performed a detailed
analysis and has produced a detailed design and architecture, where all the WP4
subcomponents are explained, their workflows are shown, the communication between them
is defined and a study about the implementation technologies is exposed. The results are the
present report on the low-level architecture and design of the DARE and the Dashboard (the
WP4 components), as well as a transformation from the requirements to the technical
specifications, and a choice of the technologies used.

We have realised that due to the work that has been done during the first year of the project,
several subcomponents have been redefined, mainly because of changes in the state-of-the-
art from the moment when the proposal was submitted and because of the more extensive
knowledge gained within the consortium. However, none of these changes introduce a major
shift from the overall technical approach of the project, as laid out in the DoA.

Although we expect to acquire new knowledge and get more insights during the development
phase, the consortium does not envision major adjustments during the updates of the design
deliverables (D2.2 - M17, D3.2-M19 and D4.2-M19). Note that the work exposed in this
deliverable perfectly separates the Architecture and Design (blocks and workflows), the
specifications (requirements from the technical point of view) and the implementation (the
technologies used). This separation isolates the subcomponents in a way that the implications
of a change in any of these aspects (architecture, design, specifications and implementation)
will be minimised.

As an Innovation Action, SHIELD’s vision is to leverage state-of-the-art techniques and try not
to reinvent the wheel. To this end, SHIELD has studied the most mature open source
technologies and has concluded that Apache Spot will be the main solution to be reused and
improved to build the DARE. Apache Spot has some of the most important functionalities
needed by the DARE (ingestion, data treatment, extensible analytic framework and a
dashboard) however, it is still missing some relevant aspects needed by SHIELD. Firstly, Apache
Spot has been built to be a batch solution and although streaming technologies have been
considered, the collection of data is completely centralised (workers read a folder for new files).
This is not enough for SHIELD since one of the envisioned functionalities is the capacity to
process vNSF logs and alerts in real-time. Secondly, the platform offers an anomaly detection
algorithm based on probabilities of events however, neither classification of threats is being
done nor real-time processing. Moreover, since Spot is completely lacking threat mitigation and
recommendation functionalities, these will be originally developed, so that the capabilities of
the DARE are in accordance with what was initially envisioned in the DoA. Finally, as SHIELD
must integrate information from multiple sources in the Dashboard (Store, vNSF Orchestrator,
recommendations, and results from Security engine and results from Cognitive engine), it will
not use the dashboard provided by Spot, but will directly use the API provided by the analytics
framework.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
84

With all these aspects in mind, we conclude the second iteration of the project design and we
enter the second iteration of the development phase, having drafted a clear technical roadmap
till the end of the project.

5.2. Future work

The work for T4.1 “Engine infrastructure and software: specifications, design and architecture”
concludes with this document, which provides the results for the second design cycle in SHIELD.
Tasks 4.2-4.5 continue the work for the development of the subcomponents for the DARE and
the Dashboard. A rigorous testing plan is in place to validate the new components, based on
the work in D5.1. Results of WP4 activities will be presented in SHIELD’s upcoming
demonstrations as presented in the D2.2 demonstration roadmap. D3.3 “Integrated secure
framework ready for experiments” will report all the results stemming from WP4 developments
and accompany the delivery of the WP4 prototypes.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
85

6. REFERENCES

[1] “Apache Spot,” [Online]. Available: http://spot.incubator.apache.org/. [Accessed March 2018].

[2] SHIELD consortium, “D2.2 Updated Requirements, KPIs, design and architecture,” 2017.

[3] SHIELD consortium, “D3.2 Updated specifications, design and architecture of the vNSF
ecosystem,” 2018.

[4] SHIELD consortium, “D2.1 Requirements, KPIs, design and architecture,” 2017.

[5] SHIELD consortium, “D4.1 Specifications, design, and architecture for the usable information
driven engine,” 2017.

[6] SHIELD consortium, “D3.1 Specifications, design and architecture for the vNSF ecosystem,” 2017.

[7] SHIELD consortium, “D5.1 Integration results of SHIELD HW/SW modules,” 2017.

[8] SHIELD consortium, “D2.3 Business models evaluation,” 2018.

[9] “NetFlow,” [Online]. Available: https://netflow.us/. [Accessed March 2018].

[10] “Cloudera CDH,” [Online]. Available: https://www.cloudera.com/products/open-source/apache-
hadoop/key-cdh-components.html. [Accessed March 2018].

[11] “HDFS Architecture Guide,” [Online]. Available:
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html. [Accessed March 2018].

[12] “Apache Hive,” [Online]. Available: https://hive.apache.org. [Accessed March 2018].

[13] “Apache Spark,” [Online]. Available: https://spark.apache.org/. [Accessed March 2018].

[14] “React,” [Online]. Available: https://reactjs.org/. [Accessed March 2018].

[15] “Flux,” [Online]. Available: https://facebook.github.io/flux/. [Accessed March 2018].

[16] “IPython,” [Online]. Available: https://ipython.org/. [Accessed March 2018].

[17] “GraphQL,” [Online]. Available: http://graphql.org/. [Accessed March 2018].

[18] “Apache Parquet,” [Online]. Available: https://parquet.apache.org/. [Accessed March 2018].

[19] “Apache Hadoop,” [Online]. Available: https://hadoop.apache.org/. [Accessed March 2018].

[20] “Apache Kafka,” [Online]. Available: https://kafka.apache.org/. [Accessed March 2018].

[21] “pcap files,” [Online]. Available: https://wiki.wireshark.org/Development/LibpcapFileFormat.
[Accessed March 2018].

[22] “nfdump,” [Online]. Available: https://github.com/phaag/nfdump. [Accessed March 2018].

[23] “TShark,” [Online]. Available: https://www.wireshark.org/docs/man-pages/tshark.html. [Accessed
March 2018].

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
86

[24] “Apache Spack Streaming,” [Online]. Available: https://spark.apache.org/streaming/. [Accessed
March 2018].

[25] “Apache Storm,” [Online]. Available: https://storm.apache.org/. [Accessed March 2018].

[26] “Apache Pig,” [Online]. Available: https://pig.apache.org/. [Accessed March 2018].

[27] B. e. al, “Latent Dirichlet Allocation,” Journal of Machine Learning Research, vol. 3, pp. 993-1022 ,
2003.

[28] S. Mukherjee and N. Sharma, “Intrusion Detection using Naive Bayes Classifier with Feature
Reduction,” Procedia Technology, vol. 4, pp. 119-128, 2012.

[29] M. N. Mohammed and N. Sulaiman, “Intrusion Detection System Based on SVM for WLAN,”
Procedia Technology, vol. 1, pp. 313-317, 2012.

[30] “Apache Mahout,” [Online]. Available: https://mahout.apache.org/. [Accessed March 2018].

[31] “Scala,” [Online]. Available: http://www.scala-lang.org/. [Accessed March 2018].

[32] “Apache Metron,” [Online]. Available: https://metron.apache.org/. [Accessed March 2018].

[33] “Kentik,” [Online]. Available: https://www.kentik.com/. [Accessed March 2018].

[34] “Deepfield,” [Online]. Available: https://deepfield.com/. [Accessed March 2018].

[35] “Arbor,” [Online]. Available: http://es.arbornetworks.com/. [Accessed March 2018].

[36] “The SECURED project,” [Online]. Available: http://www.secured-fp7.eu/. [Accessed March 2018].

[37] “Swagger Framework,” [Online]. Available: http://swagger.io/. [Accessed March 2018].

[38] “MongoDB,” [Online]. Available: https://www.mongodb.com/. [Accessed March 2018].

[39] “Redis,” [Online]. Available: https://redis.io/. [Accessed March 2018].

[40] “Apache Cassandra,” [Online]. Available: https://cassandra.apache.org/. [Accessed March 2018].

[41] A. M. K. N. a. A. W. Y. Bartal, “Firmato: A novel firewall management toolkit,” ACM Transactions
on Computer Systems, vol. 22, no. 4, p. 381–420, November 2004.

[42] P. V. a. A. Prakash, “FACE: A Firewall Analysis and Configuration Engine,” SAINT05: Symposium on
Applications and the Internet, p. 74–81, February 2005.

[43] F. C. N. C.-B. a. S. P. J. Garcia-Alfaro, “Mirage: A management tool for the analysis and deployment
of network security policies,” Data Privacy Management and Autonomous Spontaneous Security,
vol. 6514, p. 203–215, 2011.

[44] “AngularJs,” [Online]. Available: https://angularjs.org/. [Accessed March 2018].

[45] “T-Nova,” [Online]. Available: http://www.t-nova.eu/. [Accessed March 2018].

[46] “SELFNET,” [Online]. Available: https://selfnet-5g.eu/. [Accessed March 2018].

[47] “SONATA,” [Online]. Available: http://sonata-nfv.eu/. [Accessed March 2018].

[48] “SVG,” [Online]. Available: https://www.w3.org/Graphics/SVG/. [Accessed March 2018].

[49] “D3js,” [Online]. Available: https://d3js.org/. [Accessed March 2018].

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
87

[50] “Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Da,” [Online]. Available:
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679. [Accessed March
2018].

[51] “Regulation (EU) 2015/2120 of the European Parliament and of the Council of 25 November 2015
laying down measures concerning open internet access and amending Directive 2002/22/EC on
universal service and users’ rights relating to electronic communications,” [Online]. Available:
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1520936363145&uri=CELEX:32015R2120.
[Accessed March 2018].

[52] “Directive 2002/58/EC of the European Parliament and of the Council of 12 July 2002 concerning
the processing of personal data and the protection of privacy in the electronic communications
sector (Directive on privacy and electronic communications),” [Online]. Available: http://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32002L0058. [Accessed March 2018].

[53] “Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL concerning
the respect for private life and the protection of personal data in electronic communications and
repealing Directive 2002/58/EC (Regulation on Privacy and Electronic Commu,” [Online].
Available: http://eur-lex.europa.eu/legal-
content/EN/TXT/?qid=1520936405198&uri=CELEX:52017PC0010. [Accessed March 2018].

[54] “Directive (EU) 2016/680 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data by competent
authorities for the purposes of the prevention, investigation, detectio,” [Online]. Available:
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1520936541517&uri=CELEX:32016L0680.
[Accessed March 2018].

[55] “ Directive (EU) 2016/1148 of the European Parliament and of the Council of 6 July 2016
concerning measures for a high common level of security of network and information systems
across the Union,” [Online]. Available: http://eur-lex.europa.eu/legal-
content/EN/TXT/?qid=1520936601568&uri=CELEX:32016L1148. [Accessed March 2018].

[56] “Council Directive 2000/78/EC of 27 November 2000 establishing a general framework for equal
treatment in employment and occupation,” [Online]. Available: http://eur-lex.europa.eu/legal-
content/EN/TXT/?qid=1520936644204&uri=CELEX:32000L0078. [Accessed March 2018].

[57] “Charter of Fundamental Rights of the European Union (2000/C 364/01),” [Online]. Available:
http://www.europarl.europa.eu/charter/pdf/text_en.pdf. [Accessed March 2018].

[58] “Treaty of Amsterdam amending the Treaty on European Union, the Treaties establishing the
European Communities and certain related acts,” [Online]. Available:
http://www.europarl.europa.eu/topics/treaty/pdf/amst-en.pdf. [Accessed March 2018].

[59] “Treaty of Lisbon amending the Treaty on European Union and the Treaty establishing the
European Community, signed at Lisbon, 13 December 2007,” [Online]. Available: http://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A12007L%2FTXT.

[60] “Council of Europe Recommendation CM/Rec(2010)13 and explanatory memorandum,” [Online].
Available: https://rm.coe.int/16807096c3. [Accessed March 2018].

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
88

[61] “European Agency of Fundamental Rights (FRA) Handbook on non-discrimination case law,”
[Online]. Available: http://fra.europa.eu/en/publication/2011/handbook-european-non-
discrimination-law-2011-edition. [Accessed March 2018].

[62] A. Cavoukian, “Privacy by Design - the 7 foundational principles,” [Online]. Available:
www.privacybydesign.ca. [Accessed March 2018].

[63] “OWASP Top 10 Privacy Risks and Countermeasures,” [Online]. Available:
https://www.owasp.org/images/0/0a/OWASP_Top_10_Privacy_Countermeasures_v1.0.pdf.
[Accessed March 2018].

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
89

LIST OF FIGURES

Figure 1: High-level picture of the use-case 1 ... 6

Figure 2: High-level picture of the use-case 2 ... 7

Figure 3: High-level picture of the use-case 3 ... 7

Figure 4: High-level architecture of SHIELD, with components per WP 8

Figure 5: Data flow diagram of the DARE ... 14

Figure 6: Architecture of the DARE... 15

Figure 7: Subcomponents of the Security Dashboard and interactions 16

Figure 8: UML user case diagram. .. 17

Figure 9: Flow diagram of the vNSF deployment / withdrawal task. .. 18

Figure 10: Flow diagram of the data acquisition phase with distributed transformation. 19

Figure 11: Flow diagram of the data acquisition phase with centralised transformation. 19

Figure 12: Flow diagram of the anomaly detection phase. ... 20

Figure 13: Flow diagram of the recommendation implementation. .. 20

Figure 14: Flow diagram of the monetisation definition. .. 21

Figure 15: Architecture for centralised acquisition ... 22

Figure 16: Architecture for distributed acquisition. .. 23

Figure 17: Data Analytics Framework overview. ... 24

Figure 18: Machine learning entity overview. ... 26

Figure 19: Operational analytics subcomponent overview... 26

Figure 20: Security Data Analysis module overview. ... 27

Figure 21: The recommendation and remediation subcomponents.. 29

Figure 22: Dashboard internal subcomponents. ... 31

Figure 23: List of subcomponents and used technologies .. 38

Figure 24: Role-based access control ... 64

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
90

LIST OF TABLES

Table 1: General service specifications and fulfillment of service requirements. 34

Table 2: Specifications of the Data Acquisition phase and fulfillment of requirements. 39

Table 3: Specifications of the Data Analysis phase and fulfillment of requirements. 43

Table 4: Specifications of the Cybersecurity topologies phase and fulfillment of requirements.
 .. 49

Table 5: Operations of the Dashboard API. .. 55

Table 6: Specifications of the Dashboard component and fulfillment of requirements. 56

Table 7: RBAC Operations and associated Roles ... 65

Table 8 Privacy risks and countermeasures. .. 71

Table 9 Compliance specifications for the DARE Security Analytics module. 74

Table 10 Compliance specifications for the DARE Data Analysis module. 75

Table 11 Compliance specifications for the Recommendation and Remediation Engine. 76

Table 12 Compliance specifications for the Dashboard. ... 77

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
91

LIST OF ACRONYMS

Acronym Meaning

API Application Programming Interface

BSS Business-Support System

CRUD Create, Read, Update, and Delete

CSS Cascading Style Sheets

DARE Data Analysis and Remediation Engine

DDoS Distributed Denial of Service

DNS Domain Name System

DoS Denial of Service

ERC Ethical and Regulatory Compliance (requirements)

ESB Enterprise Service Bus

GDPR General Data Protection Regulation

GUI Graphical User Interface

HDFS Hadoop Distributed File System

HTML Hyper Text Markup Language

IDPS Intrusion Detection and Prevention System

IP Internet Protocol

ISP Internet Service Provider

LDA Latent Dirichlet Allocation

NF Non-Functional (requirement)

NFV Network Function Virtualisation

NS Network Service

O&M Operations & Maintenance

OA Operational Analytics

ODM Open Data Models

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
92

PF Platform Functional (requirement)

PoP Point of Presence

REST REpresentational State Transfer

RSA Rivest–Shamir–Adleman

SecaaS Security as a Service

SF Service Functional (requirement)

SP Service Provider

SQL Structured Query Language

SVG Scalable Vector Graphics

TM Trust Monitor

UC Use Case

URI Uniform Resource Identifier

UUID Universally unique identifier

vNSF virtual Network Security Function

vNSFO vNSF Orchestrator

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
93

 TECHNICAL UPDATES AND REVISIONS

Technical advances and updates in D2.2/D4.2

A.1. The DARE

Hybrid architecture

In D2.1 the DARE functionalities were completely centralised with the envisioned Enterprise
Service Bus (ESB) managing the communication between the central DARE and the vNSFs.
According to the research done during T4.1, it has been considered that some subcomponents
were missing from the architecture. The data collector module is a good example of this
situation. This module works with specific formats in the sense that it accepts data from
different formats (for example data from DNS and data from a proxy). Hence, one collector
must be developed for each format accepted in SHIELD. Moreover, to avoid flooding the
network, we consider the possibility that some uncompressed format specific files can be
transformed into generic formats which can be compressed before being sent to the central
engine. Hence, the Data transformation subcomponent (which replaces the Data Services
Centre, a name that could lead to confusion) can either be distributed in the case of specific
not compressed formats or centralised for specific formats that already have minimum size.

Moreover, to avoid confusion with commonly defined terms and because the data has been
already transformed, the storage module is no longer called “Staging” (which commonly refers
to raw and heterogeneous data storage module) but is now called “Distributed File System”.

A streaming service

The envisioned ESB has been replaced by a simpler streaming service. The reason is that SHIELD
does not need some of the advanced services provided by ESBs like multi-tenant
communications (more than one endpoint for each channel), synchronisation services or
bidirectional flows. Instead of this complex system, a streaming service which only deals with
reliable message delivery is considered to be enough.

A more complete data analytics framework

The Complex Event Processor (CEP) as well as the processing area have been incorporated in
the data analytics framework since it is precisely the machine learning algorithms provided by
the data analytics framework the ones that will classify the traffic and manage the events.

A recommendation and remediation engine with a global view

The SHIELD consortium considers that this subcomponent must use not only the information
given by the data analytics framework, but also the global view of the system. Hence, the
recommendation and remediation engine will consider all the variables needed to recommend
or remediate a cybersecurity vulnerability:

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
94

 The threats and attacks detected by the data analytics framework.

 The different types of vNSFs provided by the Store and the policies that can be applied
to them.

 The vNSFs already deployed in the network.

Using this central position, it will recommend network services (sets of vNSFs) together with
the policies and the specific deployment locations with the objective to remediate the detected
attack.

A.2. Data acquisition and storage

A new module has been developed to meet the requirements of the distributed architecture.
Network files are processed on vNSF-side, and only the text-formatted output is sent through
the network, reducing the network throughput. In addition, using the Apache Avro serialization
framework, the processed output is converted to an Avro-encoded format before it is published
in the Kafka cluster, eliminating corruption issues in the data.

After performing a set of tests between the distributed collectors and workers, we noticed that
it is preferable to send small pieces and not the entire processed output to Kafka cluster,
providing a steady flow of data between the collectors and the workers. Furthermore, using
parallel processes for both collector and worker processes, delays are significantly reduced,
especially when there is a huge load of incoming network files, optimizing the performance of
the ingestion module.

To take advantage of other data types produced by the vNSFs, like alerts and metrics, new
collectors and workers have been implemented. These can be used in both centralized and
distributed architecture, without any changes to the original implementation. Lastly, the UUID
of the current vNSF is sent among the data to know from which machine these data originate.
This information is stored in Hive tables, to be accessible in the future.

A.3. Data analysis

The Cognitive and the Security data analysis modules that comprise the Data Analysis phase
have been subjected to extensive testing since D4.1 with various attack simulations, to evaluate
and improve the platform’s detection efficiency. The outcome of these tests was used as a
reference point for future development planning, with a view to fulfilling the project’s critical
requirements. More specifically:

For the Cognitive Data Analysis module, the lack of a threat classification capability was found
to reduce the overall impact of the module, since the detected anomalies were not being
categorized as specific threats. This issue is currently being addressed with the development
and implementation of a Random Forest classifier whose purpose will be to analyse the
detected anomalies provided by Apache Spot’s LDA algorithm and assign them to specific threat
classes. The upcoming module is expected to exploit the existing state-of-the-art Python and
Spark machine learning libraries (e.g. scikit-learn, MLlib etc.) and will support HDFS
connectivity. Moreover, several partners are currently experimenting with the development of
anomaly detection algorithms that could be used as an alternative solution to the existing one
(LDA), resulting in the enrichment of this open-source module. Finally, further modifications to

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
95

the module that will allow for near-real time analysis have been scheduled for the immediate
future.

For the Security Data Analysis module, the output format of the provided results has been
altered to be consistent with the one provided by the Cognitive module, as a first step for
implementing a unified threat response. In terms of anomaly detection capabilities, an
additional functionality that will enable data exfiltration detection is also being studied. In more
detail, the study involves the detection of DNS tunnelling-based exfiltration attacks by means
of statistical analysis of NetFlow traffic, which will allow the detection of such anomalies
without accessing the packet payload. Moreover, the module was modified to be capable of
ingesting traffic captures in CSV format. As a result, there is consistency between the data
formats that are supported by the tow modules and furthermore, the resources that are
required by the collector are reduced as it no longer needs to generate traffic in multiple
formats.

A.4. Cybersecurity topologies

The recommendation and remediation engine has been based on the functionalities of the
modules for policy generation offered by the SECURED project, but it has been re-written and
re-engineered to support the SHIELD workflows and interactions with other infrastructure
components. More specifically, the H2MService based on Java has been dropped and its basic
capabilities have been developed in a Python project. The SECURED policy abstractions, i.e. the
HSPL and MSPL, have been reused for the policy generation process and extended to support
the vNSFs security capabilities.

Moreover, the module has been modified to support the selection of pre-defined Network
Services from the vNSF Store, hence its Forwarding Graph Generator sub-component has been
removed from the internal architecture. According to D2.2, the Service Composition Platform
Requirement is no longer part of the Cybersecurity Topologies phase of the DARE.

A.5. The Security Dashboard

The Dashboard was promoted to the only component to interact with third-party entities within
the SHIELD framework. Any external interaction with SHIELD, regardless of which internal
component should handle it, must be done through the Dashboard. The same applies for user
interactions.

The GUI for the Store has been moved to the Dashboard since this is the only component
handling user interaction.

Monetization definition was rescoped in which the platform only provides billing data on vNSF
and NS usage and does not handle any invoicing or payment related operations. vNSF and NS
pricing definition was moved from the Store to the Billing subcomponent in the Dashboard.
These changes allow the platform to integrate with external billing systems.

SHIELD D4.2 • Updated specifications, design and architecture for the usable information-driven engine

© SHIELD Consortium
96

A.6. Listing of changes from D4.1

The following table tracks the changes to this document, as compared to its preliminary (base)
version, D4.1.

Revision
action

Revision description Tracking notes

1 Updated Executive summary Executive summary reflects the new requirements in D2.2
and the scope of the deliverable w.r.t. D4.1

2 Added Subsections 1.2, 1.3 Added to provide the scope of the document, links to other
deliverables and the organisation of its contents

3 Added Section 2.1 and sub-
sections

New section introduced to describe the WP4 guiding
principles.

4 Updated Section 2.1.3, 2.1.4 Reworded billing model and monetization introducing D2.3
considerations.

5 Updated Section 2.6.1 Updated the internal architecture of the Recommendation
and Remediation Engine.

6 Updated Section 2 Updated billing model and changed the use-case diagram
according to the agreements on the SecaaS use-case

7 Updated Section 3.1, 3.2, 3.3,
3.4

Updated to reflect the finalised requirements in D2.2, and
resource requirements for the DARE components and the
Security Dashboard.

8 Added Section 3.1, 3.2, 3.3,
3.4

Added ethical and regulatory compliance (ERC)
requirements for the DARE components and the Security
Dashboard.

9 Updated Section 3.2:
Specifications

Updated the specifications table with information about the
scalability of the Security Analytics module.

10 Updated Section 3.3
Specifications

Updated specifications table to align with the finalized
requirements in D2.2.

11 Added Section 3.4 Introduced Role-Based Access Control (RBAC), describing the
envisaged roles for the SHIELD platform.

12 Added Section 4 Added to ensure GDPR compliance for the DARE and the
Security Dashboard.

13 Added Section 4 Added compliance specifications for the Security Analytics
module.

14 Added Section 4 Added compliance specifications of the Recommendation
and Remediation Engine.

15 Added Section 4 Added compliance specifications for the Dashboard.

16 Updated Subsection 5.1 Moved content from old section 5

17 Added Subsection 5.2 Added future work for WP4.

18 Updated Section 6 Updated text to include future work for WP4 and
conclusions/lessons learned after Y1.

19 Added Annex A Tracks changes in technical content and in the text since
D4.1.

