
SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
1

Deliverable D3.3

vNSF framework ready for experiments

Editor C. Fernandez (i2CAT)

Contributors G. Gardikis (SPH), C. Xilouris, E. O. Segou (ORION), C.
Fernandez, E. Trouva (NCSRD), L. Jacquin, H. Attak
(HPELB), M. De Benedictis, A. Lioy (POLITO), F. Ferreira, R.
Preto (Ubiwhere), A. A. Pastor, J. N. Mendoza (TID).

Version 1.0

Date November 29th, 2018

Distribution PUBLIC (PU)

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
2

Executive Summary

This report documents the conclusions of the project activities related to the definition of the
requirements, the high-level architectural design of the SHIELD platform, as well as its
development and deployment.

Specifically, this deliverable provides details on the current status of the architecture, design,
development and deployment related to the vNSF environment; that is, the attestation of the
infrastructure via the Trust Monitor (TM), the Store and Orchestrator (vNSFO) interacting with
each Network Service (NS) and Virtual Network Secure Function (vNSF), and the list of NSs
themselves.
The final mapping of the requirements (Platform Functional, Non-Functional, Service
Functional, Ethical & Regulatory Compliance) is also collected on this report.
Finally, instructions for the set-up of the environment and of each WP3-based component are
also supplied.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
3

Table of Contents

1. INTRODUCTION ... 5

1.1. SHIELD project overview .. 5

1.2. Scope of this document ... 5

1.3. Organisation of this document .. 5

2. FINAL FUNCTION LAYOUT .. 7

2.1. vNSF environment architecture .. 7

3. UPDATES SINCE D3.2 .. 9

3.1. Trust Monitor ... 9

3.2. vNSF Store .. 9

3.3. vNSF Orchestrator .. 9

3.4. NSs and vNSFs .. 10

3.4.1. DPI .. 10

3.4.2. Forward L7 Filter ... 12

3.4.3. HTTPS Analyzer ... 12

3.4.4. IDS .. 13

3.4.5. L23 Filter .. 13

3.4.6. L3 Filter .. 14

3.4.7. Proxy TLS ... 15

4. REQUIREMENTS MAPPING ... 16

4.1.1. Compliance to requirements ... 16

5. ENVIRONMENT SETUP GUIDE ... 21

5.1.1. NFV Orchestrator .. 21

5.1.1.1. OSMr2 .. 21

5.1.1.2. OSMr4 .. 21

5.1.2. Virtual Infrastructure Manager .. 21

5.1.2.1. OpenStack (Athens) ... 22

5.1.2.2. OpenStack (Barcelona) .. 22

5.1.2.3. VIM-emu (Torino) .. 22

5.1.3. OpenDayLight Controller .. 23

5.1.4. Aruba 3800 switch .. 25

6. INSTALLATION GUIDES .. 27

6.1. Open Source status .. 27

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
4

6.2. Trust Monitor ... 27

6.3. vNSF Store .. 28

6.4. vNSF Orchestrator .. 28

6.5. NSs and vNSFs .. 28

6.5.1. DPI .. 28

6.5.2. Forward L7 Filter ... 29

6.5.3. HTTPS Analyzer ... 30

6.5.4. IDS .. 31

6.5.5. L23 Filter .. 31

6.5.6. L3 Filter .. 31

6.5.7. Proxy TLS ... 32

7. CONCLUSIONS .. 34

7.1. Status of vNSF ecosystem .. 34

7.2. Future work .. 34

REFERENCES .. 35

LIST OF FIGURES ... 36

LIST OF TABLES... 37

LIST OF ACRONYMS ... 38

ANNEX A. REGULATORY COMPLIANCE ... 41

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
5

1. INTRODUCTION

1.1. SHIELD project overview

The SHIELD project aims to deliver virtualised security services to protect the flow of data across
the infrastructure controlled by the SHIELD platform and also to ensure that such
infrastructures are properly attested and secured.

To do so, several technologies are combined. The Network Function Virtualisation (NFV) and
Software-Defined Networking (SDN) environments allow the deployment of virtualised services
(NSs); whilst the Trusted Computing (TC) provides means to attest and verify whether the
infrastructure is secured or trusted. Finally, the Big Data (BD) Analytics and Trusted Computing
(TC) provide remediation suggestions to mitigate threats in any virtualised or physical node
running on the SHIELD-managed infrastructure.

1.2. Scope of this document

The WP3 (“vNSFs ecosystem”) is devoted to the realisation of the environment required to
deploy the different NSs and vNSFs. That covers part of the infrastructure in the SHIELD
architecture, the development of the SHIELD NSs and vNSFs themselves and the management
of the lifecycle of the instances and of the packages through the vNSF Orchestrator and Store,
respectively. The attestation of the infrastructure and services, to ensure all of these are trusted
at all times, is also encompassed in this Work Package and thus described here.

This document (D3.3, “vNSF framework ready for experiments”) provides an overview of the
final release of the vNSF and trusted computing infrastructure. During M20-M27, SHIELD has
continued the deployment, adjustment and configuration efforts on its NFVI and has finalised
the definition, elicitation of requirements, development and testing of the suggested Network
Services. Likewise, during these months there was substantial attainment on most of the
features to be offered; affecting the vNSF Store, the Orchestrator and the Trust Monitor.

D3.3 extends the following deliverables:

 D2.2 “Updated requirements, KPIs, design and architecture”, which gives the final,
updated version of D2.1.

 D3.2 “Updated specifications, design and architecture for the vNSF ecosystem”, which
contains the design and specifications for the SHIELD vNSFs, Orchestrator, Store and
Trust monitor provided in D3.1; after the second iteration of the requirements
evaluation.

1.3. Organisation of this document

This document is organised as follows:
 Chapter 1 (present chapter) serves as a basic introduction to this document and its

scope;
 Chapter 2 provides the overview of the final functional layout of the vNSF ecosystem;

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
6

 Chapter 3 details the updates at the different levels (architecture and design,
development) per WP3 component since D3.2;

 Chapter 4 lists the instructions to perform the setup of the environment tools that
support the operations of the vNSF ecosystem;

 Chapter 5 includes the guide for the installation of the WP3-related components;
 Chapter 6 concludes the document, summarising the WP3 work during the project and

suggesting next steps for improvements;
 Annex A provides the Ethical Regulatory Compliance requirements for the WP3

components.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
7

2. FINAL FUNCTION LAYOUT

2.1. vNSF environment architecture

The group of components and tools required for the lifecycle management of the SHIELD NSs,
vNSFs and attestation on them and on infrastructure nodes -- grouped under the term of “vNSF
environment” and covered by the work of WP3. This comprehends the Trust Monitor, the vNSF
Store, the vNSF Orchestrator and all the NSs and vNSFs used in the project.

Figure 1: High-level architecture of SHIELD, with components per WP.

The Trust Monitor maintains an overview of all nodes available in the infrastructure: either
virtual or physical, whether network devices or computing nodes. With this data, the TM can
periodically check the trustworthiness of the SHIELD infrastructure by leveraging Trusted
Computing (TC) mechanisms. This process consists of authentication and integrity verification
techniques applied to each node joining the infrastructure. The TM interacts with almost all
other WP3 components in order to get metadata from the vNSFs’ security manifest (from the
vNSF Store), to register nodes for attestation and to perform periodic attestation of nodes
running on the NFVI itself (vNSF Orchestrator); as well as contacting the NFVI nodes themselves
for attestation. Besides this, it also interacts with the DARE, enabling auditing capability and the
Dashboard, for security notifications and recommendations for remediation.

The vNSF Store allows the onboarding of SHIELD vNSF and NS packages to some specific type
of users (namely, developers and administrators). Such packages are onboarded in the NFVO
(via the vNSFO API) and its metadata is stored internally; for instance, for attestation purposes
(the security manifest used by the Trust Monitor). It also interacts with the Dashboard.

The vNSF Orchestrator provides a logic layer on top of the NFV Orchestrator (NFVO), so that
the interaction with the NFVO, the VIMs and elements on the NFVI (from ancillary nodes to
running vNSFs) is simpler and low-level details are hidden to other SHIELD components.
Contacting this component results in the fetching of information from the VIM and some nodes

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
8

in the NFVI; the deployment, termination and configuration for NSs and vNSFs; as well as
registration, isolation, termination and such for nodes registered by the NFVI.

Then, the NSs and vNSFs are dynamically deployed on the network infrastructure and perform
two main type of actions: monitoring (identifying specific information from the network) and
reacting (ability to carry out specific remediation action).

The network infrastructure and NFVI nodes do interact with the Trust Monitor so that the
virtual services inside and its subcomponents can be authenticated; as well as with the vNSFO
so that the latter can control the deployment, lifecycle management and the collection of
monitoring data. Finally, the monitoring NSs send captured data to the DARE, which is valuable
for further ingestion and determination of specific remediation actions.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
9

3. UPDATES SINCE D3.2

This section iterates through each WP3 component to document any update on its design,
architecture or development that has occurred during the last period here reported.

3.1. Trust Monitor

The Trust Monitor architecture has not been altered since D3.2, hence its definition and the
definition of its subcomponents are left mostly intact.

The scope of the “vNSFO Connector” has been limited to the retrieval of network configuration
at a given time for attestation of the NFVI. Originally, the Trust Monitor was supposed to notify
the vNSFO about the need to terminate a compromised vNSF or NFVI physical node (e.g.
compute node, switch) as well. This functionality is still provided in the SHIELD attestation
framework, although the notification is forwarded to the vNSFO through the Dashboard.

Also, the “Management API” has been updated to include an endpoint for auditing of historical
logs regarding attestation of the network infrastructure.

3.2. vNSF Store

The core architecture of the vNSF Store has not been modified, yet new features were
introduced during the implementation of several sub-components.

The vNSF and NS lifecycle management was improved by the integration with the vNSFO, Trust
Monitor and Dashboard components. The integration of the Store with the vNSFO supports all
the onboarding capabilities of vNSFs and NSs. For the integration of the Trust Monitor, the
Store persists the attestation data retrieved from the security manifest to later on provide it to
the TM. The multi-user support was also enforced; thus restricting users -previously registered
in the Dashboard- to particular particular actions associated with their role, for instance
administrator to onboard NSs, developer to onboard vNSFs.

Driven to ensure, as much as possible, the viability of onboarded descriptors, the Store is now
integrated with a validation tool called NSFVal which is capable of analysing the syntax, the
integrity and the network topology of descriptors. The validation is triggered during the Store
onboarding process, just before passing the descriptors to the vNSFO. Should any validation
issue arise during this process, the user is alerted and enquired about the following actions.

3.3. vNSF Orchestrator

On the design and architecture of the vNSF Orchestrator, the definition of its subcomponents
has not suffered modifications since D3.2; since the functional blocks covering these remain
available over the different releases of the NFVO, even yet mapped to different software
subcomponents.

Regarding the SHIELD-specific interfaces (APIs used by the Store, Dashboard and Trust Monitor)
and the overall logic (to onboard packages, configure vNSFs and interact with the

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
10

infrastructure), these remained mostly intact; with the exception of the “DARE API”, whose
logic is available but is not called from the DARE -- but from other components.

Summing up, the following interfaces (SHIELD-specific) are provided by the vNSFO:

 Store API: Provides the vNSF/NS Store with an endpoint to register the onboarded vNSF
and NS packages into the NFVO instance; so the service can be instantiated.

 Dashboard API: The application of a recommendation through the Dashboard will
contact the vNSFO, and indirectly the NFVO, to communicate with a specific vNSF and
transmit the MSPL to that running instance.

 Dashboard Connector: Data regarding the list of running NS and vNSF instances are
provided for visualisation purposes, as well as data on the NFVI (e.g., related to the
trusted status of the different nodes in the infrastructure).

 Trust Monitor Connector: The newcomer nodes (ingressing the NFVI) can be registered
in the Trust Monitor; so that the TM can periodically perform the attestation.

 Trust Monitor API: Information of the network, the flow tables and the list of active
nodes can be provided to the Trust Monitor for its own purposes.

3.4. NSs and vNSFs

Modifications on specific NSs and vNSFs since D3.2 are described below, where each NS is
described in a separate subsection.

3.4.1. DPI

The ORION DPI’s NS (also called vDPI) presents minor changes with respect to the status
documented in D3.2. The main functionality remains the Deep Packet Inspection (DPI). As
discussed in D3.2, DPI is the practice of filtering and examining IP packets, across Layers 2
through 7. Although Stateful Packet Inspection (SPI, often employed by firewalls) is more
restricted, DPI may extend to headers, protocol structure and payloads; thus allowing for the
implementation of advanced cybersecurity measures. DPI can be an effective detection tool for
multiple cyber-attacks such as Denial of Service (DoS), buffer overflow, cross-site scripting
exploits, injection attacks, etc. DPI capabilities, however, can be limited as the payload structure
becomes more complex (e.g. through obfuscation, encryption etc).

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
11

Figure 2: DPI architecture.

The DPI vNSF consists of vNSF components (VNFCs), as illustrated in Figure 2:
 vDPI-C1 (Forwarding and Classification): This VNFC handles routing and packet

forwarding. It accepts incoming network traffic and consults the flow table for
classification information for each incoming flow. Traffic is forwarded using default
policies until it is properly classified, and alternate policies are enforced. It is often
unnecessary to mirror packet flow in its entirety in order to achieve proper
identification. Since a smaller number of packets may be utilized, the expected response
delay can therefore be close to negligible. In a case where the Inspection, Forwarding
and Classification VNFCs are not deployed on the same compute node, traffic mirroring
may introduce additional overhead. A classified packet can be redirected,
marked/tagged, blocked, rate limited, and reported to a reporting agent or
monitoring/logging system within the network.

 vDPI-C2 (Inspection): The traffic inspection VNFC implements the filtering and packet
matching algorithms and is the necessary basis to support additional forwarding and
classification capabilities. It is a key component for the successful implementation of
the DPI NS and the most computationally intensive. The component includes a flow
table and an inspection engine. The flow table utilises hashing algorithms for fast
indexing of flows, while the inspection engine serves as the basis for traffic classification.

 vDPI-C3 (Internal Metrics Repository) & vDPI-C4 (Monitoring Dashboard): The internal
metrics repository acts as local storage, while the Monitoring Dashboard illustrates the
classified traffic and GDPR information. The distributed collectors send data to the
DARE.

The key advances since D3.2 include:
 The vNSF graphical user interface (developed to suit the SHIELD demonstration

scenarios and GDPR information)
 The integration of the distributed collectors to stream data to the DARE (vDPI-C3).

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
12

As with any other NS, the DPI lifecycle is managed by the vNSFO -- specifically by interacting
with the vNSF Configuration Manager subcomponent. The vNSFO is in charge of starting,
stopping, pausing, scaling and configuring the DPI. Thus, the Forwarding and Classification
component acts as a managing/controlling VNFC and is assigned a floating IP for management.
Internal communication is implemented via vlinks. Policies are relayed from the vNSFO and
translated within the managing vNFC. No significant changes have been made to the lifecycle
management since D3.2.

3.4.2. Forward L7 Filter

The L7 filter vNSF presents no substantial changes from the D3.2. This NS provides the
following functionalities:

 Traffic inspection for specific Layer 7 protocols and headers (e.g. HTTP, FTP);
 URL filtering;
 Access Control List (e.g. IP-based, MAC-based, domain based);
 Reverse Proxy.

3.4.3. HTTPS Analyzer

Since D3.2 the component architecture has undergone no subsequent modifications. In this
period, the engine has been developed and the interfaces to the vNSFO’s, DARE’s and vNSFM’s
API have been completed.

The objective is to provide a category classification of HTTP and HTTPS traffic without analyzing
the payload content in a privacy-friendly way. Categories are dependent on the trained model.
Currently 3 categories are included: Browsing, video streaming and file download. This NS filters
out unnecessary traffic from security inspection. A second functionality of this NS is to provide
a netflow format feed adapted to Apache Spot streaming service from traffic captured.

The vNSF integrates both raw and processed traffic in Apache Spot cluster. This service is
composed by two different parts:

 Raw traffic feed: It captures the traffic arriving to the vNSF, converts it to
netflow_v9 format and sends it to the Apache Spot cluster via a Kafka bus using
the d-collector developed in SHIELD.
Netflow traffic is the base for subsequent tasks in Apache Spot: worker module
that collect, transform and store the information, and the Apache Spot Machine
Learning module.

 Processed traffic feed: It captures the traffic arriving to the vNSF, converts it to
“tstat” format and processes it in real time. It is a passive sniffer able to provide
several insights on the traffic patterns at both the network and the transport levels.
It processes the output “tstat” data and classify them via a local machine learning
algorithm pre-trained. It allows to apply ML locally in a vNSF. The machine learning
result is sent in CSV format to the Apache Spot via a Kafka bus (very similar to the
netflow format, but with a classification label).

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
13

3.4.4. IDS

Since D3.2, the IDS NS has been altered to support notification of alerts to the SHIELD
Dashboard. For this reason, the Event Publisher Service (which translates, curates and publishes
Snort events in readable format) has been modified. When new Snort alerts are triggered, these
are transformed to an agreed JSON format and sent to a RabbitMQ queue.

The format of the messages sent to the RabbitMQ message broker is the following:

[

 {

 "event": {

 "event-id": 1,

 "signature-id": 10000002,

 "protocol": 6,

 "event-second": 1458746598,

 "event-microsecond": 778441,

 "classification-id": 24,

 "classification": "Detection of Malicious traffic",

 "destination-ip": "192.168.1.237",

 "dport-icode": 80,

 "source-ip": "23.144.220.60",

 "sport-itype": 34276

 }

 }

]

3.4.5. L23 Filter

The L23 Filter NS is based on a VNF that has been developed in the frame of CHARISMA EU
project and has been adapted to be deployed through the NFVO used in SHIELD. Such vNSF has
to be deployed in-line on an existing network link, deciding which packets will pass through its
two network interfaces. It can be instantiated with specific rules that allow only the preferred
traffic to be propagated. Firewall rules can be applied to the vNSF after instantiation via its
RESTful web API, providing dynamic security policies to be enforced only by higher level
modules of the project (e.g DARE components). The implementation of the L23 Filter NS is
based on Open vSwitch (OVS). Firewall rules; which can be used to filter the traffic passing
through the vNSF. The Firewall Rule Receiver Web API receives firewall rules in JSON format by
an HTTP request and translates it to the appropriate OVS flow table entry. Furthermore, for
purposes of monitoring and security validation, the L23 Filter vNSF provides another service
whose role is to publish information about passing or blocking of packets to external interfaces
for further analysis.

The L23 Filter vNSF consists of one virtual machine that requires at least two virtual network
interfaces. It uses three interfaces:

 one interface for management;
 one interface for the WAN side of the firewall;
 one interface for the LAN side of the firewall.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
14

3.4.6. L3 Filter

The L3 Filter NS has the aim to inspect and eventually filter the passing through traffic flows.
The inspection process is related to the Layer 3 ISO/OSI stack information: source and
destination IP addresses, ports and transport protocol. When a traffic flow matches certain
Layer 3 conditions, it will run a predefined action (allow or deny). All matching rules and related
actions are described through an Access Control List (ACL), which could be in form of whitelist
or blacklist. In our case we obtain the ACL through a process of translation from the high-level
configurations provided by the Element Management (EM).

Figure 3: L3Filter architecture.

Since D3.2, in which the general architecture of L3 Filter is presented, some critical changes
have been added -- mostly concerning the traffic steering. In particular, as shown in Figure 3, it
has been added a new VNFC module called “L3Filter-C4” in charge of the traffic forwarding
between the ingress and egress interfaces. To summarize these changes, we will show below
the new L3 Filter components:

 L3Filter-C1 (Policy translation): we modified this VNFC in order to provide only the policy
translation and the general control functionalities (e.g. configurations listener, safe start
and stop of the vNSF). All this work has been made in order to relieve this component
from the traffic steering. Once the policies are received from the Element Management,
they will be translated and sent to the L3Filter-C2 component.

 L3Filter-C2 (Filtering): at this stage the policies are expressed in terms of filtering rules
and they will be applied from the Filtering module which communicates with the
L3Filter-C4 VNFC in order to finally block or allow the traffic flows.

 L3Filter-C3 (DARE collector): this module has not been changed and it is in charge of
collecting the application metrics and sending it to the DARE for further analysis.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
15

 L3Filter-C4 (Bridging): after receiving the information from the Filter module of the
L3Filter-C3 component, this new module enforces the filtering rules and it is in charge
to perform the final action of allowing or denying a specific traffic flow.

The changes on the L3 Filter NS architecture and implementation leverage the bridging
capabilities of the vNSF in order to dramatically simplify the process of the packets’ forwarding
and to enhance the portability and scalability of the vNSF as well. This achievement is granted
by the fact that the routes configurations within the L3 filter are no more needed.

Leaving aside the major changes on the vNSF, we performed a series of functional tests as well.
The main purpose of those tests was fixing minor bugs in the policy translation and rules
enforcement processes. This allows us to achieve a very significant result in terms of vNSF
robustness and resilience.

We should also notice that the L3 Filter vNSF needs three network interfaces in order to work
properly: one for management and the other two for the traffic steering (ingress, egress). The
management network must be configured with a DHCP server capable of setting the preferred
DNS during the instantiation of an L3 Filter. This must be granted in order to allow the cloud-
init properly configure at boot time.

3.4.7. Proxy TLS

Since D3.2, the development of the NS logic and its interfaces towards the vNSFO, the DARE
and the vNSF Manager APIs have been finished. The definition of the NS remains unchanged.

The ProxyTLS allows to inspect HTTPS traffic with the aim of solving cybersecurity threats such
as malicious URLs. One key difference in this proxy is the capability to inspect and log the
complete URLs in the HTTPS header, in contrast to other security tools that can only see the
TLD domain from the issued Certificate. The purpose of ProxyTLS is to monitor all HTTPS
connections and log the URLs used by the clients. In addition, it can be populated with URL
blacklists (i.e. malware droppers, C&C, phishing servers, etc.) to generate alerts and, in the case
of a mitigation policy, block the connectivity to that specific URLs.

The NS and its vNSF provide a log generation compliant with Apache Spot “proxy” collector
format and sends all captured proxy log to the Apache Spot cluster through the Kafka bus (both
fully integrated).

Besides the list of the NSs presented above, additional ones (“l3attest” and “vpnattest”
instances) were developed in the scope of the project to demonstrate how the vNSF attestation
process alone works in the SHIELD platform. These are implemented as Docker containers that
run a minimal Linux CentOS container image. These NSs are not documented in D3.2 and no
architecture work was required prior to their development, since they do not carry any actual
vNSF logic and are simple targets for attestation.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
16

4. REQUIREMENTS MAPPING

The requirements, initially identified in D2.2, were categorised into four categories:
 Platform functional (PF) requirements, which detail the functionality required by the

platform;
 Platform non-functional (NF) requirements, which detail the performance, ease of use

and security of the platform;
 Service functional (SF) requirements, which describe the functionalities of the

cybersecurity Network Services that the platform deploys; and
 Ethical and regulatory compliance (ERC) requirements, which focus on maintaining the

platform’s alignment with the EU regulatory landscape.

4.1.1. Compliance to requirements

The tables below map each WP3 component to specific requirements and justify how these
requirements were fulfilled.

vNSF-related components

Table 1: Functional and non-functional requirements for vNSF-related components.

Components Requirements Justification

Store PF02, PF10,
PF11, PF15,
PF17, PF22

The Store provides the ability to perform onboarding of
NSs and vNSFs in an inter-operable and secure
environment. At the time of onboarding, this component
validates that the content is both valid and trusted.
Multiple interfaces are provided, allowing this
component to expose its persisted information to
authorised parties.

Orchestrator PF01, PF02,
PF03, PF07,
PF11, PF13, PF22

The vNSFO can deploy and perform lifecycle and status
management on the vNSFs via the NFVO. It can also
configure the vNSFs to deploy mitigation actions;
interact with the Trust Monitor to register nodes for
periodic attestation and provide secured
communications with any client connecting to it.

NF03 The vNSFO is aware of new nodes registered into the
NFVI and propagates these to the Trust Monitor for
attestation purposes.

Trust
Monitor

PF08, PF11,
PF16, PF19, PF22

The TM provides APIs to integrate attestation with other
components of the platform, both for notification
(through Dashboard and DARE) and for the

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
17

implementation of security services (periodic attestation
workflow supported by the vNSFO and Store). The TM
implements both vNSF and network infrastructure
attestation, and generates historical logs about
attestation that are later stored in the DARE. The TM
provides secure communication with other SHIELD
components.

NF01, NF07,
NF08

The TM periodically attests (with a configurable latency)
the NFVI in order to identify occurring incidents. It
performs parallel attestation per node so as to minimise
the response time of periodic attestation, whose
bottleneck is represented by the latency introduced by
TPM. The TM adopts well-established standards
proposed by the Trusted Computing Group for the
definition of integrity verification formats and remote
attestation workflow. The TM has been implemented as
a multi-container application for automated
deployment; with minimal user intervention.

NSs and vNSFs

Table 2: Functional and non-functional requirements for NSs and vNSFs.

Components Requirements Justification

DPI PF01, PF02, PF03,
PF04, PF05, PF06,
PF10, PF13, PF14,
PF15, PF20, PF22

The DPI fulfills all requirements necessary for lifecycle
management and has demonstrated its main
functionality within two Y2 demos (Worm & Slowloris
scenarios).

NF01, NF02, NF03,
NF05, NF06, NF07,
NF09

The deployment time for the selected flavour was
adequate; the service did not feature any significant
downtime or functional problems.

SF02, SF04, SF05,
SF06, SF08, SF09,
SF10

The main functionality of the DPI is to classify L7
traffic per domain (e.g. YouTube, twitter etc.) or per
application type (e.g. bittorrent, NetBIOS/SMB etc.).
These capabilities allow the vDPI to monitor
suspicious traffic (e.g. a rise in SMB traffic can signify
existence of WannaCry malware etc.). The DPI
monitored offensive network traffic in the Slowloris
scenario.

Forward L7
Filter

PF01, PF02, PF03,
PF06 PF10, PF13,

The Forward L7 Filter can be deployed by the
orchestration platform on different PoPs and

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
18

PF14, PF15, PF20,
PF22

domains. All installation and configuration processes
are implemented in an automatic manner, without
further manual intervention. The two-step
configuration method (Day-0 - Day-1) besides allows
managing the entire life-cycle of this vNSF (e.g. start,
stop, deploy, set-policies, delete-policies). It is also
possible to access to the life-cycle management
through a Graphic User Interface (GUI) provided by
OSM. The NS provides secure management
communication with the SHIELD environment.

NF05 When the traffic passes through the Forward L7
Filter, in order to be inspected and eventually filtered,
there is no perceived impact on its performance.

SF09 This NS provides a filtering functionality for specific
Layer 7 protocols and headers (e.g. HTTP, FTP). The
traffic passes through its vNSF and is redirected to a
server only if it doesn’t match the defined rules of a
blacklist. This filtering functionality is supported by a
log in which are stored all the filtering events. This log
could be used in order to monitor the filtered traffic
and to generate alerts.

HTTPS
Analyzer

PF01, PF02, PF03,
PF04, PF10, PF15,
PF22

This NS can be deployed in any SHIELD PoP, covering
all requirements to allow its lifecycle management
and it provides interfaces to send the collect events
to SHIELD.

NF07 This VNF can generate NetFlow v9 standard format
for HTTP and any other type of traffic.

SF09 HTTPs Analyzer allows the classification of encrypted
traffic traversing the network and therefore enable its
correlation with other security sources to detect
attacks therefore improving its detection/mitigation
mechanisms.

IDS PF01, PF02, PF03,
PF04, PF14, PF15,
PF18

This NS can be deployed on different PoPs. Full
lifecycle management (on-boarding, instantiation and
termination) of its vNSF is supported through the
vNSFO and OSM GUI. Occuring alerts, identified
through the IDS vNSF can be provided to DARE
(RabbitMQ notification of incidents to the SHIELD
Dashboard). Each tenant might be associated with a
specific and single instance of this vNSF.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
19

NF01, NF03, NF05,
NF07

New events are reported to DARE within a short time
(less than a second). If required, horizontal scaling of
this NS is possible. When this NS was used, no impact
on the user perceived delay was noted as in all
configurations we experimented its vNSF was
connected off-path. The output of this vNSF is in
JSON format.

SF02, SF04, SF06,
SF08, SF09

This NS provides the means to detect a variety of
attacks (malware, DoS, volumetric attacks, access to
blacklisted sites and domains) by analysing the
network traffic (L3, L4 and L7). The ability to deploy
this NS in an IDPS mode exists, so filtering the traffic
based on the predefined rules is possible.

L23 Filter PF01, PF02, PF03,
PF14, PF15, PF18

This NS can be deployed on different PoPs. Full
lifecycle management (on-boarding, instantiation and
termination) of this vNSF is supported through the
vNSFO (OSM GUI). Each tenant might be associated
with a specific and single instance of this vNSF.

NF03, NF05 If required, horizontal scaling of this vNSF is possible
with the use of load balancer in the front. When this
vNSF was used, no significant impact to the user
perceived delay was noted.

SF04, SF05, SF06,
SF08, SF09

The L23 Filter is capable of filtering traffic packets at
L2 and L3 of ISO/OSI stack. The filtering process is
driven by a set of rules, typically based on the 5-tuple
(src/dst IP addresses, src/dst ports, transport
protocol). These and traffic limiting values are the
fields supported for translation to MSPL. However,
the actual configuration of the L23 Filter is based on
OpenFlow rules, since our implementation is based in
Open vSwitch (OVS). The L23 Filter could be easily
integrated with the IDS or DPI NSs as a remediation
NS, blocking malicious traffic detected by the IDS.

L3 Filter PF01, PF02, PF03,
PF06, PF10, PF13,
PF14, PF15, PF20,
PF22

This NS can be deployed on different PoPs and
domains. All installation and configuration processes
can be done automatically, with no further manual
intervention. The two-step configuration method
(Day-0 - Day-1) besides allows managing the entire
life-cycle of this vNSF (e.g. start, stop, deploy, set-
policies, delete-policies). It is also possible to access
to the life-cycle management through a Graphic User
Interface (GUI) provided by OSM. Thanks to the Day-1

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
20

configuration, the vNSF is able to trigger, in case of a
malicious event, proper actions to mitigate the
threat. The scalability of the vNSF is managed by OSM
and granted by the L3 Filter design, which is
independent from the NFVI used for the deployment.
L3 Filter provides secure management
communication with the SHIELD environment.

NF05 When the traffic flows pass through the L3 Filter, in
order to be inspected and eventually filtered, there is
no perceived impact on the performance.

SF04, SF05, SF06,
SF08, SF09

The L3Filter is capable of filtering traffic packets at
Level 3 of ISO/OSI stack. The filtering process is driven
by a set of rules typically based on IP addresses, ports
and transport protocol. Since the L3 Filter is
reconfigurable during its life-cycle, It could be easily
integrated with the IDS/DPI as a remediation vNSF,
blocking any malicious traffic detected by the IDS.

Proxy TLS PF01, PF02, PF03,
PF04, PF10, PF13,
PF15, PF22

Proxy TLS allows its deployment in any SHIELD PoP,
covering all requirements to allow its lifecycle
management and It provides the needed interfaces
tow send the collect events towards DARE and
receiving instructions to mitigations based in http
traffic filtering.

NF04 When network traffic is proxied or analysed, the user
experience is not degraded.

SF02 The vNSF (middlebox) allows the monitoring of HTTP
ciphered traffic directed at any server (in order to
identify attacks). The ProxyTLS will inspect the HTTP
headers. It will compare the URLs from the headers
against blacklists to detect any of the malicious
endpoints.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
21

5. ENVIRONMENT SETUP GUIDE

This guide covers the setup of those tools in use to define the functionality of the infrastructure.
Here, we provide information on how to setup the Virtual Infrastructure Manager (where the
Virtual Machines and Networks are defined for the vNSFs), the NFV Orchestrator (to deploy any
NS and vNSF in specific VIMs) and the ODL controller and Aruba 3800 switch (to control and
allow, specifically, the insertion of flows to dynamically control the network).

5.1.1. NFV Orchestrator

Two versions of the NFVO were deployed, following the adoption of new releases.

5.1.1.1. OSMr2

Initially, the NFVO (OSMr2) was installed in ORION’s VIM. The deployment of this tool was
carried out in a VM with 8 CPUs, 16 GB RAM and 100 GB disk; as required by the direct
deployment using its source code -- potentially allowing modifications on the source code of
OSM. Instructions are available in [1].

This instance of the NFVO is located within the ORION VPN and is exposed through a public IP.
There were no changes in the source code or extra configuration, other than a minor
modification on the address to upload the packages, which is hosted in the “SO-ub” container.

5.1.1.2. OSMr4

OSMr4 introduced several changes, both at the end-user side and at the northbound APIs. This
release was later installed in i2CAT’s VIM. Even though the requirements are considerably
smaller, he deployment of this tool was carried out in a VM with the same characteristics as
OSMr 2 (8 CPUs, 16 GB RAM and 100 GB disk). Instructions are available in [2].

This instance of the NFVO is exposed through a public IP. In this deployment there were no
changes in the source code of the containerised processes.

5.1.2. Virtual Infrastructure Manager

During the lifetime of the project we have used 2 production-enabled VIMs using OpenStack
and deployed in Athens and Barcelona. After this we incorporated a third site to test the
container-based NSs, using VIM-emu and deployed in Torino.

Besides these, other VIMs were in place during the lifetime in the project to serve for local
deployments, for instance for the development and testing of any Network Service. As an
example, TID deployed its own OpenStack, based on RDO [3]; where their services were first
tested.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
22

5.1.2.1. OpenStack (Athens)

The OpenStack environment hosted by ORION is an All-In-One deployment based on Ocata
release on top of CentOS 7.5 and it is used for the deployment of the NSs in SHIELD. Instructions
to deploy are available in the official OpenStack documentation [4]. Furthermore, instances of
additional components of SHIELD (i.e. the Store, vNSFO, DARE, Dashboard, TM etc) are hosted
on 3 ESXi servers.

After the deployment, the OpenStack server must be connected to the nodes where the NSs
and vNSFs are deployed. This is linked to the HP Aruba (3800) switch, which directs the traffic
in and out of the virtualisation nodes by tagging with specific VLANs, each assigned to its own
network. The HP 3800 is connected to another switch, and that to a router and a firewall; before
reaching the public Internet. The ORION infrastructure can be accessed via the CISCO’s
AnyConnect VPN or OpenConnect VPN. Partners accessing the infrastructure must point their
VPN client towards "https://vpn.medianetlab.gr" and log-in with their given credentials.

5.1.2.2. OpenStack (Barcelona)

The OpenStack instance in Barcelona a production-enabled environment that runs the Ocata
distribution on top of CentOS 7.5.1804. This instance was installed as an All-In-One (AiO)
Openstack through Ansible scripts [5].

Before starting the installation, the partitions for root (“/”), swap, volumes (“/cinder”) and
other OpenStack data (“/openstack”) must be defined first, then its mounting point must be set.

Then, the configuration for OpenStack Ansible starts. Features like VLAN shall be enabled,
bridges must be created (manually work best), the definition of the Swift and Nova loopback
disks shall take place, as well as other data such as the bridge to link the virtual interfaces of
the VMs deployed by OpenStack.

Finally, run the OpenStack bootstrap script, verify that the environment is according to the
configuration defined before running such script and run the whole setup via its specific
playbook.

After the deployment, the OpenStack server must be running a total of 23 LXC containers, each
with its own specific service and have enabled different bridges for the management, storage,
connectivity (VLAN, VxLAN and/or others, as defined in the previous configuration step). This is
linked to the HP Aruba (3800) switch and to another switch, which is connected to a router for
Internet access. Partners accessing the infrastructure are to given access via their OpenVPN
client and log-in with their given credentials.

5.1.2.3. VIM-emu (Torino)

The VIM-emulator instance for testing the container-based NSs does run on a single host
machine equipped with CentOS Linux 7.5.1804 and Trusted Platform Module (TPM) version 1.2.

The host runs kernel 4.4.19 with a modified version of the Integrity Measurement Architecture
(IMA) module to support container attestation. It also runs an instance of the OpenAttestation
(OAT) HostAgent software for measuring the platform trust along with containers’ individual

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
23

trust [6]. Also, the host runs the Docker Container engine version 19.03.0-dev, which can be
installed from package system [7].

The VIM-emulator platform is installed on the same host through a modified version of the
OSM-provided scripts [8] in order to support the CentOS distribution.

5.1.3. OpenDayLight Controller

The OpenDayLight (ODL) controller enables the control of the HP Aruba 3800 switch and allows
to dynamically manage its network flow rules. The OpenDaylight distribution instantiated is
Carbon 0.6.3, it is deployed in both Athens and Barcelona; yet the latter is to be used from
OSMr4.

Java 8 is required for its installation. Then, simply download the corresponding OpenDaylight
packaged archive with the precompiled binaries, extract it and run the Karaf subsystem binary
(“bin/start”). Through the Karaf console, numerous “feature” packages must be installed to
have a working and compatible environment. The feature “odl-dluxapps-applications” enables
the DLux GUI for instance, and since OpenDaylight does not support the control of layer 2
devices out of the box, multiple other features are required to enable this functionality. The
following command in Karaf console will install the comprehensive list of features needed for
this setup:

feature:install odl-mdsal-models odl-aaa-shiro odl-akka-scala-2.11 odl-akka-

system-2.4 odl-akka-clustering-2.4 odl-akka-leveldb-0.7 odl-akka-

persistence-2.4 odl-netty odl-netty-4 odl-guava-18 odl-lmax-3 odl-triemap-

0.2 odl-restconf-all odl-restconf odl-restconf-noauth odl-mdsal-apidocs odl-

yangtools-yang-data odl-yangtools-common odl-yangtools-yang-parser odl-aaa-

api odl-aaa-authn odl-aaa-encryption-service odl-aaa-cert odl-

openflowplugin-southbound-he odl-openflowplugin-nsf-model-he odl-

openflowplugin-app-lldp-speaker-he odl-mdsal-dom odl-mdsal-common odl-mdsal-

dom-api odl-mdsal-dom-broker odl-mdsal-binding-base odl-mdsal-binding-

runtime odl-mdsal-binding-api odl-mdsal-binding-dom-adapter odl-mdsal-eos-

common odl-mdsal-eos-dom odl-mdsal-eos-binding odl-mdsal-singleton-common

odl-mdsal-singleton-dom standard config region package http war kar ssh

management odl-openflowplugin-flow-services-ui odl-openflowplugin-flow-

services-rest odl-openflowplugin-flow-services odl-openflowplugin-southbound

odl-openflowplugin-nsf-model odl-openflowplugin-app-config-pusher odl-

openflowplugin-app-topology odl-openflowplugin-app-forwardingrules-manager

odl-l2switch-switch odl-l2switch-switch-rest odl-l2switch-switch-ui odl-

l2switch-hosttracker odl-l2switch-addresstracker odl-l2switch-arphandler

odl-l2switch-loopremover odl-l2switch-packethandler odl-dluxapps-

applications odl-dluxapps-nodes odl-dluxapps-topology odl-dluxapps-yangui

odl-dluxapps-yangman odl-dluxapps-yangvisualizer pax-jetty pax-http pax-

http-whiteboard pax-war odl-config-persister odl-config-startup odl-dlux-

core odl-config-netty odl-config-api odl-config-netty-config-api odl-config-

core odl-config-manager odl-openflowjava-protocol odl-mdsal-all odl-mdsal-

common odl-mdsal-broker-local odl-toaster odl-mdsal-xsql odl-mdsal-

clustering-commons odl-mdsal-distributed-datastore odl-mdsal-remoterpc-

connector odl-mdsal-broker

The VM or server running ODL must be in the same network as the Aruba 3800 switch. For
example, the ODL VM in use for SHIELD is running on an OpenStack server, which is physically
connected to the switch.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
24

The setup of the interfaces is as follows:
 The server has a bridge that links the interface connected to the switch with the

interface assigned to the VLAN in use for the switch (as well as external connectivity).
 The ODL VM has one interface connected to a virtual network (10.102.20.0/24).

The IP of the bridge in the server (e.g., 10.102.20.3) and the IP of the interface of the ODL VM
(e.g., 10.102.20.9) must be in the same range.

To enable TLS encryption of the OpenFlow traffic, a CA must be created [9]. The intermediate
pair has to be skipped, as the switch does not support chained certificates. The leaf certificates
are signed directly with the root certificate by using the “policy_loose” preset.

On the switch, the following commands must be issued:

config term

 crypto pki ta-profile <CAProfile>

 copy tftp ta-certificate <CAProfile> <tftp server IP address> <certificate

file>

 crypto pki identity-profile SwitchIdentity subject <name/switch serial

number>

 crypto pki create-csr certificate-name <certName> ta-profile <CAProfile>

usage openflow

This will generate a Certificate Signing Request (CSR) in the terminal. The corresponding
certificate, using the “usr_cert“ preset, is created and then installed with the following
command:

crypto pki install-signed-certificate

For ODL, a certificate must first be generated by using the “server_cert“ preset:

sudo openssl pkcs12 -export -in <ODLCert.pem> -inkey <ODLPrivkey.pem> \

 -out ctl.p12 -name <odlserver>

The export password must be set to "opendaylight" - otherwise the ODL configuration shall be
changed according to the password of choice. The following commands use this default
password. Then, the certificate must be imported to the keystore:

keytool -importkeystore \

 -deststorepass opendaylight -destkeypass opendaylight -destkeystore

ctl.jks \

 -srckeystore ctl.p12 -srcstoretype PKCS12 -srcstorepass opendaylight \

 -alias odlserver

Also, the switch certificate must be imported into the truststore:

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
25

keytool -importcert -file SwitchCert.pem -keystore truststore.jks -storepass

opendaylight

Then the Java Key Store (JKS files: ctl.jks and truststore.jks) files are copied into the ODL
folder “./configuration/ssl”.

Finally, TLS is enabled in the OpenFlow connection via the following configuration:

#File: /etc/opendaylight/datastore/initial/config/default-openflow-

connection-config.xml

 <transport-protocol>TLS</transport-protocol>

 <tls>

 <keystore>configuration/ssl/ctl.jks</keystore>

 <keystore-type>JKS</keystore-type>

 <keystore-path-type>PATH</keystore-path-type>

 <keystore-password>opendaylight</keystore-password>

 <truststore>configuration/ssl/truststore.jks</truststore>

 <truststore-type>JKS</truststore-type>

 <truststore-path-type>PATH</truststore-path-type>

 <truststore-password>opendaylight</truststore-password>

 <certificate-password>opendaylight</certificate-password>

 </tls>

5.1.4. Aruba 3800 switch

The setup of the Aruba 3800 switch requires its connection to the OpenFlow controller.

In order to be managed by the OpenDaylight controller, a dedicated VLAN must also be
instantiated: the management VLAN. At least one port must be part of it and configured to
reach the ODL controller (it is instantiated similarly to the managed network described below).

In order to create a managed network, another VLAN is necessary. To create a VLAN, instantiate
an OpenFlow instance and assign ports to it, these commands should be issued on the switch
console:

config term

 vlan <VLAN#>

 untagged <port number or range of port numbers>

 exit

 exit

At least one port shall be set as untagged for the VLAN, so that it is assigned to the VLAN.

On the managed network, a virtual OpenFlow instance is defined and configured to connect to
the ODL controller. OpenFlow 1.0 must be enabled:

config term

 openflow

 controller-id <controller_instance_id> ip <odl_vm_ip> controller-

interface vlan <controller_vlan>

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
26

 instance "odl_<infrastructure_name>"

 version 1.0

 member vlan <managed_network_vlan>

 controller-id <controller_instance_id> [secure]

 flow-location hardware-only

 enable

 exit

 enable

 exit

 exit

If the ODL instance is secured with TLS, the secure option must be set when configuring the
controller ID for the instance.

Following these commands, the general status of the OpenFlow instance can be monitored
with show openflow, while the details of the instance can be checked with show openflow instance
<instance_name>.

To allow communication between the switch and the Trust Monitor, SNMP has to be enabled.
To enable SNMPv3, type:

config term

 snmpv3 enable

Then follow the on-screen instructions. Once finished, type:

snmpv3 user <username> auth sha <auth_password> priv aes <priv_password>

snmpv3 group managerpriv user <username> sec-model ver3

This sets the user passwords and encryption algorithms, and it also assigns the user to the
manager/privacy group.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
27

6. INSTALLATION GUIDES

6.1. Open Source status

The WP3 components are available at the SHIELD organization’s public repository in GitHub
[10]. All of them (contained in the repositories “trust-monitor”, “store”, “nfvo” and “vnsfs”) are
shipped under the Apache 2.0 license. Sources are tagged for specific versions.

The Trust Monitor’s, the vNSF Store and the vNSF Orchestrator contents are located at the
repositories named “trust-monitor”, “store” and “nfvo” under the SHIELD organization with the
link provided above. The contents of all these repositories are protected under the Apache 2.0
license and provide the source code of their component, the installation and deployment
scripts and the documentation on how to deploy (manual or automated/Docker compose-
based), to configure and on the definition of their northbound APIs.

On the other hand, the vNSF repository, located The vNSF Store’s contents are located at the
“vnsfs” repository under the same organization. This repository provides all the data required
to create the NFVO-specific (OSM) packages and to wrap them for SHIELD (using the SHIELD
packages). Typically, a NS and their vNSFs are expected to provide the following: the NS and
vNSF descriptor (with the definition of the required metadata for the NFVO), optionally the Juju
charm (for configuration through the NFVO), the SHIELD security manifest (for attestation
purposes), the source code for the vNSF(s) and finally, the documentation on the deployment
and verification for each NS, the links per interface for each vNSF and the physical requirements
expected to run the NS.

We provide below the details on how each component is installed and configured.

6.2. Trust Monitor

The Trust Monitor component is deployed as a multi-container application which leverages the
Docker Compose tool [11]. In order to install the application, the target environment should
have both the Docker Container Engine and Docker Compose installed.

The component requires configuring the following:

 TLS encryption key/certificate for the web APIs;
 Whitelist database with reference measurements of the NFVI platform nodes;
 Different API connectors to integrate with other SHIELD components, namely vNSFO

and vNSF Store (as well as Dashboard and DARE);
 Different attestation drivers to verify the integrity of different NFVI elements (compute

hosts, switches).
Installation of dependencies, setup of the different sub-components and deployment of the
full-fledged Trust Monitor application require minimal interaction of the user thanks to the
automation of the whole process via the Docker Compose tool.

From the network perspective, the Trust Monitor requires network access to the NFVI
(compute nodes and switches, as they are the target of attestation) and to the other SHIELD
components (for proper integration in the platform).

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
28

6.3. vNSF Store

The vNSF Store component is deployed as a multi-container application using the Docker
Compose tool. Hence, the only application requirements are Docker (17.06.0 or later) and
Docker Compose (3.0 or later).
The setup and execution of the vNSF Store can be performed using the script “run.sh”:

./run --environment .env.production --verbose

When the vNSF Store is run for the first time the DB must be initialized using the following:

docker exec docker_store-persistence_1 bash -c

"/usr/share/dev/store/docker/setup-datastore.sh --environment

/usr/share/dev/store/docker/.env.production"

The vNSF Store can be executed under different configuration environments. In the example
above it is provided the default environment for production (“.env.production” file) however,
different environments can be created or modified to meet the needed requirements.

6.4. vNSF Orchestrator

The vNSFO component is deployed using Docker Compose to run different containers (e.g., one
for the vNSFO API, another for the Mongo database). Before deploying it, the target
environment will be required to install the Docker Container Engine, the Docker Compose and
other libraries.
The component requires configuring the following:

 TLS encryption key/certificate for the web APIs;
 Definition of path and behaviour for isolation scripts;
 Different API connectors to integrate with other SHIELD components, namely with the

NFVO northbound API and address for subcomponents, the DB and the TM.
The generation of the certificate, the installation of dependencies and the setup of the different
sub-components is performed automatically for the most part through the provided scripts.
From the network perspective, the vNSFO must be connected to the management network
where the NSs are deployed (in order to configure their vNSFs) and reachable by all other
SHIELD components interacting with it (i.e., the vNSF Store and TM, and also the Dashboard).

6.5. NSs and vNSFs

6.5.1. DPI

The version of DPI used in Y2 was implemented with PF_RING (a set of library drivers and kernel
modules, which enable high-throughput packet capture and sampling).

The installation of the DPI components requires 2 virtual processors and is deployed in 40GB
storage/4GB memory flavour. Traffic redirection is performed via the NFVI. The vDPI is
configured to accept incoming traffic and outputs captures to the DARE for further analysis via

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
29

the integrated collectors. The required tools (PF-ring, DPI dashboard) and their dependencies
(Git, Go, Beego, InfluxDB and Grafana) were installed via scripts, and are now bundled in a pre-
installed image with the modules.

NFVI infrastructure side requirements:

 Network requirements: the management interface has to be attached to a link which
grants the connection between the vNSFO and NFVO (OSM), the DARE (Spot) and the
vNSF instance itself.

 Traffic requirements: the other two data interfaces must be used for the incoming and
outgoing traffic flows. The strategy used to steer the traffic outside the vNSF depends
completely on the NFVI infrastructure (e.g. SDN controller, etc.).

6.5.2. Forward L7 Filter

The Forward L7 Filter is implemented mainly using two web application-oriented technologies:
Apache HTTP Server (HTTPD) and ModSecurity as detailed in D3.2. Regarding the installation
and configuration process we can refer to the L3 Filter, which uses basically the same
technologies. It all starts from a clean Ubuntu cloud image (16.04 LTS version) on which two
main configuration steps are performed and summarized as follows:

 Day-0 configuration: at this stage, typically at the boot of an instance, every software-
based requirement is installed through the cloud-init technology (e.g. Apache Server,
ModSecurity) and initial configurations of vNSF (e.g. policy translation GO module). All
this process is automatically performed, requiring no manual intervention.

 Day-1 configuration: after all the requirements are satisfied, we have a second stage of
configuration, in which the element management (the juju charm) performs a critical
role. At this stage we can configure and reconfigure every time, during the vNSF
instance life-cycle, the set of rules enforced by the L7 filter. This process, as we said, is
performed using a juju charm which is in charge of performing the following actions on
an L7 Filter instance:

o set-policies: push a new set of rules on the L7 filter and enforce them;
o get-policies: return a set of rules enforced at the moment;
o delete-policy: delete a specific rule in the set of the enforced rules;
o delete-policies: delete all the rules at the moment enforced on the L7 filter.

Both the Day-0 and Day-1 configurations, included the juju charm installation, are performed
automatically by the NFVO, requiring no other manual intervention or further configurations.
After the installation of an L3 filter instance and its first configuration, we will be able to re-
configure it, as we mentioned above, during all the vNSF life-cycle.

In order to deploy properly an L7 Filter instance, we need some requirements on the NFVI
infrastructure side as well:

 Network requirements: since we have three different network interfaces, the NFVI
infrastructure is in charge to attach properly the virtual links on each one of them. In
particular, the management interface has to be attached to a link which grants the
connection between the NFVO (OSM) and the vNSF instance itself.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
30

 Traffic steering requirements: for what concerns the other two interfaces, they must be
used for the incoming and outgoing traffic flows. The strategy used to steer the traffic
outside the vNSF depends on the NFVI infrastructure (e.g. SDN controller, etc.).

6.5.3. HTTPS Analyzer

The process of installation is described in detail on its GitHub SHIELD public repository [12]. The
process requires a standard Ubuntu 16.04LTS distro with 4GB of memory (8GB recommended)
and 10GB hard disk (20GB recommended):

 Prerequisites: install related applications: softflowd, spot-nfdump, d-collector and tstat.
 Configure each of the components, including the interface that receives a copy of the

client traffic and the DARE connectivity.
 Download and clone to the server the code available in the repository.
 Create a system init services to be used by the vNSFO API.

Alternatively, the https-analyzer vNSF is packetized in an image.

The NS has two physical interfaces: i) the management interface to transport all logic interfaces
and APIs to interact with vNSFO and DARE, and the ii) data plane interface where the client
traffic is captured.

The deployment process (onboarding & instantiation) for the vNSFs are described [13] in a
standard way and provided in the “vnsfs” repository.

After instantiating, enforcing the security policies through vNSFO (juju charm) will allow to:

 start-softflowd: starts Softflowd - NetFlow network traffic analyzer.
 stop-softflowd: stops Softflowd - NetFlow network traffic analyzer.
 restart-softflowd: restarts Softflowd - NetFlow network traffic analyzer.
 start-analyzer: starts the HTTPS analyzer.
 stop-analyzer: stops the HTTPS analyzer.
 restart-analyzer: restarts the HTTPS analyzer.
 forensic-mode: changes tstat to real-time mode. It records one entry flow per

completed transaction.
 realtime-mode: changes tstat to real-time mode. It records multiple entry flows per

only one transaction.
 change-network: changes the path where the trained network for machine learning is

placed.

NFVI infrastructure side requirements:
 Network requirements: the management interface has to be attached to a link which

grants the connection between the vNSFO and NFVO (OSM), the DARE (Spot) and the
vNSF instance itself.

 Traffic requirements: the dataplane interface must be used to receive a copy of the user
traffic. The strategy used to copy the user traffic depends on the network infrastructure.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
31

6.5.4. IDS

A base image of CentOs 7.0 was used for the installation of the IDS vNSF. The following
installations were made on top of it:

 Snort IDS
 The public v2.9.12 Snort version was set up according to the Snort documentation.

 Rule Configuration service
snort_configuration_api repository was checked out in the CentOs 7.0 server.

 Event Publisher service
snort_data_exporter repository was checked out in the CentOs 7.0 server.

 CentOs services
Five services were installed for automate execution of the above tools during start-up:

 snort.service
 snort_data_exporter.service
 snort_data_exporter.timer
 snort_rules_api.service
 snort_u2json.service

Barnyard2, PulledPork and Snorby services (originally in the CHARISMA’s vIDS vNSF image) were
removed, as they were not required in the frame of SHIELD.

6.5.5. L23 Filter

Open vSwitch v2.9.0 was installed on a CentOs 7.0 base machine. Installation was according
to the publicly available documentation for OVS. On top of it, the following installations were
made:

 Rule Configuration service
fw_configuration_api repository was checked out and configured to run as a service.

 Event Publisher service
fw_data_exporter repository was checked out and configured to run as a service.

6.5.6. L3 Filter

The L3 Filter is implemented mainly using iptables, ebtables and the br_netfilter kernel module
for the filtering functionalities. The traffic steering between the ingress and egress interfaces is
enabled creating a Linux bridge between them. Almost all other configurations are performed
using Python as scripting language. From these premises we can describe in the following steps
the installation and configuration processes. It all starts from a clean Ubuntu cloud image
(16.04 LTS version) on which are performed two main configuration steps summarised as
follows:

 Day-0 configuration: typically at the boot of an instance, every software requirement
(e.g. iptables, bridge-utils) is installed through cloud-init technology and initial
configurations of vNSF (e.g. policy translation python module) take place. This process
is automatically performed by cloud-init, requiring no manual intervention.

 Day-1 configuration: after all the requirements are satisfied, we have a second stage of
configuration, in which the element management (the juju charm) performs a critical

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
32

role. At this stage we can configure and reconfigure every time, during the vNSF
instance life-cycle, the set of rules enforced by the L3 filter. This process, as we said, is
performed using a juju charm which is in charge of performing the following actions on
an L3 Filter instance:

o set-policies: push a new set of rules on the L3 filter and enforce them;
o get-policies: return a set of rules enforced at the moment;
o delete-policy: delete a specific rule in the set of the enforced rules;
o delete-policies: delete all the rules at the moment enforced on the L3 filter.

Both the Day-0 and Day-1 configurations, included the juju charm installation, are performed
automatically by the NFVO, requiring no other manual intervention or further configurations.
After the installation of an L3 Filter instance and its first configuration, we will be able to re-
configure it, as we mentioned above, during all the vNSF life-cycle.

In order to deploy properly an L3 Filter instance, we need some requirements on the NFVI
infrastructure side as well:

 Network requirements: since we have three different network interfaces, the NFVI
infrastructure is in charge of attaching properly the virtual links on each one of them. In
particular, the management interface has to be attached to a link which grants the
connection between the vNSFO and NFVO (OSM) and the vNSF instance itself.

 Traffic steering requirements: the other two interfaces must be used for the incoming
and outgoing traffic flows. The strategy used to steer the traffic outside the vNSF
depends completely on the NFVI infrastructure (e.g. SDN controller, etc.). After the
latest changes on L3 Filter, this NS became totally transparent to the way we perform
this task.

6.5.7. Proxy TLS

The process of installation is described in detail on the GitHub SHIELD public repository [14].
The process requires a standard Ubuntu 16.04LTS distro with 4GB of memory (8GB
recommended) and 10GB hard disk (20GB recommended):

 Prerequisites: install procedure from SECURED PSA re-encrypt.
 Configure each of the components, including the interface that receive a copy of the

client traffic and the DARE connectivity.
 Download and clone to the server the code available in the repository.
 Create a system init service to be used by the vNSFO API.

Alternatively, the Proxy TLS vNSF is packetized in an image.

It has three interfaces: i) management interface to transport all logic interfaces and APIs to
interact with vNSFO and DARE, ii) client side data plane interface where the client traffic is
received, and iii) Internet gateway interface.

The deployment process (onboarding & instantiation) for the vNSFs are described [15] in a
standard way and provided in the “vnsfs” repository.

After instantiating, enforcing the security policies through vNSFO (juju charm) will allow to:

 get-policies: get the MSPL policies (GET).

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
33

 set-policies: set the MSPL policies. Non-empty fields are allowed (POST).
 delete-policy: delete a specific MSPL policy (POST).
 delete-policies: delete all MSPL policies (GET).
 add-url: adds any number of URLs to the alert/monitor list (POST).
 delete-url: deletes any number of URLs in alert/monitor list (POST).
 start: starts the man in the middle proxy (start_demo.sh) (GET).
 stop: stops the man in the middle proxy (GET).

The requirements on the NFVI infrastructure side are as follows:

 Network requirements: The management interface has to be attached to a link which
grants the connection between the vNSFO and NFVO (OSM), DARE (Spot) and the vNSF
instance itself.

 Traffic requirements: The other two interfaces must be used for the incoming (client
side) and outgoing (network side) traffic flows. All HTTPS client traffic has to be
redirected to the Proxy TLS. The strategy used to redirect the user traffic depends
completely on the NFVI infrastructure (policy routing, SFC, etc.).

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
34

7. CONCLUSIONS

7.1. Status of vNSF ecosystem

This document presents the final version of the technical details of the vNSF environment. The
document starts describing the final view of the architecture and description of the capabilities
per component (in the “functional layout”) as well as the updates from the last deliverable in
WP3 (D3.2). This is done in order to provide concise documentation on these components,
based on previous provided information.

After this we provide the final mapping of requirements and how each component fulfils them.
That covers platform functional and non-functional requirements, as well as service functional
and ethical compliance requirements. The installation and configuration guides are provided to
give a high-level view on how to deploy the SHIELD platform from scratch, by following these
steps -- related both to the environment and 3rd party tools required for the platform, but also
to the deployment and configuration for the WP3 components described above. Concluding, it
can be stated that all components of the vNSF environment have been developed, fulfilling all
mandatory requirements, as listed in D2.2. All modules are available as open-source under the
project’s GitHub organisation account.

7.2. Future work

The work of all WP3 tasks (i.e., mostly on the development side) concludes with the delivery of
this report. The integration and assessment procedures of the WP3-based components with
the rest of components in the SHIELD platform will continue until the end of WP5 and the
termination of the project itself. The results of the WP3 activities will be provided in the final,
upcoming demonstrations; and may be advertised and exposed through dissemination efforts
like events (Winter School) and papers.

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
35

REFERENCES

[1] “OSM release TWO,” [Online]. Available:
https://osm.etsi.org/wikipub/index.php/OSM_Release_TWO. [Accessed November 2018].

[2] “OSM release FOUR,” [Online]. Available:
https://osm.etsi.org/wikipub/index.php/OSM_Release_FOUR. [Accessed November 2018].

[3] “Red Hat OpenStack,” [Online]. Available: https://www.rdoproject.org. [Accessed November
2018].

[4] “OpenStack RDO installation for Ocata on CentOS,” [Online]. Available:
https://docs.openstack.org/ocata/install/rdo-services.html. [Accessed November 2018].

[5] “OpenStack Ansible installation guide for Ocata,” [Online]. Available:
https://docs.openstack.org/openstack-ansible/ocata/. [Accessed November 2018].

[6] “Open Attestation framework,” [Online]. Available:
https://github.com/OpenAttestation/OpenAttestation. [Accessed November 2018].

[7] “Getting Docker Community Edition for CentOS,” [Online]. Available:
https://docs.docker.com/install/linux/docker-ce/centos/. [Accessed November 2018].

[8] “VIM-emu component,” [Online]. Available:
https://osm.etsi.org/wikipub/index.php/VIM_emulator. [Accessed November 2018].

[9] “OpenSSL Certificate Authority,” [Online]. Available: https://jamielinux.com/docs/openssl-
certificate-authority/. [Accessed November 2018].

[10] “SHIELD organisation in GitHub,” [Online]. Available: https://github.com/shield-h2020. [Accessed
November 2018].

[11] “Docker Compose,” [Online]. Available: https://docs.docker.com/compose. [Accessed November
2018].

[12] “HTTPS Analyzer in SHIELD,” [Online]. Available: https://github.com/shield-
h2020/vnsfs/tree/master/src/vnf/httpsanalyzer. [Accessed November 2018].

[13] “HTTPS Analyzer’s deployment in SHIELD,” [Online]. Available: https://github.com/shield-
h2020/vnsfs/blob/master/doc/ns/httpsanalyzer/deployment.md. [Accessed November 2018].

[14] “ProxyTLS NS in SHIELD,” [Online]. Available: https://github.com/shield-

h2020/vnsfs/tree/master/src/vnf/proxytls/star. [Accessed November 2018].

[15] “ProxyTLS NS deployment in SHIELD,” [Online]. Available: https://github.com/shield-
h2020/vnsfs/blob/master/doc/ns/proxytls/deployment.md. [Accessed November 2018].

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
36

LIST OF FIGURES

Figure 1: High-level architecture of SHIELD, with components per WP. 7

Figure 2: DPI architecture. .. 11

Figure 3: L3Filter architecture. ... 14

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
37

LIST OF TABLES

Table 1: Functional and non-functional requirements for vNSF-related components. 16

Table 2: Functional and non-functional requirements for NSs and vNSFs. 17

Table 3: Ethical requirements for vNSF-related components. .. 41

Table 4: Ethical requirements for NSs and vNSFs. ... 41

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
38

LIST OF ACRONYMS

Acronym Meaning

ACL Access Control List

AiO All-in-One

API Application Programming Interface

DB Database

C&C Command and Control

CA Certification Authority

CSR Certificate Signing Request

DARE Data Analysis and Remediation Engine

DoS Denial of Service

DPI Deep Packet Inspection

EM Element Management

ERC Ethical and Regulatory Compliance (requirements)

ESXi Elastic Sky X

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

IMA Integrity Measurement Architecture

IP Internet Protocol

IPS Intrusion Prevention System

ISP Internet Service Provider

JKS Java Key Store

JSON JavaScript Object Notation

LXC LinuX Containers

MAC Media Access Control

ML Machine Learning

MSPL Medium-level Security Policy Language

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
39

NF Non-functional (requirements)

NFV Network Function Virtualisation

NFVI NFV Infrastructure

NFVO NFV Orchestrator

NS Network Service

ODL Open Day Light

OAT Open Attestation

OSI Open Systems Interconnection

OSM Open Source MANO

OVS Open vSwitch

PF Platform Functional

PFR PF Requirement

PoP Point of Presence

PSA Personal Security Application

RDO Red Hat OpenStack

REST REpresentational State Transfer

SDN Software-Defined Networking

SF Service Functional (requirements)

SFC Service Function Chaining

SMB Server Message Block

SNMP Simple Network Management Protocol

SO Service Orchestrator

SPI Stateful Packet Inspection

TC Trusted Computing

TLS Transport Layer Security

TM Trust Monitor

TPM Trusted Platform Module

TSTAT TCP STatistic and Analysis Tool

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
40

VIM Virtual Infrastructure Manager

VLAN Virtual Local Area Network

VxLAN Virtual Extended Local Area Network

VM Virtual Machine

VNF Virtual Network Function

VNFC VNF Component

vNSF Virtual Network Security Function

VNFC vNSF Component

vNSFM vNSF Manager

vNSFO vNSF Orchestrator

VPN Virtual Private Network

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
41

ANNEX A. REGULATORY COMPLIANCE

D3.2 provides an overview of the EU regulatory ecosystem that affects SDN/NFV adoption such
as GDPR, ePrivacy, net neutrality etc. A set of regulatory compliance specifications was created,
for each WP3 component that parses personal data in any form. D2.3 also provides compliance
requirements. This Annex updates the mapping of Requirements to the individual components.

vNSF-related components

The following table is updated from the tables with the Ethical and Regulatory Compliance
(ERC) requirements in D3.2.

Table 3: Ethical requirements for vNSF-related components.

Components Requirements Justification

vNSF Store - No ERC requirements were identified for this component.

vNSF
Orchestrator

- No ERC requirements were identified for this component.

Trust Monitor ERC07 The TM sends a notification to the SHIELD client user if it
detects a breach in a SHIELD NS. The TM sends a notification
to the SHIELD administrator user if it detects a breach in a
SHIELD NFVI node.

NSs and vNSFs

The following table is updated from that in D3.2 (table 20).

Table 4: Ethical requirements for NSs and vNSFs.

Components Requirements Justification

DPI ERC01, ERC02,
ERC03, ERC06

The DPI NS does not retain network traffic thus it does
not provide an interface to erase it. Information on its
regulatory compliance (the specifications) is provided
on its graphical user interface. The DPI does not throttle
network traffic. The DPI has the capability to share
network data with the DARE.

Forward L7
Filter

ERC01, ERC02,
ERC05

Since D3.2, there have not been substantial changes.
The NS does not retain personal data and does not
allow data to be modified or erased. The NS does not

SHIELD D3.3 • vNSF framework ready for experiments

© SHIELD Consortium
42

change public IP addresses or encrypts traffic, hence it
does not require to integrate a LI system.

HTTPS
Analyzer

ERC01, ERC02,
ERC03, ERC04,
ERC06, ERC08,
ERC11, ERC12

No personal data is retained to be portable, modified
or erased in this NS.
The classification is done by a automate process to
assign a label, based in machine learning techniques,
not modification or alteration is done in the labeling or
in the traffic to bias the process. The process is design
to use only Layer 3-4, data therefore no payload is
analyzed. This is a clear effort to preserve the user
privacy on the communication content in the vNSF
design.

IDS ERC01, ERC02,
ERC03

The IDS NS does not retain personal data (e.g. network
traffic) thus it does not provide an interface to erase it.
The only information retained are the user-defined
rules for alerting which are stored in a specific file of
the operating system and also in a database. A REST API
is provided and can be used by the tenant for CRUD
operations on the IDS rules and the ability to
completely remove and also re-generate the database
with the same information. The IDS vNSF does not
throttle network traffic and has the capability to share
alert information with the DARE.

L23 Filter ERC01, ERC02,
ERC05, ERC09

Since D3.2 there have not been substantial changes.
The NS does not retain personal data and does not
allow data to be modified or erased. Its vNSF does not
change public IP addresses or encrypts traffic, hence it
does not require to integrate a LI system.

L3 Filter ERC01, ERC02,
ERC05, ERC09

Since D3.2 there have not been substantial changes.
The NS does not retain personal data and does not
allow data to be modified or erased. The NS does not
change public IP addresses or encrypts traffic, hence it
does not require to integrate a LI system.

Proxy TLS ERC01, ERC02,
ERC03, ERC04,
ERC06, ETC08

No personal data is retained to be portable, modified
or erased in the NS. The classification between
malicious or benign traffic is done based on known
blacklist or provided by the ISP; whilst traffic filtering is
based on security reasons.

