
SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
1

Deliverable D3.2

Updated specifications, design and
architecture for the vNSF ecosystem

Editor O. Ε. Segou (ORION)

Contributors G. Gardikis (SPH), C. Xilouris, D. Christinakis (ORION), C.
Fernandez, B. Gaston (i2Cat), E. Trouva, I. Aggelopoulos, A.
Kourtis (NCSRD), L. Jacquin, H. Attak (HPELB), M. De
Benedictis, A. Lioy (POLITO), F. Ferreira, R. Preto

(Ubiwhere), A. A. Pastor, J. N. Mendoza (TID).

Version 1.0

Date March 31th, 2018

Distribution PUBLIC (PU)

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
2

Executive Summary

Following the work done in D2.1/D2.2, where the requirements of the SHIELD platform were
elicited and the high-level design and architecture of the platform was exposed, a detailed
study of the different components has been done in order to obtain the low-level architecture
and design (subcomponent granularity), the specifications (transformation of the user
requirements into technical requirements/specifications) and the implementation guide
(technologies to use). This work has been divided into the two technical development work
packages of SHIELD namely WP3 and WP4. Deliverable D3.1 “Specifications, design and
architecture of the vNSF ecosystem” presented the first draft of the specifications and design
of the components developed in WP3, namely:
i) the vNSF Store, which holds a registry of NS and vNSF-related information;
ii) the vNSF Orchestrator, which deploys and manages the lifecycle of the NSs and vNSFs;
iii) the monitoring vNSFs, which produce the information to detect the threats;
iv) the remediation vNSFs, which actuate and mitigate detected threats, and
v) the Trust Monitor, which verifies that both NSs and vNSFs, as well as other nodes from

the infrastructure, are trusted at all times.
SHIELD’s engineering process is based on two iterations of the requirements elicitation. The
final specifications and design of these components is herein provided, based on the
preliminary work in D3.1 and the updated requirements in D2.2. This work concludes the
transformation of requirements into a high-level design and architecture, that later evolve to
technical specifications. It also includes a list of legal and ethical compliance specifications,
which serve to provide the user with the available information on each component. The
requirements identified in D2.2 were categorised into:

• platform functional (PF) requirements, that detail the functionalities required by the
platform,

• platform non-functional (NF) requirements, that detail the performance, ease of use and
security of the platform

• service functional (SF) requirements, that describe the functionalities of the cybersecurity
Network Services that the platform deploys

• ethical and regulatory compliance (ERC) requirements that focus on maintaining the
platform’s alignment with the EU regulatory landscape.

Based on these requirements, SHIELD herein defines the vNSF architecture blueprints, in which
the common elements of a vNSF are defined and the available interfaces are depicted. It also
defines how a Network Service (NS) is built from one or more vNSFs and how control and
configuration is ensured. Both the architecture and the interfaces presented for vNSF comply
with the ETSI NFV group recommendations and specifications [1].
SHIELD bases its developments on open source tools and evolves research results from
previous projects, such as SONATA [2], the ETSI-supported OSM project [3], and the SECURED
[4] project, for instance reusing the Third-party Verifier based on Open Attestation v1.7 [5], the
Whitelist Database based on Apache Cassandra 2 [6] and the SDN-enabled switch attestation
prototype [7]. The current document aims to bring these specifications together and highlight
the organic links between components.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
3

Table of Contents

1. INTRODUCTION ...6

1.1. SHIELD project overview .. 6

1.2. Scope of this document ... 9

1.3. Organisation of this document .. 9

2. DESIGN AND ARCHITECTURE ... 10

2.1. Guiding Principles ... 10

2.2. Security network functions and services .. 11

2.2.1. General vNSF architecture ... 11

2.2.1.1. vNSF interfaces .. 12

2.2.1.2. vNSF common elements ... 13

2.2.1.3. vNSF Descriptor (vNSFD) and NS Descriptor (NSD) ... 15

2.2.2. SHIELD NSs .. 15

2.2.2.1. Monitoring NSs .. 15

2.2.2.2. Remediation NSs .. 16

2.2.2.3. List of NSs ... 16

2.2.2.4. Functionality mapping ... 23

2.3. Store .. 24

2.3.1. Subcomponents .. 25

2.3.2. General workflow.. 26

2.3.3. Internal operation ... 27

2.3.4. Interactions with other components ... 27

2.4. Orchestrator ... 27

2.4.1. Subcomponents .. 28

2.4.2. General workflow.. 29

2.4.3. Internal operation ... 30

2.4.4. Interactions with other components ... 30

2.4.5. Comparison with I2NSF .. 30

2.5. Trust Monitor ... 31

2.5.1. Subcomponents .. 32

2.5.2. General workflow.. 33

2.5.3. Internal operation ... 34

2.5.4. Interaction with other components... 34

3. SPECIFICATIONS AND IMPLEMENTATION .. 35

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
4

3.1. Security network functions and services .. 35

3.1.1. Virtual Intrusion Detection System (vIDS) ... 35

3.1.1.1. Implementation details ... 35

3.1.1.2. Requirements mapping ... 37

3.1.2. Virtual Deep Packet Inspection (vDPI) ... 37

3.1.2.1. Implementation details ... 37

3.1.2.2. Requirements mapping ... 38

3.1.3. ProxyTLS .. 39

3.1.3.1. Implementation details ... 39

3.1.3.2. Requirements mapping ... 40

3.1.4. HTTP/S Analyser .. 40

3.1.4.1. Implementation details ... 40

3.1.4.2. Requirements mapping ... 41

3.1.5. L3 Filter .. 42

3.1.5.1. Implementation details ... 42

3.1.5.2. Requirements mapping ... 42

3.1.6. Forward L7 Filter ... 43

3.1.6.1. Implementation details ... 43

3.1.6.2. Requirements mapping ... 44

3.2. Store .. 44

3.2.1. Specifications .. 45

3.2.2. Implementation details .. 47

3.2.3. Requirements mapping .. 47

3.3. Orchestrator ... 49

3.3.1. Specifications .. 49

3.3.2. Implementation details .. 51

3.3.3. Requirements mapping .. 52

3.4. Trust monitor.. 53

3.4.1. Specifications .. 53

3.4.2. Implementation details .. 54

3.4.3. Requirements mapping .. 55

4. REGULATORY COMPLIANCE SPECIFICATIONS ... 57

4.1. EU regulatory framework .. 57

4.1.1. Analysis of EU regulatory landscape .. 57

4.1.2. Basic assumptions on the stakeholder roles and obligations 63

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
5

4.2. Best practices ... 65

4.3. Regulatory compliance specifications ... 68

4.3.1. vNSF Compliance Specifications... 71

4.3.2. Integrating specifications in the Store ... 83

4.4. Compliance and GDPR Certification .. 84

5. VALIDATION AND TECHNICAL CERTIFICATION .. 86

5.1. Technical certification of vNSFs ... 86

5.2. Integration and validation tests .. 89

5.3. Requirements for carrier-grade performance .. 90

5.4. Evolution of a service marketplace ... 91

6. CONCLUSIONS... 95

6.1. Status of vNSF ecosystem .. 95

6.2. Future work .. 96

REFERENCES .. 97

LIST OF FIGURES.. 102

LIST OF TABLES ... 104

LIST OF ACRONYMS .. 105

ANNEX A. INTRA-COMPONENT INTERACTIONS .. 109

ANNEX B. INTER-COMPONENT INTERACTIONS ... 117

ANNEX C. TRUSTED COMPUTING TECHNOLOGIES .. 124

ANNEX D. APPLICATION PROGRAMMING INTERFACES (APIS) ... 125

ANNEX E. TECHNOLOGY SELECTION ... 128

ANNEX F: SHIELD PACKAGING ... 131

ANNEX G. TECHNICAL UPDATES AND REVISIONS .. 138

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
6

1. INTRODUCTION

1.1. SHIELD project overview

This document presents the detailed architecture, design and specifications of the components
involved in the Virtual Network Security Function (vNSF) ecosystem, within Work Package 3
(WP3). It summarises the work done in the first iteration of T3.1. This deliverable starts from
the high-level architecture, design and requirements presented in D2.1; and provides specific
details of the components’ design, definition and their adequateness regarding the SHIELD
requirements. SHIELD, as a Use-Case (UC) driven project, aims to cover the functionality
required by the following three Use Cases (defined in D2.1 and briefly repeated here for the
sake of completeness):

• Use Case 1: An Internet Service Provider (ISP) using SHIELD to secure its own
infrastructure. This UC involves the ISPs deploying vNSFs in their network to detect
security incidents and provide protection against them (Figure 1).

• Use Case 2: An ISP is leveraging SHIELD to provide advanced Security as a Service
(SecaaS) services to its customers. This UC assumes that network security services
(consisting of vNSFs), along with real-time incident detection and mitigation services,
are offered as-a-Service to ISP clients, such as enterprises, public bodies, etc. (Figure 2).

• Use Case 3: Contributing to national, European and global security. This UC assumes
that incident information is exposed, in a secure and private manner, to public
cybersecurity authorities (Figure 3).

Figure 1: High-level picture of use case 1 focusing on the ISP network.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
7

Figure 2: High-level picture of use case 2, focusing on SecaaS.

Figure 3: High-level picture of use-case 3, focusing on national, European and global security.

The high-level architecture defined in WP2 and reproduced on Figure 4 states that SHIELD
consists of 6 main components; of these, WP3 deals with the vNSF Ecosystem, the vNSF
Orchestrator (vNSFO), the Store and the Trust Monitor (TM). The other two components, the
DARE and the Security Dashboard are developed in WP4 and D4.1/D4.2 provide their
specifications.

Although the three use cases form the basis of the analysis, the resulting architecture, design,
specifications and implementation have been elaborated to produce a unified and universal
solution; i.e., a single cybersecurity solution that can be used for multiple purposes. The SHIELD
platform provides the actors in the different use cases with different views and roles on the
network. For example, while an ISP (use case 1) can view the big picture of the cybersecurity
analysis and can directly deploy NSs in any location of the network; the ISP client (use case 2)
only has access to a limited vision of the cybersecurity picture (information that is offered by
the ISP and/or paid by the client) and can request the ISP for deployment of cybersecurity
services (mapped to one or more NSs) in specific places of the network (i.e. to its gateways) in
order to protect their own services. Cybersecurity agencies (use case 3) have a country or
European-wide security view of the communication infrastructure, as well as the security
threats and incidents that take place over this infrastructure, without having access to sensitive
information that belongs to ISPs and their clients – which could reveal potential business plans
or data.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
8

Figure 4: High-level architecture of SHIELD, with components per WP.

Based on these use cases and the requirements highlighted in Deliverables D2.1 [8] and D2.2
[9], the designed high-level architecture for the SHIELD platform is articulated around different
components, illustrated in Figure 4 and described in more detail in this deliverable. From the
point of view of the vNSF environment; the vNSF Store holds a record of Network Services (NS)
and vNSF-related information and provides an endpoint to the developer for the onboarding of
such services, which are later deployed by the vNSF Orchestrator into any given infrastructure
and managed during its lifetime. Once deployed, vNSFs and NSs are verified by the Trust
Monitor on bootstrap and at runtime, along with other nodes from the infrastructure; assessing
their trustworthiness at all times. These core components, as part of WP3, are complemented
by those in WP4: i) the DARE, storing and analysing the security logs and events provided by
the running NSs and vNSFs; and ii) the Security Dashboard, presenting the results from the
DARE to the operator. Both DARE and Security Dashboard components are detailed in
deliverable D4.1 [10] and D4.2 [11] although, for the sake of providing a comprehensive
deliverable, a summary of their function will be presented here.

Monitoring vNSFs inspect captured data and provide valuable information to the DARE. The
network status is reported periodically, and all this data is centralised in the DARE. The data
analytics framework (DARE subcomponent) analyses all the heterogeneous network
information previously collected via monitoring vNSFs and the Trust monitor. It features
cognitive and analytical components capable of predicting specific vulnerabilities and attacks.
Finally, the remediation engine subcomponent of the DARE provides recommendations in the
form of new network services or medium level policies (configurations of existing VNSFs) to
remediate the detected threats. These recommendations and the attack information are
displayed through the graphical user interface provided by the Security Dashboard component,
which allows authenticated and authorized users to access SHIELD’s functionalities. Privileged
operators have also access to the deployment of specific NSs and to the monitoring information
that provides an overview of the security status. Specific authorized users will therefore be able
to visualise DARE recommendations and react through the Security Dashboard, the vNSFO by
deploying new services (NS, VNSFs) if required, or configuring the existing services (NS, VNSFs)
to mitigate the attack.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
9

1.2. Scope of this document

SHIELD dedicates WP3 (“vNSFs ecosystem”) to the technical work required towards achieving
the following key goals: (a) To develop the SHIELD Network Services (NSs) and virtual Network
Security Functions (vNSFs), along with the necessary infrastructure; (b) To develop the vNSF
orchestration and management features; (c) To evaluate the cybersecurity capabilities of the
SHIELD vNSFs and their compliance with EU regulations; (d) To develop the vNSF Store and plan
its evolution from a repository to a viable marketplace concept; and (e) To explore the trusted
computing infrastructure that attests the vNSFs and NFVI.

This document (D3.2 “Updated specifications, design and architecture of the vNSF ecosystem”)
details the final design choices regarding the vNSF and trusted computing infrastructure.
During M1-M19, SHIELD has developed its NFVI, some key NSs and vNSFs and the attestation
framework, which were first demonstrated during the Y1 review. D3.2 draws inputs from the
following deliverables:

• D2.1 “Requirements, KPIs, design and architecture” [8] defines high-level requirements
for the SHIELD platform and the overall architecture, including the KPIs to use in
evaluation phase. D2.2 “Updated requirements, KPIs, design and architecture” [9] is the
final, updated version of D2.1, which was drafted concurrently with this document.

• D3.1 “Specifications, design and architecture for the vNSF ecosystem” [12] contains the
first version of the design and specifications for the SHIELD vNSFs, Orchestrator, Store
and Trust monitor. This document builds upon D3.1 and provides the finalized
specifications and design.

• D4.1 “Specifications, design and architecture for the usable information-driven engine”
[10] contains the detailed design and specifications for SHIELD’s DARE components,
including analysis and remediation.

• D5.1 “Integration results of SHIELD HW/SW modules” [13] provides guidelines for the
integration and testing of vNSF ecosystem components.

1.3. Organisation of this document

This document is organised as follows:

• Chapter 1 (present chapter) serves as a basic introduction to this document and its
scope;

• Chapter 2 provides an overview of the design and architecture of the vNSF ecosystem.

• Chapter 3 lists the specifications and implementation details for the vNSF ecosystem.

• Chapter 4 discusses the regulatory and ethical compliance specifications for the vNSF
ecosystem and is a new addition to this document;

• Chapter 5 includes the validation guidelines for the vNSF ecosystem and discusses
certification of vNSF appliances to strengthen future exploitation;

• Chapter 6 concludes the document and lists future WP3 work;

• Annexes A through F provide further technical details regarding the implementation of
the vNSF ecosystem, and

• Annex G lists the technical updates and the history of changes from D3.1 to D3.2.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
10

2. DESIGN AND ARCHITECTURE

2.1. Guiding Principles

SHIELD acknowledges that the future exploitation and evolution of its components is reliant on
their adoption in real operational environments. This, however, hinges on the platform’s
compliance with well-known standards and with the EU regulatory framework. WP3 dedicates
effort to the implementation of an ETSI-compliant vNSF ecosystem and the management of
lifecycle of its elements and services through the Store and the vNSFO.
Network function virtualisation (NFV) technology is one of the cornerstone technologies used
within the SHIELD project and ETSI serves as one of its main standardisation drivers. The ETSI
NFV architecture is used as the starting point for SHIELD’s architecture, aiming to place SHIELD
in a position where it can contribute with these standardisation activities and align itself to the
de-facto industry standard. Thus, the software components envisioned in SHIELD’s vNSF
environment have been aligned wherever possible with the current vision of ETSI community.
This vision/architecture may be extended as needed in order to accommodate components or
features not yet considered or agreed by this standardisation body. The following figure (Figure
5) displays how SHIELD’s architecture aligns with ETSI NFV architecture [1].

Figure 5: SHIELD vNSF environment’s architecture mapped to ETSI NFV architecture.

The Store lies in the Operational and Business Support layer, whereas the vNSFO directly fits
into the role of the Orchestrator envisioned in the ETSI NFV architecture and the vNSFs also
have a direct mapping within the VNF section. The subcomponents and even modules or
elements were successfully mapped as well, e.g. the NS and vNSF information (descriptors,
records, infrastructure-related data, etc.), as well as the vNSF Manager (vNSFM) that directly
corresponds to the VNF Manager following what ETSI envisions for the mechanism used to
control the vNSFs (EMS subcomponent and so on). The only remaining component present in
SHIELD’s architecture, and in the scope of WP3, is the Trust Monitor; which performs

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
11

attestation tasks that are not contemplated in the ETSI NFV architecture and thus the
component has no direct mapping. The attestation framework implemented in SHIELD is a
necessity, since NFV adoption increases the infrastructure’s attack surface thus unveiling
potential cybersecurity concerns.
The following subsections describe the design and architecture for the SHIELD’s WP3
components, i.e. the list of vNSFs to be deployed in the network, the vNSF Store, the vNSF
Orchestrator and the Trust Monitor. This description is more detailed than its counterpart in
D2.2, as it specifically addresses low-level details such as the subcomponents within the vNSF
environment, their detailed workflows and relation between these and other components in
the SHIELD platform.
Regulatory compliance, especially in terms of the General Data Protection Regulation is also an
important aspect in the design of the vNSF ecosystem. Compliance with the EU regulatory
framework is essential, as it can enable or hinder adoption of the SHIELD platform. This aspect
is further analysed in Section 4.

2.2. Security network functions and services

The NFV concept achieves, through virtualisation, the reduction of the capital expenditures
incurred by common specialised hardware devices and provides a broad spectrum of network
functionalities that are deployed on top of common hardware. The Network Services (NSs) and
the Virtual Network Security Functions (vNSFs) they contain can be moved, restarted or erased
rapidly, up to the order of seconds. vNSFs implement common network functions such as
gateways, proxies, firewalls and transcoders, traditionally carried out by specialised hardware
devices and deployed on top of commodity IT infrastructure. The focus within SHIELD is on the
development of VNFs implementing security services and functions (hereinafter called NSs and
vNSFs). To ease their management, the developed vNSFs will conform to the ETSI NFV group
recommendations. The following subsections contain a general architecture to be followed by
the SHIELD vNSFs.

2.2.1. General vNSF architecture

Each vNSF is composed by one or more VNF Components (VNFCs) that are interconnected
through Virtual Network Links (VLs). The security services offered in SHIELD will consist of one
or more vNSFs. These NSs will be dynamically deployed to identify and mitigate security attacks,
threatening conditions or anomalous behaviours. The vNSFO will be responsible for the
orchestration of the vNSFs into services and the deployment, management and configuration
of the resulting end-to-end network services. An example of a network service (NS) that
consists of three different vNSFs (VNF1, VNF2 and VNF3) connected through virtual links is
shown in Figure 6. As depicted, VNF2 is composed by three VNFCs connected through virtual
links that are internal to the VNF.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
12

Figure 6: Network Service example.

2.2.1.1. vNSF interfaces

According to ETSI NFV specifications [1], there are five types of interfaces identified relevant to
a VNF. As illustrated in Figure 7:

• SWA-1 interface: This interface enables communication between various network
functions within the same or different network services. The SWA-1 interface can be
established between two VNFs, a VNF and a Physical Network Function (PNF), or
between a VNF and an End Point. A VNF may support more than one SWA-1 interface.

• SWA-2 interface: This interface refers to VNF internal interfaces, for the communication
between the different VNFCs of a VNF, i.e. for VNFC to VNFC communication. The type
of information exchanged through this interface depends on the function of the VNF.

• SWA-3 interface: This interface interconnects the VNF with the NFV management and
orchestration layer specifically with the VNF Manager (VNFM). Through this interface
the lifecycle management of the VNF is performed (e.g. instantiation, termination,
scaling, etc.). The SWA-3 interface corresponds to the Ve-Vnfm reference point.

• SWA-4 interface: This interface is used by the Elemental Management (EM) to
communicate with a VNF. It is a management interface used for the runtime
management of the VNF to perform functions related to Fulfilment, Assurance, and
Billing (FAB) as well as Fault, Configuration, Accounting, Performance and Security
(FCAPS). This interface will cover also the NSF-facing interface’s functionality defined in
the IETF I2NSF standard, within the task for defining policy recommendations.

• SWA-5 interface: The SWA-5 interface links the VNF with the NFVI and corresponds to
the Vn-Nf reference point. This interface provides access to a virtualised slice of the
NFVI resources allocated to the VNF, i.e. to all the virtual compute, storage and network
resources allocated to the VNF depending on the VNF type and its special requirements
for resources.

As the SHIELD framework is compliant with the ETSI MANO specifications, the SHIELD vNSFs
will support these interfaces.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
13

Figure 7: Types of VNF interfaces.

2.2.1.2. vNSF common elements

The internal structure of a SHIELD vNSF is illustrated in Figure 8. Although the internal
implementation of a vNSF concerning its functionality (vNSF functionality) is to be decided by
each vNSF developer, there are some common elements that vNSFs should have to be
compatible with the SHIELD framework. Specifically, these elements are:

• The vNSF controller is the internal element devoted to the support of the vNSF lifecycle
through the vNSFM. The interaction between the vNSFM and the vNSF takes place
through the SWA-3 interface.

• The init configuration element is responsible for the initialisation of the vNSF that
happens at the beginning of the vNSF execution. This is an optional component that is
present when an initial configuration should take place on the vNSF before its
execution.

• The data collector element is the component responsible for gathering the output data
from the vNSF. The format of the output data follows a low-level application-dependent
format.

• The data transformation element, whose role is to transform the output data of the
vNSF from a low level, application-dependent format (Data Collector) to a high-level
format that is understandable by DARE.

• The configuration listener, an element responsible to listen for new policy
configurations recommended by the Remediation Engine of DARE and injected by the
vNSFO into the vNSF.

• The policy transformation element, whose role is to transform the high-level format
rules recommended by the Remediation Engine of DARE (policies) to low-level,
application-dependent format rules that can be enforced to the vNSFs. This element
will be part of each vNSF on which policy enforcement is expected to take place.

• The streaming service is the element responsible for transmitting application-level
monitoring data, such as security logs or alerts produced by the vNSF, to the Streaming
Service located at the DARE.

• The vNSF Functionality element represents the functionality performed by the vNSF.

It is important to note that the above elements are not what is typically referred to as vNFCs in
ETSI terminology (or VNFCs in SHIELD). It is possible that all the above elements reside in a

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
14

single VNFC. Additionally, apart from the vNSF Controller that allows the lifecycle management
of each vNSF, none of the other described elements are mandatory for all vNSFs. The presence
of the other components listed above is dependent of the type of each developed vNSF. The
data collector, the data transformation and the streaming service will be present in all vNSFs
that produce some output, which will be used by the Data Analytics Engine of DARE for the
identification of security incidents and threats. Similarly, the policy transformation and the
configuration listener will be present in all vNSFs that permit some application-level
configuration for security purposes (threat identification or mitigation) through the Security
Orchestrator.

Figure 8: Internal structure of a SHIELD vNSF.

Figure 9 depicts the internal elements of a vNSF comprised of two VNFCs. In the case of having
a vNSF comprised of more than one VNFCs, the vNSF Controller element will be present in one
of the available VNFCs. Additionally, the vNSF Functionality element will be present in all VNFCs
composing the vNSF. The remaining elements of the common vNSF architecture can be freely
allocated in the different VNFCs, again taking into account the type and function of the vNSF
(vNSF that provides output, vNSF that accepts configuration, etc.). In the specific example
illustrated in Figure 9, the data collector, the LH data transformation and the streaming service
components reside in the second VNFC (vNSF-C2).

Figure 9: Internal elements of a vNSF composed by two VNFCs.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
15

2.2.1.3. vNSF Descriptor (vNSFD) and NS Descriptor (NSD)

Each vNSF, as any VNF, has an associated descriptor document; whose role is to instruct the
vNSFO on how to deploy and configure it, and how it should be connected to other virtual
functions. This descriptor document, usually referred as VNF Descriptor (VNFD) is a deployment
template which describes a VNF (or vNSF, in SHIELD) in terms of deployment and operational
behaviour requirements. Information typically detailed in the VNFD contains deployment
instructions, scaling policies, configuration information and monitoring parameters related to
the function of the vNSF. Moreover, the VNFD will contain connectivity, interface and KPIs
requirements that can be used by the vNSFO to establish appropriate virtual links between
vNSF components instances, or between a vNSF instance and the endpoint interface to other
virtual functions.

A similar descriptor file is associated with each network service (NSD), providing information
and networking details on how the vNSFs connect to provide a given network service. Besides
the VNFD and NSD, a vNSF or NS package in SHIELD will also provide some metadata via its
security manifest. These metadata are intended to be used by attestation purposes, while
avoiding to alter the constructs used for VNF and NS descriptor. The manifest contains hashes
for different information and resources related to each package.

2.2.2. SHIELD NSs

SHIELD will implement several monitoring and remediation vNSFs. Monitoring security
functions perform traffic monitoring and analysis to detect intrusions and report illegitimate
traffic or malicious activity. On the contrary, the role of the remediation security functions is to
mitigate security threats or risks by applying security policies and taking actions, such as
dropping/rejecting specific packets or flows and blocking data coming from specific users. It
must be noted that several vNSFs implemented in the project may assume both roles, i.e.
monitoring and remediation.

2.2.2.1. Monitoring NSs

The monitoring vNSFs will probe the network in different ways to extract relevant low-level
information from the NFVI. This network data is called “Network data collection” and its
contents will vary depending on the purpose of each monitoring vNSF. After the network data
collection is obtained, it is transformed from an application specific format into a high-level
structure with a generic format via the “data transformation” process and then is sent to the
DARE through the “Streaming Service” interface (as depicted in Figure 8). The rationale of
converting the data to a generic format and provide the DARE’s Streaming Service with a
generic format is to allow DARE’s compatibility with different implementations for a single vNSF
type. For example, the definition of a generic format for monitoring data coming from intrusion
detection systems would allow the compatibility with different IDS vNSFs implementations (e.g.
Snort, Bro, Suricata etc.).

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
16

2.2.2.2. Remediation NSs

The reacting NSs will be in charge of providing mitigation actions, as defined by the DARE. The
rules or policies composing a mitigation action —expressed via an application-independent
configuration's abstraction— will be proxied to the vNSFO by the Security Dashboard, once
accepted by the final user. Each reacting NS involved in a particular mitigation action will
receive the set of policies via the SWA-4 interface (Figure 8) and will be in charge of translating
it to low level configuration, understandable by the implemented security network function.
Thus, the translation process will be offloaded to the different reacting NSs in a specific module,
named policy transformation in Figure 8. This is done in order to reduce the load on the
centralised points of the architecture, as well as to ease any modification/update in the
translation process by the NS developer.

2.2.2.3. List of NSs

The consortium has selected a number of candidate NSs that will allow to demonstrate SHIELD
capabilities (detection and mitigation) in security attacks. Specifically, the following NSs are
targeted for implementation: An Intrusion Detection System (IDS), a mcTLS gateway, a traffic
analysis NS, a deep packet inspection NS, a packet filter NS acting at network layer, a forward
proxy NS acting at application layer. The specific functionalities selected for the NSs
implementation depends on the security requirement analysis as defined in WP2 and on the
security threats to be addressed during the project’s demonstrations.

The detail associated with the specification of each NS differs based on its maturity level. As a
consequence, some NSs already provide a detailed low-level specification of its internal
architecture/workflow while others are still in a preliminary stage, therefore presenting only its
envisioned functionalities.

Virtual Intrusion Detection System (vIDS)

An IDS is equipped with advanced traffic analysis and monitoring capabilities for attack and
vulnerability detection. It monitors and logs the network traffic for signs of malicious activity
and generates an alert upon discovery of a suspicious event. Two different techniques are used
to detect malicious traffic/activity, separating IDSs into two main categories: i) statistical
anomaly-based IDS and ii) signature-based IDS. Anomaly detection IDSs have the advantage
over signature based IDSs in detecting novel attacks for which signatures do not exist. However,
anomaly detection IDS suffer from high false detection rate. IDS deployment typically consists
of one or more sensors placed strategically on the network. Additionally, the solution may
contain an optional central console for easier management of all sensor nodes.

Figure 10: Typical IDS architecture.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
17

The functionality of an IDS involves three distinct phases: a) Monitoring, b) Analysis and c)
Notification. A typical architecture of an IDS is illustrated in Figure 10. During the Monitoring
phase, the IDS is collecting data from the monitored system, through the deployed sensors. At
the Analysis phase, the IDS Detection Engine analyses the gathered data by using a Knowledge
Base. The Knowledge Base includes information that allows the Detection Engine to classify the
analysed data as threatening events. This information includes predefined rules (signatures),
user defined rules or historical data. The historical data allows the modelling of the normal
behaviour of the monitored system into a profile enabling the detection of deviations of the
current status when compared to this considered normal profile. Finally, during the notification
phase, the IDS will output notifications of the detected events by logging this information into
specific files and user interfaces or trigger alerts that can be consumed by other components.
The following figure (Figure 11) illustrates the internal components of the IDS vNSF, which is
comprised of a single VNFC.

Figure 11: vIDS internal components.

Deep Packet Inspection (DPI)

DPI is the practice of filtering and examining IP packets, across Layers 2 through 7. Although
Stateful Packet Inspection (SPI, often employed by firewalls) is more restricted, DPI may extend
to headers, protocol structure and payloads, thus allowing for the implementation of advanced
cybersecurity measures. DPI can be an effective detection tool for a multitude of cyberattacks
such as Denial of Service (DoS), buffer overflow, cross-site scripting exploits, injection attacks
etc. DPI capabilities, however, can be limited as the payload structure becomes more complex
(e.g. through obfuscation, encryption etc). SHIELD aims to implement a vNSF dedicated to DPI,
as part of the trusted platform. The scope of the SHIELD vDPI is to monitor cybersecurity events
and log their evolution over time. The threat information and analytics can then be relayed to
a CERT/CSIRT in using the Structured Threat Information Expression (STIX) information model.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
18

Figure 12: vDPI design and main components.

The vDPI NS encompasses a vDPI vNSF comprising of several vNSF components (VNFCs) as
illustrated in Figure 12:

• vDPI-C1 (Forwarding and Classification): This vNFC handles routing and packet
forwarding. It accepts incoming network traffic and consults the flow table for
classification information for each incoming flow. Traffic is forwarded using default
policies until it is properly classified, and alternate policies are enforced. It is often
unnecessary to mirror packet flow in its entirety in order to achieve proper
identification. Since a smaller number of packets may be utilized, the expected response
delay can therefore be close to negligible. In a case where the Inspection, Forwarding
and Classification VNFCs are not deployed on the same compute node, traffic mirroring
may introduce additional overhead. A classified packet can be redirected,
marked/tagged, blocked, rate limited, and reported to a reporting agent or
monitoring/logging system within the network.

• vDPI-C2 (Inspection): The traffic inspection vNFC implements the filtering and packet
matching algorithms and is the necessary basis to support additional forwarding and
classification capabilities. It is a key component for the successful implementation of
the vDPI and the most computationally intensive. The component includes a flow table
and an inspection engine. The flow table utilises hashing algorithms for fast indexing of
flows, while the inspection engine serves as the basis for traffic classification.

• vDPI-C3 (Internal Metrics Repository) & vDPI-C4 (Monitoring Dashboard): The internal
metrics repository acts as local storage, while the Monitoring Dashboard handles data
sharing with DARE.

The vDPI lifecycle is managed by the vNSFO, and specifically the vNSF Configuration Manager
subcomponent. The vNSFO is in charge of starting, stopping, pausing, scaling and configuring
the vDPI. Thus, the Forwarding and Classification component acts as a managing/controlling
VNFC and is assigned a floating IP for management. Internal communication is implemented
via vlinks (detailed in section “Specifications and Implementation”). Policies are relayed from
the vNSFO and translated within the managing vNFC.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
19

ProxyTLS
Original design for a Multi-Context TLS (mcTLS) [14] based in a secure protocol that extends TLS
to incorporate trusted middleboxes into a secure session, has been modified because current
state of this technology is not enough mature and widely accepted to be integrated in the
SHIELD framework at this stage. On the contrary, the ACME STAR protocol [15] (Automated
Certificate Management Environment / Short-Term Automatically-Renewed) is in a mature
state and compatible with CAs in the market. STAR solution solves similar problem (TLS traffic
inspection by trusted party) but from a different approach. STAR automatize the process of
request and use temporal certificates from 3rd party domain owners. The proxyTLS solution
integrate STAR as part of a Web proxy. The ProxyTLS allow to inspect HTTPS traffic with the aim
of solve cybersecurity threats such as malicious URLs. One key difference in this proxy is the
capability to inspect and log the complete URLs in the HTTPS header, in contrast to other
security tool that can only see the TLD domain from the Certificate issued. The purpose of
ProxyTLS is to monitor all HTTPS connection and log the URLs used by the clients. In addition,
it can be populated with URL blacklists (i.e. malware droppers, C&C, phishing servers, etc.) to
generate alerts and in the case of mitigation block the connectivity.

Figure 13: ProxyTLS Gateway elements.

As shown in Figure 13, proxyTLS will be deployed using several components:

• ProxyTLS-C1 (HTTP/S redirecting): Provides the functionality to capture and redirect in
transparent mode all HTTP and HTTPS traffic towards the proxy. It also includes all the
management interactions with SHIELD.

• ProxyTLS-C2 (Proxy): This component integrates as main functionality the HTTP/S proxy
function. Ends existing TLS session and open a new against the server. In order to
comply with browser security checks, impersonate on the fly the server certificate. For
collaborative domain owners, implements the ACME STAR draft client to use valid
server certificates. Finally, in case of activation the filtering capacity, the proxy blocks
configured URLs and response with a notification HTTP static web.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
20

• ProxyTLS-C3 (DARE collector): The last component generates the vNSF activity, traffic
logs, alerts and filtering actions and parse them to a compatible format with DARE. This
information is sent to the DARE using a standard available stream service.

Functionalities provided:

• Middlebox for traffic monitoring: Inspect only HTTP and HTTPS header, including URLs
information, User-agent and IPs.

• Potential direct interaction with other vNSFs able to block HTTP/S traffic when a
security threat is detected through SHIELD framework.

• Simple HTTPS answer for blocked pages

• Support for monitor/block files with list of malicious URLs or domains,

• Short term temporal Certificate delegation and control from origin servers through
the Automated Certificate Management Environment (ACME).

HTTP/S Analyser
The objective of this vNSF is to provide the classification of HTTP and HTTPS traffic without
analysing the payload content in a privacy-friendly way. Increasing cybersecurity attacks are
hiding behind HTTPS traffic, such as phishing attacks, targeted spam with web page links, data
leak or botnet C&C channels. This vNSF offer the opportunity to generate a first classification
of the HTTPS traffic, to discard or to make more direct security traffic inspection, by other tools,
meanwhile keep the privacy of the communication, because avoid inspect traffic payloads. This
vNSF will be trained through machine learning techniques to provide the HTTP traffic
classification in order to be able to analyse the behaviour of a device or network. The vNSF will
be able to work with the traffic mirror or with stored information in tstat [16] format.

Figure 14: HTTP/S Analyser design and main components.

Figure 14 details the components of the HTTP/S Analyser:

• HTTP/SAnalyser-C1 (Netflow Probe): A standard netflow v9 probe from mirrored
traffic. Integrate also the collector component to send all the data to the DARE.

vNSF Controller
Init

Configuration

Configuration
Listener

Policy
Transformation

Netflow v9
generator

Classifier

Tstat
generator

vNSFM

vNSFO

EM

Stream Service

data collector

Data
transformation

Init
Configuration

DARE

HTTP/SAnalyser-C1

HTTP/SAnalyser

HTTP/SAnalyser-C2
Ingress

SWA-4

SWA-3

The vNSF generate flow info and classify encrypted HTTP traffic

Flow collector

Data
transformation

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
21

• HTTP/S Analyser -C2 (Classifier): This component analyse the traffic and classify it with
a level of confidence. Unknown flows are classified with another label.

Functionalities provided:

• Traffic capture, netflow and tstat format traffic generation.

• HTTP/S traffic and classification in several categories: BROWSING, VIDEO, STORAGE
and OTHER by network flow. Traffic analysis is based only in OSI layer 2 to 4.

L3 Filter

This vNSF will implement a filtering application acting at the network layer, or Layer 3 of the
ISO/OSI stack. It will allow or deny traffic by specifying an Access Control List (ACL), in form of
a whitelist or blacklist. The ACL will be configured by translating the high-level configuration to
a set of filtering rules for specific IP addresses, ports and transport protocol.

Figure 15: L3 Filter design and main components.

Functionality provided:

• Allow or deny traffic identified by a certain IP address (source, destination).

• Allow or deny traffic identified by a certain port (source, destination, protocol)

• Rate limit traffic

The L3 Filter is composed of different VNFC, as pictured in Figure 15:

• L3Filter-C1 (Forwarding): This VNFC handles packet forwarding for the ingress traffic,
which will be redirected to the filtering engine. Moreover, this component acts as the
vNSF controller, hence it includes a configuration listener to receive security policies
from the vNSFO. These policies are translated in low level configuration by a local
translator, and they are made available to the L3Filter-C2 component, which is in charge
of applying them.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
22

• L3Filter-C2 (Filtering): The Filtering VNFC filters the incoming traffic, according to its
(source/destination) IP addresses, ports and transport protocol, leveraging the results
of the policy translation. The filtering operation can result in dropping, allowing and rate
limiting the incoming traffic, before forwarding it to the egress interface.

• L3Filter-C3 (DARE Collector): This component collects the application metrics of the
Filtering VNFC and forwards them to the DARE for further analysis.

The L3 Filter shall be assigned a floating IP for management in its Forwarding component, which
acts as the ingress component for both the traffic and the policy configurations. The
management of this vNSF is performed by the VNF Configuration Manager subcomponent,
within the vNSFO.

Forward L7 Filter

This vNSF will implement a forward proxy that would offer the possibility to block all the traffic
the user wants to block. To do so, it will inspect traffic at application layer (also named Layer 7
in the ISO/OSI stack) and filter it according to defined rules. The vNSF will behave as an agent
that will receive requests from a client (e.g. a web browser) and forward them to the specified
server, if it doesn’t match a blacklist. The Functionalities provided include:

• Traffic inspection for specific Layer 7 protocols and headers (e.g. HTTP, FTP);

• URL filtering;

• Access Control List (e.g. IP based, MAC based, domain based);

• Reverse Proxy.

Figure 16: Forward L7 Filter design and main components.

The Forward L7 Filter is composed of different VNFC, as pictured in Figure 16:

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
23

• FL7Filter-C1 (Forwarding): This VNFC forwards traffic directed to one or more web
servers to the Proxying component. It also acts as the vNSF controller and manages the
lifecycle of the vNSF. Moreover, it includes a configuration listener and a policy
translator in charge of configuring the virtual hosts for the reverse proxy and the
filtering rules for the Web Application Firewall.

• FL7Filter-C2 (Proxying): This VNFC configures the virtual hosts for the web servers to be
protected by the Forward L7 Filter vNSF. The virtual hosts shall not provide SSL
configuration, as the key management is out of scope for this vNSF functionality. All the
traffic gathered for each virtual host is forwarded by this component to the Filtering –
WAF VNFC.

• FL7Filter-C3 (Filtering - WAF): This VNFC applies filtering rules for possible attacks
targeted for Web Applications. It monitors the incoming traffic and classifies it
according to rules that describe traditional application layer threats, such as SQL
Injection and Cross Site Scripting. This VNFC includes an access log for the filtered traffic,
which is made available to the DARE Collector VNFC. The allowed traffic is redirected to
the egress interface of the vNSF.

• FL7Filter-C4 (DARE Collector): This component collects the application metrics of the
Filtering - WAF VNFC and forwards them to the DARE for further analysis.

The Forward L7 Filter will require a floating IP to allow the management of its internal
components. The vNSF Manager is the infrastructure component in charge of managing the
lifecycle of the vNSF.

2.2.2.4. Functionality mapping

The following table describes, per vNSF, how these provide the specific monitoring or
remediation capabilities.

Table 1: Functionality Mapping.

vNSF Monitoring Remediation

vIDS Real-time traffic analysis (L3-L4 and L7)
for intrusion detection based on
signatures. It can also be used as a
simple packet sniffer or packet logger.
Cross-cutting all uses cases.

No

vDPI Filtering and examining traffic (L2-L7),
extending acquisition of headers,
protocol structure, application types.
Cross-cutting all uses cases, demo plans
include Use case 3, exporting threat
information to CERT/CSIRTs.

The vDPI does not apply remediation
rules, although it can receive the
offending IPs and monitor the
evolution of a cyber incident. It also
has the capability to export analytics
and threat information to a CERT or
CSIRT team. Targeting UC3.

ProxyTLS Monitoring the Header payload of HTTP
requests to identify threats. Cross-
cutting all uses cases

Yes. Allow to filter provided URLs or
preloaded list. Cross-cutting all uses
cases

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
24

HTTP/S Analyser Netflow probe and flow Classification of
HTTP and HTTPS traffic using ML
techniques, without analysing the
payload content.

No

L3 Filter No Allow or deny traffic identified by a
certain IP address (source,
destination), port (source,
destination) and transport protocol.
Cross-cutting all uses cases

Forward L7 Filter Analysis of Layer 7 headers and
(optionally) payloads to classify possible
Web Application-targeted security
threats.

Filtering for specific Layer 7 protocols
and headers (e.g. HTTP, FTP), URL
filtering, Access Control List (e.g. IP
based, MAC based, domain based)

2.3. Store

SHIELD aims to set up a single, centralised digital store for vNSFs and NSs. This approach allows
SPs to offer new security features for protecting the network or extend already existing
functionalities without the need of modifying core elements of the framework. The store acts
as a repository for vNSFs and NSs that have been previously published. The main novelty in the
Store is the onboarding of vNSFs/NSs in a secure and trusted way. The onboarding process will
ensure the provenance is from a trusted source and that the contents integrity can be assured.
The security information is then stored for safekeeping and provided upon request, so other
components can check that the vNSF/NS has not been tampered with since it was onboarded.

Another relevant feature provided by the Store is the verification done on the vNSF and NS
associated descriptors to ensure the instantiation process can be successfully performed.
Building on the descriptors syntax check concept from the SONATA project [2], the submission
process shall check all descriptors for inconsistencies as well as implement a network topology
validation. This last check will prevent issues such as unwanted loops in the forwarding graphs
or reference to undefined networks or missing ports. Figure 17 presents all the Store sub-
components, along with their relations depicted.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
25

Figure 17 : vNSF Store subcomponents.

2.3.1. Subcomponents

The current section presents each subcomponent depicted in Figure 17 mentioning its main
role. The STORE component encloses four main subcomponents (LIFECYCLE MANAGER,
INTEGRITY CHECKER, DESCRIPTOR VALIDATOR and CATALOGUE) as well as four subcomponents
aiming to provide connectivity with other SHIELD components. These subcomponents
(DEVELOPER ADAPTER, DASHBOARD ADAPTER, ORCHESTRATOR ADAPTER, TRUST MONITOR
API and DARE API) will be translated to either APIs (providing a connection point to external
components); Connectors (using the features of external components); Adapters (enclosing
both API and Connectors features:

• Lifecycle Manager: This subcomponent manages the vNSF/NS onboarding lifecycle.
From the moment a NS/vNSF is submitted to the Store this sub-component takes over
the entire process and ensures the proper steps are performed for a successful
onboarding. In the event of a failure it notifies the Developer of the situation and
performs all the necessary housekeeping steps.

• Descriptors Validator: Successful vNSF/NS onboarding consists of parsing its descriptor
and validating the specified deployment and operational behaviour requirements. This
job is performed by the Descriptors Parser sub-component. The two main tasks
assigned to this component are syntax validation to prevent incorrect vNSF/NS
descriptors from being processed for instantiation, and topology validation to assure
the integrity of the vNSF/NS topology and avoid inconsistencies such as potential loops
in the forwarding graphs or referenced to an undefined network or missing ports.

• Integrity Checker: When submitting a vNSF/NS to the Store the Developer must provide
a manifest of the files used (or referenced) by the vNSF/NS. This manifest must contain
hashes of each referenced file and must be digitally-signed so its contents can be
trusted. It is paramount to a secure environment to ensure that the vNSF/NS content is
trusted and wasn't tampered with in any way once on-boarded. The goal of the Integrity

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
26

Checker sub-component is to verify the integrity and provenance of the submitted data.
This process encompasses validating the manifest which holds the hashes for the all
files, as well as the ones regarding the descriptors. This information is provided later on
to any component assessing that the vNSF/NS wasn't tampered with.

• Catalogue: All the onboarded and sandboxed vNSFs/NS are kept in a repository. The
Catalogue sub-component manages the records-keeping activities. Any additional
metadata associated with the onboarding process or the vNSF/NS itself is managed here
as well.

• Developer Adapter: It provides the Developer with a REST API for onboard and
withdrawal of vNSF and NS.

• Dashboard Adapter: It provides the Security Dashboard with an API for vNSF and NS
catalogue management, as well as billing information.

• Orchestrator Adapter:It holds a connector to the Orchestrator, so the Store can onboard
and withdraw vNSF and NS (using the Orchestrator API) and provides an API to the
Orchestrator so it can query for vNSF and NS descriptors.

• Trust Monitor API: It provides the Trust Monitor with an API to query for vNSF security-
related information which it uses to determine whether a vNSF has been tampered
with.

• DARE API: It provides the DARE with an API to query for onboarded vNSF and NS.

2.3.2. General workflow

The Store interacts with multiple components, both in the vNSF environment (vNSFO, Trust
Monitor) to share NSs and vNSFs data available in the catalogue; it also connects with other
components of the SHIELD platform (DARE and Security Dashboard) for analytics and
visualisation purposes. Besides this, the Store exposes endpoints to the NS/vNSF developers to
onboard new NSs. The data flow diagram of the Store (Figure 18) depicts these interactions.

Figure 18: Data flow diagram of Store.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
27

2.3.3. Internal operation

The subcomponents of the Store work together to perform operations related to the
onboarding process, such as the validation of the vNSF and the registration of the VDU image(s);
as well as the decommissioning of NSs and vNSFs. The specific workflows for such operations
are described in the “Annex A: Intra-component interactions”.

2.3.4. Interactions with other components

The Store interacts with other components, namely the vNSFO, the Trust Monitor, the DARE
and the Security Dashboard; as well as with the end users. Specific details are provided in the
“Annex B: Inter-component interactions”.

2.4. Orchestrator

The vNSFO (the vNSF Orchestrator used in SHIELD) builds on an implementation of an NFVO
implementation that is ETSI NFV MANO (Network Functions Virtualisation Management and
Orchestration) compliant. Additional features are implemented as part of the SHIELD vNSFO in
order to support attestation and mitigation-related operations; as well as providing more
convenient interaction between the SHIELD components. Orchestration refers to the
deployment of the NSs (made up of vNSFs) and the management of their lifecycle, while also
performing the global resource management, monitoring, configuration, translation and
proxying of the VIM and NFVI resource requests, etc. Building on the feature of the orchestrator
that enables the configuration of the vNSFs and NSs, the vNSFO receives medium-level security
policies (MSPL); which are a sort of mid-level configurations that are produced within the DARE
and are requested to be applied on a specific running vNSF. The vNSFO provides an interface
to pass such configuration to a specific type of vNSF.

Finally, the attestation functionality requires the vNSFO to be more aware of the NFVI where it
runs. To do so, it registers information on physical nodes and tracks extra information from
virtual nodes. This data is provided to the Trust Monitor when registering new nodes to attest
its integrity. The specific functionality is delegated to specific subcomponents and modules
(Figure 19).

Figure 19: vNSFO subcomponents and modules.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
28

2.4.1. Subcomponents

The functionality of the vNSFO is distributed among the NFVO-specific and the SHIELD-specific.

The former group comprises the operation of an NFV orchestration (through the NS and VNF
managers, the VNF Manager’s configuration and the NFVI connectors for one or more VIMs
and SDN controllers). The latter introduces new additions that supports specific features
introduced by SHIELD; namely the mitigation of attacks through the configuration of the
SHIELDS vNSFs via MSPL and the periodic attestation of the physical and virtual infrastructure.

These are explained below:

• NFVO-specific
o NS and VNF Manager: These managers control the lifecycle of any given NS or

VNF. These can instantiate (deploy) or terminate (destroy) a given service or
function into/from the NFVI. Other capabilities, like monitoring and scaling, are
supported by the NFVO.

o Configuration VNF Manager: It enables the modification of the configuration for
the VNF during runtime. In SHIELD, the vNSFO receives a configuration request
through the SHIELD-specific interfaces, which identify a type of vNSF or a specific
running instance. Later, the vNSFO proxies the higher-level sort-of-configuration
(MSPL) to the specific running vNSF.

o NFVI Connectors: a subset of connectors and/or plug-ins to enable
communication between the NFVO with the different components of the
managed infrastructure. This is the mean to request and manage any physical
or virtual-backed resource.

o Registries: Data is persisted for operational purposes. The vNSF and NS
Managers, the Configuration VNF Manager and the NFVI connectors all persist
and fetch data to define records for run-time information on the operation of
the deployed NSs/vNSFs, on the management information of the VIM and
managers in the NFVI. Such data is required for multiple operations: from
attestation to analytics or mitigation, and also for visualisation purposes.

• SHIELD-specific
o Interfaces: The vNSFO exposes data through APIs and implements connectors to

consume other components’ APIs:

• Store API: During the onboarding process, a developer uploads a specific NS
and vNSF(s) through the Store. At the end of this process, the Store requests
the onboarding of both packages into the vNSFO. This effectively registers
them into the NFVO instance and make these available for later use.

• Dashboard API: A user may select a recommendation from the Security
Dashboard in order to deploy a proposed type of NS in the network
infrastructure and mitigate a given threat. Then, the vNSFO is requested to
inject the Medium-level Security Policy Language (MSPL) policies into the
vNSF(s), which ultimately allows configuring the specific vNSFs.

• Dashboard Connector: The vNSFO provides the Dashboard with data on the
NFVI and running instances for visualisation purposes; namely the network
topology and the running instances, according to specific filters.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
29

• Trust Monitor Connector: The vNSFO contacts the Trust Monitor in order to
register any newcomer node to the NFVI. With this data, the TM periodically
performs the attestation on any given virtual or physical nodes. In case the
attestation fails, the node shall be excluded from the NFVI.

• Trust Monitor API: The vNSFO provides the Trust Monitor with information
on the network, the flow tables and the list of active nodes.

• DARE API: The vNSFO provides the DARE component with the topology of
the network, the list of instances (according to specific filters) and the active
deployed instances.

• Logic
o Onboard: The onboard operation, in SHIELD, stems from the Store; which

performs part of the process and delegates to the vNSFO the final stage (the
onboarding into the NFVO).

o Infrastructure: Interactions with the NFVI that are in charge of retrieving
infrastructure-related information.

o Configuration: The vNSFO can communicate to any specific vNSF so that any
specific request middle-level policies are conveyed there.

2.4.2. General workflow

The vNSFO communicates with other components in the vNSF environment to receive vNSF
and NS-related information during onboarding (Store), support the attestation of the security
state of the running vNSFs and receive notifications during specific attestation stages (Trust
Monitor), as well as inject policies that are later translated into usable configuration (vNSFs).
The orchestrator communicates as well with other components in the SHIELD platform in order
to receive policies for the vNSFs (Security Dashboard) and to provide up-to-date status on the
network and vNSF status (DARE). The data flow diagram of the vNSFO (Figure 20) depicts these
interactions.

Figure 20: Data flow diagram of vNSFO.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
30

2.4.3. Internal operation

From the SHIELD-specific operation, the exposed interfaces and related logic do interact with
the NS and vNSF Managers. These work closely to manage the lifecycle of the NSs and vNSFs.
Other subcomponents complement the operation of such instances with the ability to
communication actions to the vNSF(s) and inject policies to these. The operations are described
in the “Annex A: Intra-component interactions”.

2.4.4. Interactions with other components

The vNSFO interacts with the Store, NFVI, Trust Monitor, DARE and Security Dashboard in order
to obtain information on NSs, deploy their resources, attest them and gather information to
support analytics and visualisation. Specific details are provided in the “Annex B: Inter-
component interactions”.

2.4.5. Comparison with I2NSF

The I2NSF (Interface to Network Security Functions) IETF working groups defines a set of
software interfaces and data models that, among others like monitoring and querying, it allows
inserting rules in the security-targeted NS (Figure 21). Such security NS are called Network
Security Functions, or NSFs, in I2NSF and Network Services, or NSs (implicitly consisting of one
or more vNSFs), in SHIELD.

Figure 21: vNSF instantiation management in I2NSF framework.

The I2NSF framework (RFC 8329) [17] describes the “Security Controller” as the entity in charge
of translating the high-level requests received through the Customer-facing Interface into
actual control actions on the NSFs. Such control actions are related to the function semantics,
and therefore deemed to be handled by the Entity Manager (EM) in the ETSI NFV framework.

In SHIELD, the role of the Security Controller is played by the vNSFO (since it encompasses the
NFVO, which provides EM capabilities), as well as by the specific subcomponents in the Trust
Monitor (generating the high-level policies) and in the DARE (translating the high-level policies
to medium-level policies). Altogether, these provide the functionality to define the security

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
31

policies and configure the vNSFs with them. In the SHIELD project, this final translation between
policies and specific configuration is a process mostly carried within the vNSF itself.

2.5. Trust Monitor

The Trust Monitor (TM) assesses the trust in the network infrastructure bearing the deployed
vNSFs, namely the NFVI Points of Presence (PoP) and the hardware network devices (e.g.
switches). The trustworthiness of the infrastructure is assessed by performing both
authentication and integrity verification.

Although attackers tend to exploit multiple vectors to breach into a system, the Trust Monitor
focuses on intrusion detection in the network infrastructure, assuming the control and
management plane components (vNSF store, vNSFO, DARE, Security Dashboard) are implicitly
trusted. From a technical standpoint, extending the TM security concepts to assess the control
and management plane, is feasible since they are based on the same kind of computer
architecture (in terms of operating system, virtualisation technology and application
packaging). SHIELD’s threat model considers the following threats, classified on whether the
attacker has physical access to the infrastructure or not:

• Physical threats:
o T1 - physical eavesdropping: on network wire, bus probing;
o T2 - physical modification of nodes: chip replacement;
o T3 - physical introduction of a new/alternate control plan;
o T4 - flashing of firmware/software of the network infrastructure nodes (e.g. in a

network switch);

• Software threats:
o T5 - zero-day vulnerability exploitation;
o T6 - malicious (or accidental) administration: configuration modification,

crafting SDN rules update;
o T7 - installation and execution of arbitrary firmware/software (e.g. in the vNSF

level);
SHIELD aims at providing the network infrastructure with detection mechanisms against
software-based and low-end physical attacks: T1 and T2 are clearly out-of-scope since SHIELD
does not provide any physical perimeter protection. Using Trusted Platform Module (TPM),
remote attestation and other Trusted Computing mechanisms, the TM protects SHIELD’s
network infrastructure against T3, T4, T6 and T7. Particularly, the TPM protected log of all
binaries executed on a node allows the TM to detect arbitrary code (T4 and T7). The same
mechanism can be used to detect unwanted configuration modification (T6). If an attacker
manages to introduce a new control plane entity in the network infrastructure (T3), the TM
does not detect it directly but instead would detect any unusual or modified behaviour of the
computer or network nodes since it would not be correct compared to the genuine control
plane components, mainly the vNSFO. The TM verifies each node against their expected state,
as configured by the vNSFO; if an attacker introduces a new control plane entity and changes –
even slightly – the configuration of one node, the TM will detect it since it will not match the
vNSFO’s view. Looking at T5, this cannot be detected by the TM or regular Trusted Computing
mechanisms. Nevertheless, zero-day vulnerability can be reduced by using code analysis tools
and/or prevent their consequences by reducing the ability of the attackers. Mechanisms such
as control-flow protection for instance, could help with that task. Even though, these kinds of

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
32

attacks are usually the initial attack vector to install additional malicious software on the target,
the execution log, verified by the TM, permit to detect the subversion.

Each physical node must be successfully authenticated - using hardware-based cryptographic
identities - and verified by the Trust Monitor before joining the SHIELD infrastructure.
Leveraging the Remote Attestation workflow, as defined by the Trusted Computing (TC) [18]
paradigm (see “Annex C Definition of technologies”), the TM can verify the integrity of the code
being executed (e.g., running instances of vNSFs, software directly managing virtualisation
processes, etc) on each physical node, as well as its configuration, both at boot and run-time.
The TM acts as a continual verification engine for the physical infrastructure hosting the NSs,
capable of interacting with the rest of the vNSF ecosystem (vNSFO, vNSF Store) as well as the
DARE to provide an assessment of the trustworthiness of the infrastructure.

Each NFVI node, being equipped with a TPM and suitable software, is able to collect the
integrity measurements of both running code (starting from boot-time) and configuration, it is
also able to report this data to a third party in a secure and trusted way. The resulting integrity
report, which contains the logged software events - as measured by the Integrity Measurement
Architecture (IMA) [7] for example - is validated by the Trust Monitor, which maintains a
whitelist populated by measurements of known software signatures and their valid
configurations. Network-related configuration, including the dynamic Software-Defined
Network forwarding rules, is verified by the Trust Monitor as well, using the overall view
available in the vNSFO. Trust Monitor subcomponents are identified in Figure 22.

Figure 22: Trust Monitor subcomponents.

2.5.1. Subcomponents

A description of the TM’s subcomponents depicted in Figure 22 is provided below:

• Verifier: It performs the TC-compliant Remote Attestation operations on each
component that has been pre-registered with it. It performs both initial attestation of
newcomers, periodic attestation tasks and notification of security events to both the
DARE and the vNSFO. Each target must run specific software to gather the integrity
measurements and send back this information to the Verifier.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
33

• Whitelist Database It contains the list of measurements of known software - for both
the platform and the vNSFs - and valid configuration. The list of known measurements
for each vNSF is gathered from its security manifest in the vNSF Store. It should be noted
that vNSFs are versioned in the Store, which allows detection of vNSF tampering (and
hence the need to update the Whitelist Database) and the simultaneous use of different
versions of the same vNSF.

• vNSF Store Connector: This connector is used to receive requests for integrity
information from the store for each vNSF to be attested. This subcomponent is
responsible for querying the vNSF Store via a client API and for retrieving the data
required for the attestation of the vNSF: code in execution, with a special emphasis on
custom applications that are not available from the standard software repositories, and
configuration files required by the integrated security function, at deployment and
runtime. This information is required to keep the Whitelist Database up to date with
the measurements of the software components needed for the execution of the vNSF.
The TM updates the Whitelist Database only when it detects that a new vNSF, or an
updated version of it, is deployed in the NFVI.

• DARE Connector: This connector sends security events to the DARE if one physical or
virtual instance is detected as compromised by periodic attestation, or in case a
newcomer fails during authentication or initial integrity validation. The subcomponent’s
workflow is triggered by the Verifier.

• Dashboard Connector: This connector sends events on the infrastructure trust status to
the Dashboard, in order to notify the end-user. The subcomponent’s workflow is
triggered by the Verifier along with the DARE Connector.

• vNSFO Connector: Through the vNSFO connector, the TM notifies the vNSFO about the
need to terminate a compromised vNSF or to exclude a physical node from the NFVI.
This workflow is triggered by the Verifier upon a failed attestation. In addition, it is used
to request the configuration of the network at a given time from the vNSFO. The
configuration consists of the description of active physical nodes, running virtual
instances, logical connectivity and network flow tables.

• Newcomer Attestation API: It exposes an API that receives requests from the vNSFO for
remote attestation of a node of the NFVI. The attested node must be pre-registered
with the TM before performing the attestation procedure.

• Management API: This is a read-only interface for retrieving infrastructure attestation
status data.

2.5.2. General workflow

The purpose of the TM is to assess the trustworthiness of the nodes composing the NFVI, in
order to act on compromised nodes (e.g. exclusion from the NFVI) and validate the integrity
state of newcomers. To do so, the TM should be able to interact and cooperate with several
other components of the SHIELD infrastructure, such as the vNSFO, vNSF Store, etc. An overall
description of the flows between the TM and the other component of the infrastructure is
depicted in Figure 23.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
34

Figure 23: Data flow diagram of Trust Monitor.

2.5.3. Internal operation

To assess the trust of the NFVI (both physical nodes and virtual instances), the Trust Monitor
needs to keep an updated list of known measurements about software packages and valid
configurations. To do so, it interacts with the vNSF Store to retrieve the information needed for
performing attestation of vNSFs, packaged within the security manifest of each network
function’s instance. Additionally, the Trust Monitor can download and measure packages of
various Linux distributions from the official repositories and can also keep internal knowledge
of the software updates for each of them. This data is used by the TM to attest the
infrastructure nodes and rate them with different trust levels (e.g. by considering untrusted a
node with a known software vulnerability).

The Trust Monitor is also able to keep an updated view of the network infrastructure at a given
time by a specific interaction with the vNSFO, which in turn updates the Trust Monitor with
status changes of the NFVI. This information can then be utilised by the Trust Monitor to
periodically attest the NFVI and detect any compromised node. In addition, the vNSFO could
directly ask the Trust Monitor to attest a node joining the NFVI, referred as “newcomer”. The
whitelist of known measurements can be used for checking the integrity report provided by
each physical node of the NFVI during the Remote Attestation workflow. If any of the
verification steps fail, the Trust Monitor notifies the vNSFO and logs the event in the DARE.

2.5.4. Interaction with other components

The Trust Monitor interacts with the Store, vNSFO, DARE and Dashboard components of the
SHIELD’s infrastructure to request attestation-related information or as a response of an
external attestation request. A detailed description of each workflow is presented in the “Annex
B Inter-component interactions”.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
35

3. SPECIFICATIONS AND IMPLEMENTATION

The information conveyed in this section decreases the abstraction level for the software
solution provided. Based on the components and sub-components defined in the architecture
section it presents additional insight on the inner details of said sub-components by defining
implementation-oriented behaviours, operations and interactions. Such behaviours may be
supported by software design elements such as data flows, state machines, decision flows or
API/interfaces descriptions.

Targeting an implementation-oriented approach this section references possible technologies
or features from existing technologies to use, reused outcomes or extensions to develop based
on other projects or even specify features to create from scratch. To assist the reader in
understanding how the selected technologies fits within SHIELD rationale, the requirements
fulfilment is also included.

3.1. Security network functions and services

This section describes the vNSFs identified so far to perform monitoring and remediation within
the scope of the SHIELD platform. For each of them a mapping of its functionality against a
subset of the SHIELD requirements is provided, as well as low level specification and
implementation details when available.

3.1.1. Virtual Intrusion Detection System (vIDS)

3.1.1.1. Implementation details

For the implementation of a virtualised Intrusion Detection System in SHIELD it is planned to
adopt the IDS VNSF [19] that was developed in the frame of CHARISMA project. Several
modifications and extensions will be made to support full compatibility with the SHIELD
platform. The vIDS vNSF, as used in CHARISMA, includes the following components:

• Snort IDS: An open-source intrusion detection system, capable of performing real-time
traffic analysis and packet logging on IP networks [20].

• Barnyard2: An open-source software tool that takes Snort output and writes it to a SQL
database to reduce load on the system [21].

• PulledPork: An open-source tool that automatically downloads the latest Snort rules
(threat signatures) [22].

• Snorby: An open-source web-based graphical interface for viewing and clearing events
logged by Snort [23].

• Rule Configuration Service: A service that accepts requests for creating, deleting and
modifying rules that can be applied in Snort detection engine.

• Event Publisher Service: A service responsible for publishing the alerts produced by
Snort detection engine.

The current CHARISMA IDS vNSF implementation is based on Ubuntu 14.04 operating system,
which was selected as the guest operating system in CHARISMA project. Incoming traffic to the

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
36

IDS vNSF is being analysed in real time and analysis decisions are being communicated to
external interfaces as HTTP requests. This vNSF consists of one virtual machine which requires
to have one virtual network interface where all traffic that need to be monitored must be
routed (or mirrored). Thus, the CHARISMA vIDS contains a single VNFC. Additionally, the vNSF
is accompanied by an ETSI compliant descriptor that allowed its life-cycle management through
the TeNOR (T-NOVA) orchestrator.

The IDS implementation is based on Snort open source IDS. Snort [20] is an open-source
intrusion detection system that is developed by Sourcefire. It can perform real-time traffic
analysis and packet logging on IP networks. Snort architecture is composed by the packet
capture library, the packet decoder, the pre-processor, the Snort detection engine which is
configured with detection rules and the alert output components plug-ins.

Rule Configuration Service

To provide intrusion detection functionalities based on policy defined by external modules to
the vIDS, this VNSF implements a RESTful API which accepts requests for creating, deleting and
modifying rules that can be applied in Snort detection engine. This offers an easy way of
external configuration of the VNSF without requiring knowledge of its inner workings.

Event Publisher Service

The IDS VNSF provides another functionality, necessary for the utilisation of the results
produced by Snort packet analysis, the Event Publisher Service. This service translates, curates,
and publishes events in readable format to external interfaces for further analysis. Once traffic
enters the IDS vNSF, Snort software analyses all packets. Snort detection engine, described
above, can contain rules which consist of conditions. When the conditions of a rule are met,
the detection engine produces an event and saves it in a log file. Snort event logs are saved in
Unified2 format, so the Event Publisher Service translates them to JSON format, assesses their
timestamp to avoid publishing redundant information and publishes the events.

A number of modifications to the CHARISMA IDS vNSF to make it compatible with the SHIELD
platform are foreseen. More specifically:

• Virtualisation enabler: A CentOS 7.X will be used as the guest operating system to
provide a virtual machine-based IDS for SHIELD. Additionally, a second version of the
IDS will be provided bundled in a Docker container or -if required- multiple Docker
containers.

• vNSF descriptor: The vNSF descriptor of the vIDS will have to be implemented from
scratch to allow life-cycle management through the OSM orchestrator.

• Rule Configuration Service: This component matches the configuration listener element
included in all vNSFs that accept configuration through the Security orchestrator.
Modifications to the current implementation are expected to allow compatibility with
the Security Orchestrator and the exact format of the policies sent.

• Event Publisher Service: This component matches the streaming service element
included in all vNSFs that provide monitoring information data to the DARE.
Modifications to the current implementation are expected to allow compatibility with
the data format expected from the DARE Streaming Service.

• User interface and output: As SHIELD platform features a User Dashboard for displaying
output and threat alerting and notifications to the user, it is unlikely that the Snorby
GUI component will be required for the SHIELD vIDS implementation.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
37

3.1.1.2. Requirements mapping

Requirement Requirement name Requirement description

SF08 DoS Protection A security service SHALL protect against volumetric
Denial of Service attacks. Detect the DoS attack and
divert the traffic for filtering. Forwarding the good traffic
flows to the destination.

VI_SPEC_01 vIDS will perform traffic analysis against its signatures database to detect a DoS
attack and notify DARE about it; which will in turn instruct specific mitigation
procedures.

SF09 Intrusion
Detection/Prevention
System

A security service SHALL detect attacks with a wide range
of techniques such as network flow or behaviour analysis
and deep packet inspection. Allow traffic flows according
to IPS rules. Monitor traffic network traffic at OSI layer 7
and generate alerts for security policy violations,
infections, information leakage, configuration errors and
unauthorised clients.

VI_SPEC_02 vIDS will analyse the traffic in L3-L4 and L7, generating appropriate alerts upon any
detected intrusion and notify DARE regarding identified security threats or
incidents. After internal analysis and correlation, DARE will instruct specific
mitigation procedures.

NF05 Impact on perceived
performance

When network traffic is proxied or analysed, the user
experience SHALL not be degraded.

VI_SPEC_03 The traffic analysis carried out by the IDS should not seriously delay or degrade the
detection and mitigation operations.

Resource
Requirements

1 CPU, 50GB disk storage and 2GB RAM are the minimum requirements for the IDS
vNSF. 1 CPU, 50GB disk storage and 4GB RAM is the recommended setup.

3.1.2. Virtual Deep Packet Inspection (vDPI)

3.1.2.1. Implementation details

The implementation of the vDPI components is based on a variety of technologies allowing to
perform traffic inspection as well as packet capturing. The following technologies are currently
envisioned to be used in the implementation of this vNSF:

• nDPI [24]: is an open source alternative to the OpenDPI [25] library, maintained by ntop.
Its goal is to extend the original library and add new protocols that are otherwise
available only on the paid version of OpenDPI. Furthermore, nDPI is modified to be more
suitable for traffic monitoring applications, by optimising the DPI engine. One of its
major advantages is that nDPI can support application-layer detection of protocols,
regardless of the port being used.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
38

• PF_RING [26]: is a set of library drivers and kernel modules, which enable high-
throughput packet capture and sampling. The PF_RING kernel module library polls
packets through the Linux NAPI. Packets are copied from the kernel to the PF_RING
buffer for analysis with the nDPI library.

• DPDK (Data Plane Development Kit) [27]: comprises of a set of libraries that support
efficient implementations of network functions through access to the system’s network
interface card (NIC). DPDK offers to network function developers a set of tools to build
high speed data plane applications. DPDK operates in polling mode for packet
processing, instead of the default interrupt mode. The polling mode operation adopts
the busy-wait technique, continuously checking for state changes in the network
interface and libraries for packet manipulation across different cores.

The PF_RING implementation selected for the vDPI has the capacity of maintaining
uninterrupted connectivity with the OpenStack network. DPDK has the capacity to bypass the
Linux kernel, leading to high-performance packet capture but is less robust and fault-tolerant
that PF_RING.

3.1.2.2. Requirements mapping

Requirement Requirement name Requirement description

PF05 Analytics visualisation The operator SHALL be able to see the analytics visualised
in e.g. a dashboard.

VD_SPEC_01 vDPI will be able to monitor specified flows and show how a cyber incident evolves
over time. The analytics will be shown in a graphical user interface along with
exported statistics in STIX 2.0 [28] format.

SF08 DoS Protection A security service SHALL protect against volumetric Denial
of Service attacks. Detect the DoS attack and divert the
traffic for filtering. Forwarding the good traffic flows to
the destination.

VD_SPEC_02 vDPI will be able to monitor suspicious traffic and report attack statistics and
observations in a graphical user interface. vDPI will export threat information in STIX
2.0 format, showing the observed evolution of the attack and communicating the
results to an appropriate cybersecurity agency or incident response team. vDPI will
not be performing behavioural analysis and will not be looking into the contents of
a packet but rather the headers for the selected suspicious flows.

PF12 Threat data sharing Sharing threat data with a third entity SHALL be allowed.
The granularity of such data depends on the severity and
type of each attack.

VD_SPEC_03 The vDPI will be able to export threat information in STIX 2.0 format. It will monitor
identified suspicious flows over a period of time.

PF17 Interoperability The platform SHALL expose openly-defined APIs for
information exchange with third parties.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
39

VD_SPEC_04 The selection of the STIX 2.0 format for information exchange was made to satisfy
monitoring and reporting requirements posed by cybersecurity agencies. The
operator may select to allow access to STIX information for CERT/CSIRT, threat
databases, security/data protection audits etc.

SF09 Intrusion
Detection/Prevention
System

A security service SHALL detect attacks with a wide range
of techniques such as network flow or behaviour analysis
and deep packet inspection. Allow traffic flows according
to IPS rules. Monitor traffic network traffic at OSI layer 7
and generate alerts for security policy violations,
infections, information leakage, configuration errors and
unauthorised clients.

VD_SPEC_05 vDPI will offer deep packet inspection capabilities based on the nDPI library.
Capabilities include inspection of packet headers, applications types etc., but not
deep content inspection (which requires reassembly and inspection of an entire
message). vDPI is intended as a monitoring component and will not be imposing
rules to block/limit traffic although it will export statistics and threat information.

NF05 Impact on perceived
performance

When network traffic is proxied or analysed, the user
experience SHALL not be degraded.

VD_SPEC_06 The traffic inspection performed by vDPI should not seriously degrade the user’s
quality of experience on the NS. vDPI engine will be based on open source high-
throughput tools (nDPI, PF_RING etc) and will be able to parse small subsets of
mirrored traffic.

Resource
requirements

2 virtual processors, deployed in 40GB storage/4GB memory flavour is
recommended.

3.1.3. ProxyTLS

3.1.3.1. Implementation details

This vNSF is based on the combination of several open source solutions to offer a holistic
security functionality. All the solution runs over a Linux distribution, and make use of the
iptables Linux kernel module to implement the HTTP traffic redirection towards the proxy. The
additional components are based on:

• Mitmproxy [29]: This open source project implements a versatile HTTPS proxy. Between
their functionalities we can mention: Intercept HTTP & HTTPS requests and responses
and modify them on the fly, save complete HTTP conversations for later replay and
analysis, replay the client-side of an HTTP conversations, replay HTTP responses of a
previously recorded server, reverse proxy mode to forward traffic to a specified server,
transparent proxy mode on OSX and Linux, make scripted changes to HTTP traffic using
Python or SSL/TLS certificates for interception generated on the fly. The ProxyTLS
function use some of them, such the modify the certification generation on the fly,

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
40

modify the HTTP response and create customized logs compatible with DARE collector
format.

• CertBot [30] and Boulder [31]: This two tools represents the client and Server for
Automatic Certificate Management Environment (ACME). CertBot is a command line
tools that allows to request periodically to a CA to issue of signed certificates for its
owns domains in an automatic way. The Boulder is the CA software to automatize the
delivery process. This code has been developed and used by Let’s encrypt [32], who it
is the responsible for a clear increment in the use of HTTPS in Internet in the recent
years. For the proxyTLS a modified version of the Boulder and the CertBot has been
made to align the code with ACME STAR draft, to allow temporal certificates issues to
3rd parties.

3.1.3.2. Requirements mapping

Requirement Requirement
name

Requirement description

SF02 Detect/Block
access to
malicious

network
locations

A security service SHALL control access to malicious

network locations, such as phishing servers, malware
spreading websites, Command & Control (C&C) servers, etc.
The user must be alerted and the access to the site could be
blocked/allowed depending on the configured policy rule.

VP_SPEC_01 The vNSF (middlebox) allows the monitoring of HTTP ciphered traffic directed at
any server (in order to identify attacks). The ProxyTLS will inspect the HTTP
headers. It will compare the URLs from the headers against black lists to detect any
of the malicious endpoints.

NF04 Impact on
perceived
performance

When network traffic is proxied or analysed, the user
experience SHALL not be degraded.

VP_SPEC_02 When network traffic is proxied or analysed, the user experience SHALL not be
perceived as degraded.

Resource
Requirements

Recommended requirements are 4 virtual processors, deployed in 20GB storage
and 4GB memory. Minimum is 1 processors, 10GB storage and 1GB RAM.

3.1.4. HTTP/S Analyser

3.1.4.1. Implementation details

This vNSF implementation is based on Linux standard distribution for the operative system.
Additionally, both components implement different open source tools, for traffic capture and

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
41

aggregation. Dataset generation, processing and flow classification are done by new developed
application in the classifier. This module imports pre-trained model for specific classification.
This classifier is based in the results from the COGNET project, and it is being deployed as a
standalone VNF.

Next are the list of tools involved:

Nfdump [33]: This software suite allows to capture network traffic, create and store netflow v9
flows. It allows also inject in the network the netflow protocol. This software is used to generate
all the traffic received on a mirror port

Tstat [16]: This solution generates traffic flows summary and group them by type of categories.
One of the main properties of this tool is that generate multiple information features for each
network flow, very suitable for Machine Learning technology.

3.1.4.2. Requirements mapping

Requirement Requirement name Requirement description

SF09 Intrusion
Detection/Prevention
System

A security service SHALL detect attacks with a wide range
of techniques such as network flow or behaviour analysis
and deep packet inspection. Allow traffic flows according
to IPS rules. Monitor traffic network traffic at OSI layer 7
and generate alerts for security policy violations,
infections, information leakage, configuration errors and
unauthorized clients.

VH_SPEC_01 Traffic classification will allow the classification of encrypted traffic traversing the
network and therefore enable its correlation with other security sources to detect
attacks therefore improving its detection/mitigation mechanisms.

PF04 Security data
monitoring and
analytics

The platform SHALL be able to collect and analyse

Events from the vNSFs in real time in order to detect
security incidents

VH_SPEC_02 Traffic events generation can be configured. HTTP/S Analyser will generate and
share netflow and tstat flow events to share with DARE.

NF07
Compliance to
standards

The platform SHALL conform to

well-established standards, in particular with respect to
data export (e.g. STIX) and input (e.g. NetFlow).

VH_SPEC_03 Not only for HTTP but for any type of traffic this VNF can generate NetFlow v9
standard format.

Resource
Requirements

Recommended requirements are 4 virtual processors, deployed in 100GB storage
and 8GB memory. Minimum is 2 processors, 10GB storage and 2GB RAM.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
42

3.1.5. L3 Filter

3.1.5.1. Implementation details

The implementation of this vNSF will be based on the packet filtering framework included
within the Linux kernel, starting from the 2.4 version. The framework, maintained by the
netfilter.org project, consists of different subsystems, such as iptables [34]. This userspace
program can be used to configure the filtering ruleset, composed of rules consisting of
classifiers (e.g. the source IP address) and one connected action (e.g. deny).

The vNSF will provide an Access Control List in a standard format, such as XML, containing a list
of IP addresses to be allowed or denied, depending on the kind of list (whitelist, blacklist). The
vNSF will manage the low-level translation of the ACL to iptables rules.

The implementation of this vNSF will be based on one of the following technologies:

• Iptables, subsystem of the netfilter framework included in the Linux kernel (since version
2.4);

• Pf [35], a firewall distributed with BSD license and integrated in OpenBSD and FreeBSD.

Both the technologies support basic filtering according to Layer 3 and 4 headers, including IP
addresses, ports and protocol. Moreover, they support a rate limiting capability for both source
IP addresses and a target IP address. The two implementations differ from the performance
perspective, as Pf leverages a stateful tracking functionality to enhance the performance at the
increase of filtering rules. Because of this, Pf would be the most advanced solution to
implement the vNSF and additional tests are being performed to ensure FreeBSD support for
vNSF in the Open Source MANO framework.

An implementation for a L3 packet filter, based on iptables, has been developed in the scope
of the SECURED project [4], and will be considered as base point for development of this vNSF.

3.1.5.2. Requirements mapping

Requirement Requirement name Requirement description

SF04 L4 traffic filtering A security service SHALL monitor traffic based on
configuration rules. Traffic packets are filtering, and
specific traffic is either allowed, rejected or blocked
based on a predefined set of rules (usually based on
source IP, destination IP, destination port, etc.).

VL3_SPEC_01 The L3 Filter vNSF filters the incoming traffic depending on IP address, port,
transport protocol.

SF06 Malware detection A security service COULD detect (and optionally clean)
files with malware downloaded from Internet.

VL3_SPEC_02 The L3 Filter vNSF can be configured to log connections initiated by a host to non-

internal IPs. These logs can be further analysed to understand if any host is

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
43

executing unauthorized connections to an external destination, such as a malware

source.

SF08 DoS protection A security service SHALL protect against volumetric
Denial of Service attacks.

VL3_SPEC_03 The L3 Filter vNSF can filter the IP addresses or ranges that are used by the DoS
attackers to mitigate a volumetric DoS threat. The vNSF can also apply rate limiting
rules to the traffic.

SF09 Intrusion
Detection/Prevention
System

A security service SHALL detect attacks with a wide range
of techniques such as network flow or behaviour analysis
and deep packet inspection. Allow traffic flows according
to IPS rules. Monitor traffic network traffic at OSI layer 7
and generate alerts for security policy violations,
infections, information leakage, configuration errors and
unauthorised clients.

VL3_SPEC_04 The L3 Filter vNSF is expected to be integrated with the IDS/DPI as a remediation
vNSF, blocking any malicious traffic detected by the IDS.

NF05 Impact on perceived
performance

When network traffic is proxied or analysed, the user
experience SHALL not be degraded.

VL3_SPEC_05 The filtering operation performed by the vNSF should not seriously degrade the
user’s quality of experience on the NS.

Resource
Requirements

The minimum requirements of the L3 Filter vNSF include a CPU with 2 virtual cores,
10GB of storage and 4GB of RAM. The recommended requirements include a CPU
with 4 virtual cores, 50 GB of storage and 8 GB of RAM.

3.1.6. Forward L7 Filter

3.1.6.1. Implementation details

This vNSF will be implemented by leveraging the interaction of two web application-oriented
technologies, namely Apache HTTP Server (HTTPD) and ModSecurity [36]. HTTPD [37] is an
open source technology that implements a Web Server. Its mod_proxy extension makes it
usable as a reverse proxy, acting as a gateway between the user agent (e.g. the browser) and
the web server. ModSecurity is an open source Web Application Firewall (WAF), a toolkit that
manages access control, monitoring and real time logging for web applications hosted by web
servers. It is also named HTTP intrusion detecton tool, as it can detect threats with a rule-based
approach. In fact, ModSecurity has a negative monitoring model, where a transaction, if not
blocked by a specific rule, is always allowed. Each transaction can be analysed in distinct phases,
which must be performed in order:

1. Request Header
2. Request Body
3. Response Header
4. Response Body

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
44

5. Log

ModSecurity has built-in support for the “Reverse Proxy” mode, where it can be automatically
attached to the Apache HTTP Server. Moreover, ModSecurity can be integrated with the set of
rules defined by the Open Web Application Security Project (OWASP), named OWASP Mod
Security CRS [38], including triggers for code injection, broken authentication and session
management, cross-site scripting.

Several other technologies have been analysed to select the proper technology for the vNSF.
Apart from HTTPD, Apache Traffic Server [39], HAProxy [40], Varnish Cache [41] and nginx [42]
have been analysed and considered valid for the reverse proxy functionality. Regarding the
WAF functionality, the NAXSI project [43] has been evaluated as well. This proposes a positive
monitoring model, meaning that the WAF allows the forwarding of the traffic to the web server
by default. Moreover, NAXSI implements a whitelist approach that requires a classification of
the traffic patterns in order to understand if certain packets are allowed or not. While NAXSI is
supported by nginx only, ModSecurity is supported by nginx and HTTPD as well, and it performs
better with the latter (in terms of throughput). Because of the positive model and the lack of a
rule-based approach (which best suits a dynamic deployment of such security network
function), the final choice was to implement a solution based on HTTPD and Mod Security.

3.1.6.2. Requirements mapping

Requirement Requirement name Requirement description

SF09 Intrusion
detection/Prevention system

A security service SHALL detect attacks with a wide
range of techniques such as network flow or
behaviour analysis and deep packet inspection.

VL7_SPEC_01 The Forward L7 Filter vNSF will be able of monitoring and blocking L7 traffic
depending on different criteria in order to control access to malicious websites
(such as by filtering HTTP data according to blacklists of URLs). The traffic inspection
will be performed against a set of rules as defined by the OWASP ModSecurity CRS.

NF05 Impact on perceived
performance

When network traffic is proxied or analysed, the
user experience SHALL not be degraded.

VL7_SPEC_02 The filtering operation performed by the vNSF should not seriously degrade the
user’s quality of experience on the NS.

Resource
Requirements

At minimum, the Forward L7 Filter vNSFs requires a CPU with 2 virtual cores, 20 GB
of storage and 4GB of RAM. The recommended requirements include a CPU with 4
virtual cores, 100 GB of storage and 8 GB of RAM.

3.2. Store

Based on the general architecture of the Store component provided in previous sections, the
present section aims providing a preliminary specification of its low-level functionalities.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
45

3.2.1. Specifications

For each subcomponent of the Store component, the low-level specifications are provided
below.

Lifecycle Manager

The Lifecycle Manager subcomponent is responsible for implementing a set of features that
enable the envisioned onboarding lifecycle of either vNSFs and NSs. The vNSF/NS onboarding
lifecycle comprises the following steps:

• Submission: A vNSF has been submitted to the Store for onboarding by a Developer.
Due to the nature of the process, as it comprises time-consuming operations such as
validations and considerable-sized downloads, the submission request is promptly
acknowledged, and the process continues in the background. Later, the Developer will
be notified whether the operation succeeded or failed.

• Sandboxing: A vNSF is registered in the Catalogue but is not yet ready for production. It
is undergoing a validation process to determine whether it is deemed fit for service.

• Onboarding: A vNSF has successfully undergone all the required checks to be considered
able to integrate the ecosystem and is fit for attestation tests.

• Decommissioning: A vNSF has been taken out of service and can no longer be
instantiated.

Descriptors Validator

To ensure a vNSF/NS can be onboarded, the descriptors provided in the package need to be
validated. These descriptors are checked for:

• Syntax errors to prevent incorrect vNSF descriptors from being processed.

• vNSF topology integrity to avoid potential loops or errors such as references to
undefined network interfaces.

Every onboarded vNSF descriptor will be checked for syntax, correctness and completeness
issues. With no issues found the next step is to check the defined network topology and ensure
inconsistencies such as no unconnected interfaces are present, and all virtual links are properly
defined. Upon successful validation, the vNSF may proceed with the onboarding process. Any
error results in a notification to the Developer stating what is not compliant with the SHIELD
requirements. As for Network Services, onboarding the descriptors provided in the package
need to be validated. These descriptors are checked for:

• Syntax errors to prevent incorrect NS descriptors from being processed.

• vNSF/NS topology integrity to avoid potential loops or errors such as references to
undefined network interfaces

• Decommissioned vNSF usage to avoid service instantiation issues

Again, every NS descriptor will be checked for syntax, correctness and completeness issues.
With no issues found the next step is to check whether any usage of decommissioned vNSF is
present. Upon successful validation, the NS may proceed with the onboarding process. Any
error results in a notification to the Security Dashboard stating what isn’t compliant with the
SHIELD requirements.

Integrity Checker

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
46

The vNSF onboarding security check is performed by:

• Verifying the package digital signature against the stored one to prove provenance.

• Checking the hashes for the vNSF-related files against the ones provided in the manifest
to ensure integrity.

The security manifest format is defined by SHIELD and all submitted vNSFs, regardless of
intended target vNSFO, shall comply with it (no tailoring is allowed). Upon successful checks
the vNSF may proceed with the onboarding process. Any error results in a notification to the
Developer stating what is not compliant with the SHIELD requirements.

Catalogue

The Catalogue handles the records for the entire Store component. It stores data of all the
onboarded vNSFs and NSs and can convey it to the other components upon request through
the adapters provided for such purpose. The specific data is defined below:

• vNSF Catalogue:
o Version: an identifier for the submitted vNSF package which defines a unique

set of specific functionalities and dependencies provided within the vNSF-
related descriptors.

o Status: the current state of the vNSF. It can be “submitted”, “sandboxed”,
“onboarded” or “decommissioned”.

o Security manifest: holds the hashes for all the vNSF-related files as well as
information needed for attestation.

o vNSF Descriptor (vNSFD): description for the vNSF, containing the VNFCs that
conform the vNSF, the available flavours to deploy and the description of the
virtual links interconnecting the different VNFCs.

• NS Catalogue:
o Version: an identifier for the submitted NS package which defines a unique set

of specific functionalities and dependencies provided within the NS-related
descriptors.

o Status: the current status of the NS be it submitted, sandboxed, onboarded or
decommissioned.

o Security manifest: holds the hashes for all the NS-related files as well as
information needed for attestation.

o NS Descriptor (NSD): description for the service, containing the vNSFs that
conform the service and their forwarding graphs, the virtual link description
interconnecting the vNSFs, the preferred flavour (instance configuration) per
vNSF to use and any SLA to be met by the NS.

o Virtual Link Descriptor (vLD): definition of the virtual network links that
interconnect the vNSFs.

o vNSF Forwarding Graph Descriptor (vNSFFGD): definition of the network
deployment for the vNSFs contained in the NS.

• Developer Adapter: This module provides connectivity with the Developer either in the
form of an API for the Developer to use Store’s features as well as a connector allowing
Store to push information to the Developer.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
47

• Dashboard Adapter: This module provides connectivity with the Security Dashboard
component either in the form of an API for the Dashboard to use Store’s features as
well as a connector allowing Store to use Security Dashboard’s functionalities.

• Orchestrator Adapter: This module provides connectivity with the Orchestrator
component either in the form of an API for the Orchestrator to use Store’s features as
well as a connector allowing Store to use Orchestrator’s functionalities.

• Trust Monitor API: This module provides connectivity to Trust Monitor component in
the form of an API.

• DARE API: This module provides connectivity to DARE component in the form of an API.

3.2.2. Implementation details

To cope with the SHIELD security requirements, to foster VNF reuse and remove SHIELD
applicability barriers, a package format tailored for SHIELD is defined. This package format,
described in Annex G, extends existing VNF formats by introducing:

• a security manifest to ensure VNF tamper-proofing,

• a digitally-signed security manifest to prove provenance and integrity,

• support for including vNSFO-specific VNF package format,

• a .tar.gz package format to enclose everything.

REST API Services will be used to expose an interface to access the Store internal features.
Further specifications comprising the envisioned APIs can be found in “Annex D Application
Programming Interfaces (APIs)”.

The REST backend is leveraged by Eve [44], a REST API framework which provides Flask [45] for
RESTful support, Cerberus [46] for JSON validation, and MongoDB [47] for the actual vNSF & NS
data store.

The services provided by the Store operate on a Role Based Access Control, resorting to a token-
based authentication mechanism. To use an endpoint the caller must provide a token which
the Store validates in the SHIELD authorization and authentication system. Only valid users with
the required role are allowed through.

A Behaviour Driven Development [48] methodology is introduced for testing the Store. The
option for this methodology ensures meeting the goals of (i) validating the Store behaviour
from an API consumer's perspective, and (ii) serve as documentation for describing the features
available and the intended operational scenarios.

3.2.3. Requirements mapping

Requirement Requirement name Requirement description

PF02 vNSF lifecycle
management

The platform SHALL be able to manage the full lifecycle
of vNSFs (on boarding, instantiation, chaining,
configuration, monitoring and termination).

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
48

S_SPEC_01 The Store provides the Developer with an interface to onboard a vNSF and the
Security Dashboard with another interface to onboard NSs. It also provides an
interface to vNSFO to query vNSF and NS information during instantiation. The
remaining states for the vNSF lifecycle management are outside the scope of the
Store.

PF10 vNSF validation The store SHALL validate that the image of a vNSF is not
manipulated, faked or invalid.

S_SPEC_02 At the time of a vNSF submission by the Developer the Integrity Checker ensures
that the vNSF content is trusted and stores (amongst other data) the hash(es) for
the vNSF image(s) which can be provided upon request for integrity checks by other
components.

PF11 vNSF attestation The platform SHALL check the provenance and integrity
of a vNSF and associated policies, before it starts to
operate.

S_SPEC_03 When the Developer submits a vNSF the Integrity Checker validates the digital-
signature associated with it to verify the provenance of the submitted data and
analyses its integrity to ensure it wasn't tampered with in any way. This data is
stored and can be provided upon request for attestation purposes to other
components.

PF15 Service store The store SHALL allow selecting security services from
the catalogue.

S_SPEC_04 A record of the successfully onboarded Network Services is kept by the Catalogue.
These security services are provided upon request through the Store’s interfaces.

PF17 Interoperability The platform SHALL expose openly-defined APIs for
information exchange with third parties.

S_SPEC_05 The Store provides the interoperability features through APIs and connectors. The
vNSF onboarding is accomplished by the Developer’s API, the NS onboarding and
store-related GUI interaction is done by the Dashboard API, the vNSF and NS data
concerning orchestration is provided by the Orchestrator API and the attestation-
related data is conveyed by the Trust Monitor API.

PF22 Management
communication security

The platform SHALL encrypt all the management
communications.

S_SPEC_06 The communication with the Store APIs is done using HTTPS, where the messages
are encrypted using the Transport Layer Security protocol.

Resource
Requirements

1 virtual processor, deployed in 40GB storage/4GB memory as minimum

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
49

3.3. Orchestrator

When analysing the Platform Requirements (described in D2.1), four well-known NFV MANO
solutions were identified and analysed. These are OSM [3], TeNOR [49], SONATA [2] and
OpenBaton [50]. OSM stems from industrial community, whilst TeNOR, SONATA and
OpenBaton have grown in the R&D environment.

To carry out the analysis, the accordance with the Platform Requirements (as defined in D2.1
[8] and D2.2 [9]) was examined, along with several extra indicators; from more subjective, like
the extensibility and complexity degree in terms of development, to others such as its ongoing
and future roadmap as well as its community. When considering how appropriate are the
provided features to the SHIELD’s Platform Requirements, OSM and TeNOR provide mostly the
same capabilities; with more support by the former to extra VIMs and SDN controllers, and on
monitoring and operational capabilities on the latter. SONATA and OpenBaton show a focus on
specific aspects (the former focusing on identity management, the latter in service operations).
At the time of the analysis, the sampled orchestrators were each at different stages of
development; with SONATA under development and OpenBaton a more consolidated
orchestrator. Both provide advanced features on their field of focus and provide extensive
documentation. A detailed analysis can be found in the “Annex E Technology Selection”. After
evaluating the indicators and prioritising the Platform Requirements, the community and
available support, the consortium decided to use OSM as the base vNSFO for SHIELD.

3.3.1. Specifications

The low-level specifications of the subcomponents of the Orchestrator are provided below:

NFVO-specific

• NS and VNF Manager: The NS and VNF Managers support issuing the following
operations on the NSs and vNSFs:

o Instantiation: initial deployment of the vNSF instances (contained on the
deployed NS), according to the initial configuration defined by the NFVO during
deployment or provided by the vNSF or NS descriptors. The operations on the
vNSFs are delegated to the VNF Manager

o Scaling: increase or decrease of the NS capacity according to the auto-scaling
policies defined per vNSF and NS in their descriptors. The scaling can result in
increasing/decreasing capacity per vNSF, creating or terminating vNSF instances
and adjusting the number of links between vNSFs

o Termination: release any given NS instance and its associated resources (vNSF
instances, NFVI-related resources, connecting links between vNSFs)

• Configuration VNF Manager: This subcomponent performs part of the duties of the
Entity Manager (EM); as it transfers the policies received via the Dashboard interface
(in the vNSFO) to a specific instance of a vNSF running in the VIM. The vNSFO
communicates with the vNSF to be configured by means of the management network,
visible to both vNSFO and vNSFs.

• NFVI Connectors: the connectors and/or plug-ins available in OSM allow communication
with different VIMs (OpenStack, OpenVIM, VMWare vCloud Director, Amazon Web

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
50

Services) and SDN controllers (OpenDayLight, ONOS, FloodLight). Prior configuration
and persistence of some initial data, configuration or credentials must be performed.

• Registries: Data is persisted for operational purposes. The NS and vNSF Managers persist
the NS and vNSF records (corresponding to specific deployed instances), whereas the
Configuration VNF Manager keeps a registry of the actions and data (here, policies) sent
to the vNSFs. The NFVI connectors also require saving some information to be able to
connect and manage the VIM and managers in the NFVI (like the SDN controller).

SHIELD-specific

• Interfaces:
o Store API: This exposes a write-only API so that the operations for onboarding

or removing a specific package can be issues towards the NFVO instance,
available as part of the vNSFO.

o Dashboard API: This provides a write-only API that allows to configure a specific
type of NS. The internal logic determines the feasibility of direct configuration
of a deployed vNSF instance as part of such service, or the full deployment and
consequent configuration process.

o Dashboard Connector: This exposes a read-only API that provides necessary
information on the resources in the NFVI. This can be used by the Security
Dashboard to complement its knowledge on the topology.

o Trust Monitor Connector: This attacks a write-only API that expects data on the
NFVI and running instances.

o Trust Monitor API: This exposes a read-only interface for the Trust Monitor to
inform on the network, flow tables and list of active physical and virtual nodes.
This input is used by the TM to complement its information on the NFVI,
regarding the attestation procedure.

o DARE API: This exposes a read-only interface for the DARE so as to obtain
information on the physical nodes, the running and available vNSFs, etc. This
interface is partly similar to that interface for the Trust Monitor.

• Logic
o Onboard: This process starts once the Store receives a SHIELD package, validates

it and request onboarding of the contained NFVO-specific package. The vNSFO
then interacts with the NFVO to perform the onboarding, which registers the
package into the vNSFO. The vNSFO allows interaction with the VIM(s) in order
to register the image of the vNSFs.

o Infrastructure: These interactions have the purpose of, amongst others,
covering the definition of the physical infrastructure and virtual nodes that
belong to the NFVI. This is used to share data of the NFVI to other interested
components, such as the Trust Monitor.

o Configuration: Using the management network defined between the VIM and
the NFVO, the orchestrator is able to proxy to the vNSFs the specific middle-
level policies that are conveyed via the Dashboard and the vNSFO, sequentially.
Such policies are inserted into a given vNSF and converted internally to a low-
level configuration action.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
51

3.3.2. Implementation details

The vNSFO is based on the OSM solution. The following software modules and technologies will
be used to fulfil the orchestration:

• Service Orchestrator (SO):
o Acting as the NS Manager, RIFT.ware provides end-to-end network service

orchestration, abstracting from computing resources, and provisioning lifecycle
management and interconnection of VLs.

• Resource Orchestrator (RO):
o OpenMano enables operations related to the allocation of resources from the

NFVI and for the configuration through the Configuration VNF Manager. It
provisions resources as needed, potentially interacting with multiple VIMs and
SDN controllers. Along with SO, these conform the NFVO entity in the ETSI NFV
architecture.

• vNSF Configuration and Abstraction (VCA):
o Generic vNSF Manager allowing the initial vNSF configuration. It relies on

Canonical’s Juju charms and cloud-init to provide instructions to the vNSFs
either before or during deployment. This has a partial correspondence to part
of the Entity Manager in the ETSI NFV architecture.

These modules can be mapped to the ETSI NFV architecture as depicted in Figure 24:

Figure 24: OSM mapped to ETSI NFV architecture.

More details on the implementation and deployment details can be found in the
documentation and whitepaper for Release TWO that SHIELD deploys [51] [52].

The details on the specific development for the interfaces and connectors described earlier are
provided in the “Annex D Application Programming Interfaces (APIs)”.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
52

3.3.3. Requirements mapping

Requirement Requirement name Requirement description

PF01 vNSF and Network
Service (NS) deployment

The platform SHALL be able to deploy the vNSFs in
different PoPs and domains. The deployment can occur
within internal or external premises.

O_SPEC_01 The NS and VNF Managers can initiate the deployment of the vNSFs in the different
PoPs; considering these are previously registered into the NFVO.

PF02 vNSF lifecycle
management

The platform SHALL be able to manage the full lifecycle
of vNSFs (on boarding, instantiation, chaining,
configuration, monitoring and termination).

O_SPEC_02 The NS and VNF Managers can control the different stages in the lifecycle of the
NSs and vNSFs.

PF03 vNSF status
management

The operator SHALL be able to control the lifecycle via a
graphical user interface. The vNSF lifecycle should
support events like DEPLOY, START, STOP, MODIFY,
DELETE.

O_SPEC_03 The NS and VNF Managers may receive lifecycle events to deploy or instantiate,
run, stop or delete the vNSFs. Configuration may be performed via the
Configuration VNF Manager.

PF07 Service elasticity The platform COULD provide the mechanism to allow
scalability of the vNSFs.

O_SPEC_04 The NS and VNF Managers provide the capability to request a specific NS or vNSF
to adapt (scale) to its operational conditions.

PF11 vNSF attestation The platform SHALL check the provenance and integrity
of a vNSF and associated policies, before it starts to
operate.

O_SPEC_05 The vNSFO receives the associated policies for a given vNSF and is able to apply
them; as well as providing attestation-related data to the Trust Monitor.

PF13 Mitigation The platform SHALL be able to trigger, in the case of an
event, proper actions to mitigate the threat.

O_SPEC_06 As the result of an accepted suggestion by a user in the Dashboard, the NS and VNF
Managers receive and distribute requests to deploy mitigation NSs.

PF22 Management
communications
security

The platform SHALL encrypt all the management
communications.

O_SPEC_07 The vNSFO implements encrypted connections via TLS for all its interactions with
other components of the platform.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
53

NF03 Scalability The platform SHALL be expandable by adding nodes in
the network infrastructure, to increase capacity.

O_SPEC_08 The vNSFO is aware of new nodes registered into the NFVI, as required for
attestation purposes by the Trust Monitor.

Resource
Requirements

The vNSFO requires at least 4 virtual processors, 60 GB of storage and 8 GB of RAM
and a single interface with Internet access. Recommended specifications include 8
virtual processors, 100 GB of storage and 16 GB of RAM; as well as the single
interface with Internet access.

3.4. Trust monitor

The general architecture and design of the Trust Monitor has been defined according to the
Platform Requirements, as defined in D2.1. This section aims to describe the specifications of
the low-level functionalities that will be developed within the Trust Monitor sub-components.

3.4.1. Specifications

The low-level specifications of each subcomponent of the Trust Monitor are reported as
follows, as well as the mapping of the specifications to the PFRs. The specifications may be
subject to minor modifications during the development stage.

Verifier: The Verifier is the central sub-component of the Trust Monitor. It manages different
functionalities:

• Registration of a node

• On-demand attestation of a node

• Periodic attestation of the nodes in the NFVI

• Notification of attestation failure to both the DARE and the vNSFO

The registration phase is needed to setup the attestation process with each NFVI PoP
composing the network infrastructure. Each node of the NFVI should be properly configured to
enable its interaction with the TPM and to start measuring the software running into it. The
remote attestation procedure is performed during the initial attestation of newcomers and the
periodic attestation tasks. It requires the Verifier to perform the following operations:

1. Send an attestation request to the node, including a nonce for freshness of the response
2. Validate the response
3. Extract the software measurements from the integrity report, consisting of the software

and configuration utilised by both the host and the vNSFs running into it
4. Verify the integrity measurements of the host against the reference values contained in

the Whitelist Database
5. For each vNSF, verify the integrity measurements against the known digests contained

in the vNSF security manifest
6. For SDN-controlled switches, verify the SDN forwarding rules with regards to the

expected one (in the SDN controller)

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
54

The Verifier can assess the measurements of the host by leveraging the Whitelist Database
functionality. The known measurements of each vNSF can be retrieved via the API exposed by
the vNSF Store. In case of failure during attestation, the Verifier sends a notification by
leveraging the APIs provided by both the vNSFO and the DARE components. Periodic attestation
should be performed by an internal task that uses the API offered by the vNSFO to retrieve the
"map" of the status of running nodes in the NFVI.

DARE Connector: The Trust Monitor should be able to collect relevant information from the
NFVI in real time to verify the nodes' software integrity. This information is used to detect
security incidents regarding misuse of a node. In case of failure upon attestation, a security
event is sent by the Trust Monitor to the DARE. This information is logged by the DARE and it
could also be shared with a third entity.

Whitelist Database: The database contains the complete data of the executables allowed on
the attested platforms. More specifically, for example on Linux-based platforms, it contains the
digest, the full path name, and the executable’s packages (grouped by distributions and
architecture). Given the supported distributions and architectures, the database is initialised
and updated periodically by downloading the packages' lists from their official repositories.
Alternatively, the database can be updated with release information for components that do
not come from public repositories. Additionally, the database should store the history of each
package, reporting the information about its updates (e.g. the type of update). Given the
packages' history, the Verifier verifies the IMA log at different trust levels:

• Level 1: TPM and IMA measurement in the node is running correctly

• Level 2: In addition to Level 1, all the software is found in the reference database but
there is at least one with a known security vulnerability

• Level 3: In addition to Level 2, at least one binary has a known functional bug

• Level 4: In addition to Level 3, no known security vulnerabilities or functional bugs are
found in the measured software

vNSF Store Connector: This subcomponent allows the retrieval of the security manifest for each
vNSF to be attested.

vNSFO Connector: The vNSFO is in charge of terminating nodes of the NFVI if their execution
cannot be trusted. Therefore, the Trust Monitor is in charge of notifying both the vNSFO and
the DARE in case of remote attestation failure. In addition, the Trust Monitor should have a
clear view of the vNSFs and NFVI PoPs deployed in the SHIELD infrastructure, in order to
perform the periodic attestation of running nodes. To do so, it will leverage a specific
functionality offered by the vNSFO API.

Newcomer Attestation API: The sub-component exposes an API for on-demand registration and
attestation of newcomers in the NFVI.

Management API: The sub-component exposes a read-only API for checking the status of the
Trust Monitor and retrieving relevant information about the attestation of the infrastructure.

3.4.2. Implementation details

The Trust Monitor implementation starts from components that have been developed in the
EC-funded project SECURED [4]. More specifically, the following technologies could be reused:

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
55

• Third-party Verifier based on Open Attestation v1.7 [5],

• Whitelist Database based on Apache Cassandra 2 [6],

• SDN-enabled switch attestation prototype [7],

These technologies, representing the starting point for the development stage, are bound to a
Linux CentOS 7 environment equipped with TPM 1.2 device. The development efforts in the
project are aimed to enrich the already available software with the SHIELD-specific APIs.

Additionally, the Trust Monitor should be able to support TPM 2.0-enabled hardware, meaning
that the attestation framework needs further improvements. Regarding this point, the OpenCIT
[53] framework, developed by Intel, will be exploited as an evolution to the Open Attestation
framework.

As stated in the official website of the project, Open Attestation no longer receives any update
and it does not provide support for the TPM 2.0 devices. On the opposite side, OpenCIT does
not support the integrity report workflow (as of March 2018), meaning that further
improvements are needed over the mainstream version. The details on the specific
development for the interfaces and connectors described earlier are provided in the “Annex D:
Application Programming Interfaces (APIs)”.

3.4.3. Requirements mapping

Requirement Requirement name Requirement description

PF08 Platform
expandability

The platform SHALL be easily extended to support new
security services.

T_SPEC_01 The Trust Monitor provides documented APIs and interfaces to enable the
interaction with the different components. In addition, the component provides a
generic client-service workflow to attest the nodes in the NFVI.

PF11 vNSF attestation The platform SHALL check the provenance and integrity of a
vNSF and, when applicable, its associated policies, before it
starts to operate.

T_SPEC_02 The Trust Monitor should attest the vNSFs deployed on top of a host in the NFVI
and provides notifications to both DARE and vNSFO.

PF16 History reports The platform SHALL generate reports of past incidents based
on historic data.

T_SPEC_03 The Trust Monitor contributes to the definition of reports of past incidents, as it will
provide notifications to both the DARE and the vNSFO to enrich the logs of
occurring incidents.

PF19 Network
infrastructure
attestation

The platform SHALL verify that the network infrastructure
executing the NSs is in a trusted state (network elements,
server identity, software and their configuration).

T_SPEC_04 The Trust Monitor attests the software integrity of the network infrastructure and
provides notifications to both DARE and vNSFO.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
56

PF22 Management
communications
security

The platform SHALL encrypt all the management
communications.

T_SPEC_05 The Trust Monitor implements encrypted connections via TLS for all its interactions
with other components of the platform.

NF01 Response time The platform SHALL report the incident within a relatively
short time (in the order of seconds)

T_SPEC_06 The Trust Monitor periodically attests the nodes in the NFVI (in the order of
seconds) to identify any occurring incidents and report them to both DARE and
vNSFO. The bottleneck for minimising the latency between two subsequent
attestations is the latency introduced by the usage of TPM, as it registers the
measurements in the node.

NF07 Compliance to
standards

The platform SHALL conform to well-established standards,
in particular with respect to data export (e.g. STIX) and input
(e.g. NetFlow).

T_SPEC_07 The Trust Monitor adopts well-established standards by the Trusted Computing
Group to describe the formats of integrity reports.

NF08 Deployment and
support simplicity

The platform SHALL be easily installed and maintained,
without the need of specific expertise.

T_SPEC_08 The Trust Monitor can be instantiated as a set of containers that are run and
interconnected automatically by the container runtime (Docker). Specific
subcomponents of the Trust Monitor can be deployed independently on different
machines (e.g. the Whitelist Database and the Verifier).

ERC07 Notification
obligation

In the case of a breach in a component that processes
personal data, the platform SHALL produce a breach
notification. Data rectification or erasure should be
accompanied with a notification to the data subject unless it
is difficult or involves disproportionate effort, as per article
19 of the GDPR.

T_SPEC_09 The Trust Monitor sends a notification if it detects a breach in a SHIELD NS.

Resource
Requirements

The Trust Monitor requires at least 2 virtual processors, 100 GB of storage and 4
GB of RAM. Recommended specifications include 4 virtual processors, 100 GB of
storage and 8 GB of RAM.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium

57

4. REGULATORY COMPLIANCE SPECIFICATIONS

Ensuring the regulatory compliance of the vNSF ecosystem is a key activity that removes
barriers towards their adoption. This section discusses the regulatory framework that applies
across EU member states that is relevant to the operational aspects of the vNSF ecosystem.
Based on this analysis, SHIELD extracts the regulations-based specifications for the key
components and illustrates how to start implementing compliance mechanisms. The key focus
of this work is on:

• Privacy and Data Protection,

• Obligations of the service provider to Law Enforcement/CERTs,

• Net Neutrality and fair traffic classification,

• Non-discrimination and protection of the individual’s rights against behavioural
profiling.

A face-to-face meeting with SHIELD’s Ethics Advisor Prof. Haralambos Mouratidis1 took place
in Athens (March 16th, at Space Hellas SA premises). Prof. Mouratidis provided valuable
feedback on GDPR and overall legal compliance and on the definition of specifications.

4.1. EU regulatory framework

4.1.1. Analysis of EU regulatory landscape

General Data Protection Regulation: Regulation (EU) 2016/679 of the European Parliament and
of the Council of 27 April 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation) (Text with EEA relevance) [54]

The EU General Data Protection Regulation is in place to safeguard the rights of the data
subjects and enable them to better control their personal data. The Regulation aims to alleviate
the fragmentation in data protection law across EU member states and replace the previous
Directive with a unified set of rules. The GDPR features an improved territorial scope since it
applies to controllers/processors of personal data that are established in the Union, regardless
of the location of the processing. Article 4 makes the following definitions:

Key definitions in Article 4 with relation to SHIELD

1. ‘personal data’ means any information relating to an identified or identifiable natural person
(‘data subject’); an identifiable natural person is one who can be identified, directly or
indirectly, in particular by reference to an identifier such as a name, an identification number,
location data, an online identifier or to one or more factors specific to the physical,
physiological, genetic, mental, economic, cultural or social identity of that natural person;

2. ‘processing’ means any operation or set of operations which is performed on personal data or
on sets of personal data, whether or not by automated means, such as collection, recording,

1 Prof. Haralambos Mouratidis, Director Centre for Secure, Intelligent and Usable Systems (CSIUS), Professor of

Software Systems Engineering, School of Computing, Engineering and Mathematics, University of Brighton.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
58

organisation, structuring, storage, adaptation or alteration, retrieval, consultation, use,
disclosure by transmission, dissemination or otherwise making available, alignment or
combination, restriction, erasure or destruction;

 […]
4. ‘profiling’ means any form of automated processing of personal data consisting of the use of

personal data to evaluate certain personal aspects relating to a natural person, in particular to
analyse or predict aspects concerning that natural person’s performance at work, economic
situation, health, personal preferences, interests, reliability, behaviour, location or movements;

 […]
5. ‘controller’ means the natural or legal person, public authority, agency or other body which,

alone or jointly with others, determines the purposes and means of the processing of personal
data; where the purposes and means of such processing are determined by Union or Member
State law, the controller or the specific criteria for its nomination may be provided for by Union
or Member State law;

6. ‘processor’ means a natural or legal person, public authority, agency or other body which
processes personal data on behalf of the controller;

 […]
11. ‘consent’ of the data subject means any freely given, specific, informed and unambiguous

indication of the data subject’s wishes by which he or she, by a statement or by a clear
affirmative action, signifies agreement to the processing of personal data relating to him or
her;

The network data that are being processed by SHIELD components such as the vNSFs may
include personal data in the form of IP addresses, emails, login credentials etc. SHIELD,
however, does not profile a natural person’s behaviour. SHIELD vNSFs do not inspect the
contents of communications or assess personal aspects of a natural person’s behaviour (e.g.
buying patterns, religious beliefs, health etc.). The basic principles that underline the GDPR
(Article 5) regard:

• The lawfulness, transparency and fairness of processing;

• The limitation of its purpose (data must be collected for clear and explicit reasons);

• The principle of data minimization (data collected should be adequate to perform the
specific purpose but limited to what is necessary);

• The accuracy of the data;

• The minimization of storage that permits identification of the data subject for no
longer than necessary;

• The security and confidentiality of the data.

Article 6 further analyses the lawfulness of processing while Article 7 details the consent
processes that should apply.

Article 6 Lawfulness of processing

1. Processing shall be lawful only if and to the extent that at least one of the following applies:
(a) the data subject has given consent to the processing of his or her personal data for one or

more specific purposes;
(b) processing is necessary for the performance of a contract to which the data subject is party

or in order to take steps at the request of the data subject prior to entering into a contract;
(c) processing is necessary for compliance with a legal obligation to which the controller is

subject;

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
59

(d) processing is necessary in order to protect the vital interests of the data subject or of another
natural person;

(e) processing is necessary for the performance of a task carried out in the public interest or in
the exercise of official authority vested in the controller;

(f) processing is necessary for the purposes of the legitimate interests pursued by the controller
or by a third party, except where such interests are overridden by the interests or fundamental
rights and freedoms of the data subject which require protection of personal data, in
particular where the data subject is a child.

In the context of SHIELD, processing for the explicit purpose of security can considered lawful.
Cybersecurity and protection of network infrastructures against intrusions and breaches can
be considered as vital interests of the data subject and as tasks carried out in the public interest.
The ISP that uses SHIELD vNSFs to secure their network need to inform their clients accordingly
and ask for their consent within their contract. In the case of ISP offering services to
organisations as SecaaS clients, the processing of network data is required to fulfil a contract.
The SecaaS client needs to ensure that the personnel are informed of the specific network
monitoring activities. Article 7 of the GDPR also states that when consent is given in the context
of a written declaration which also concerns other matters (e.g. a contract) it must be
presented in a form that is easily distinguishable and comprehensible, otherwise the
declaration will not be considered binding.

GDPR dedicates Articles 12-23 to the description of the Rights of the Data Subject and how they
shall be exercised, including the right for access, erasure, restriction, rectification, portability
and the right to be forgotten. It further specifies, that if the stored information is not
identifiable, then the data subject is responsible to provide additional information to identify
their data. Portability is another important aspect, since it is aligned with EU’s competition law.
If a person’s data are not portable among different instances of SHIELD, then customer lock-in
conditions are created. The data subject rights however, do not apply if a component does not
retain any data. Articles 24-43 relate to the responsibilities of the data controller, the data
processor, and establishes the role of the Data Protection Officer. This information should be
transparent to the user as well. The data subject should be able to contact the DPO or the Data
Processor regarding their data. Article 26 describes the case for Joint Controllers. This case could
be applicable to the SHIELD SecaaS use case (use case 2). The text also includes rules on data
sharing (Articles 44-50). If data are shared with third parties (or monetized) the data subject
should consent. Cross-border data sharing is not foreseen within SHIELD. Sharing data with Law
Enforcement or CERTs should be enabled for alignment with other Directives as well. Other
issues covered in the GDPR include the role of independent supervisory authorities (Articles 51-
59), Liabilities and penalties (Articles 77-84) etc.

Open Internet Regulation: Regulation (EU) 2015/2120 of the European Parliament and of the
Council of 25 November 2015 laying down measures concerning open internet access and
amending Directive 2002/22/EC on universal service and users’ rights relating to electronic
communications networks and services and Regulation (EU) No 531/2012 on roaming on public
mobile communications networks within the Union (Text with EEA relevance). [55]

The Open Internet Regulation establishes the circumstances where traffic classification and
management are legitimate. It lays down specific net neutrality rules and governs the way ISPs
may choose to manage the traffic that passes through their networks, while ensuring equal and

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
60

non-discriminatory treatment of traffic. Specifically, the following aspects are particularly
relevant to SHIELD:

(8) When providing internet access services, providers of those services should treat all traffic equally,
without discrimination, restriction or interference, independently of its sender or receiver, content,
application or service, or terminal equipment. According to general principles of Union law and settled
case-law, comparable situations should not be treated differently, and different situations should not
be treated in the same way unless such treatment is objectively justified.

(10) Reasonable traffic management does not require techniques which monitor the specific content of
data traffic transmitted via the internet access service.

(12) Traffic management measures that go beyond such reasonable traffic management measures may
only be applied as necessary and for as long as necessary to comply with the three justified exceptions
laid down in this Regulation.

(13) First, situations may arise in which providers of internet access services are subject to Union
legislative acts, or national legislation that complies with Union law (for example, related to the
lawfulness of content, applications or services, or to public safety), including criminal law, requiring, for
example, blocking of specific content, applications or services.

(14) Second, traffic management measures going beyond such reasonable traffic management
measures might be necessary to protect the integrity and security of the network, for example by
preventing cyber-attacks that occur through the spread of malicious software or identity theft of end-
users that occurs as a result of spyware.

(15) Third, measures going beyond such reasonable traffic management measures might also be
necessary to prevent impending network congestion, that is, situations where congestion is about to
materialise, and to mitigate the effects of network congestion, where such congestion occurs only
temporarily or in exceptional circumstances.

Article 3 further states that traffic management must be reasonable, transparent, non-
discriminatory and proportionate. Article 4 details how providers of internet access services
shall be transparent in their contracts about traffic management; hence, traffic management
through SHIELD for cybersecurity purposes should be included. Article 5 also mentions that
national authorities should be able to monitor compliance with this Directive and record their
findings.

The application of traffic classification and rate limiting within the context of SHIELD is lawful
since it does not restrict users’ access based on arbitrary or business-oriented decisions. In
SHIELD, cybersecurity is the sole purpose of traffic classification and any rate-limiting measures
are attached to a security event which is parsed by the recommendation engine and reported
in the dashboard. This allows for a level of transparency when applying such measures to limit,
redirect or block specific types of traffic and enables monitoring from national authorities.
Furthermore, the application of rules can be restricted to suspicious IP addresses or
applications/protocols and can thus be considered proportionate since the decision to apply
them includes only offending flows that were detected in the DARE. Rate limiting can and
should be rolled back when there is no additional danger to the security of the network.
Furthermore, the SHIELD vNSFs do not investigate the communication contents for traffic
management.

ePrivacy Directive: Directive 2002/58/EC of the European Parliament and of the Council of 12 July
2002 concerning the processing of personal data and the protection of privacy in the electronic
communications sector (Directive on privacy and electronic communications) [56]

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
61

The ePrivacy Directive, also known as the EU Cookie Law, sets the rules for the collection of
cookies and ensures confidentiality of electronic communications. At the moment, there is a
proposal [57] for a revision of the ePrivacy Directive, to better align it with the GDPR, take into
account continuing technical innovation, and to transform it into a Regulation. This would mean
that the EU Member States would implement the Regulation as-is, as opposed to a Directive
which can be implemented in any way considered suitable by the Member States. The proposal
for the Regulation was released on January 2017. Regarding the applicability of the ePrivacy
Directive and the future ePrivacy regulation, SHIELD makes the following assumptions:

• The SHIELD vNSFs are not applications that require cookies to provide a user
experience, they do not track user preferences through cookies and hence do not
require SHIELD to ask the user for cookie consent.

• Cookies, however, can be part of the network traffic and as they provide identifiability,
SHIELD considers the GDPR stipulations for their protection.

• Profiling of a user’s behaviour through cookies is not considered in any SHIELD vNSF.
Otherwise, consent and additional safeguards to ensure the data subject’s rights and
non-discrimination should be in place. protection of communication contents under the
new regulation will apply to telco traffic (e.g. SMS), as well as other digital
communications providers (e.g Skype, WhatsApp etc.).

• The confidentiality of personal communications is also relevant to SHIELD, as the vNSFs
do not compromise encrypted safe communications.

Regarding the proposal for the ePrivacy Regulation, a new component is the protection not
only of communications content but also of communication metadata. SHIELD already applies
GDPR protections to cookies and information metadata. Pending finalisation of the ePrivacy
Regulation, additional protections can be considered.

Data protection in criminal investigations: Directive (EU) 2016/680 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data by competent authorities for the purposes of the prevention,
investigation, detection or prosecution of criminal offences or the execution of criminal penalties,
and on the free movement of such data, and repealing Council Framework Decision
2008/977/JHA. [58]

Network Information Security Directive: Directive (EU) 2016/1148 of the European Parliament
and of the Council of 6 July 2016 concerning measures for a high common level of security of
network and information systems across the Union [59]

Although these directives do not apply directly to SHIELD, they are relevant as service providers
may be required to cooperate with law enforcement in a criminal investigation or with
appropriate cybersecurity agencies in case of a cyberattack. A vNSFs may expose APIs for
exchange of information with relevant third parties under these directives, although the exact
use of such APIs would be defined by the ISP or SecaaS client and their internal policies
regarding statutory process (unless access is court-mandated). Specifically, the NIS Directive
aims to develop the principles for European cyber-crisis cooperation. Since it is a Directive, the
Member States can select the specific of its implementation, leading to concerns on
fragmentation and disparities among Member States. NIS states that a certain level of
cooperation and cyber security readiness is expected from operators of critical services,
defined as (article 4):

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
62

(a) an entity provides a service which is essential for the maintenance of critical societal
and/or economic activities;

(b) the provision of that service depends on network and information systems; and

(c) an incident would have significant disruptive effects on the provision of that service.

This applies to critical infrastructures (including banking, health, transport etc.), providers of
telecommunication basic services (DNS providers etc.), digital service providers (e.g.
marketplaces), cloud infrastructure providers etc. Therefore, it is applicable to the SHIELD
concept in the sense that SHIELD should improve communication of cyber incidents among
operators and cyber security response teams and agencies.

Non-discrimination:

Council Directive 2000/78/EC of 27 November 2000 establishing a general framework for equal
treatment in employment and occupation. [60]

European Charter of Fundamental Human Rights [61], esp. Article 8(1) on the protection of
personal data

Treaty of Amsterdam [62] (1997/1999 establishing the protected grounds against discrimination)
& Treaty of Lisbon [63] (2007/2009 making the ECHR Bill of Rights legally binding)

Council of Europe recommendations on profiling: Recommendation CM/Rec(2010)13 of the
Committee of Ministers to member states on the protection of individuals with regard to
automatic processing of personal data in the context of profiling. [64]

Although the non-discrimination body of law in the EU regards access to employment,
education etc. which are out of the scope of SHIELD, we can consider some basic principles and
definitions to be free-standing. Access to the Internet can be regarded as a basic service that
should be available to all citizens and any discriminatory practices should be abolished.
Although SHIELD vNSFs do not profile the user’s behaviour for cybersecurity, some definitions
should be in place, for future reference:

• The entry into force of the Treaty of Amsterdam in 1997, enabled the European
Commission to legislate on non-discrimination based on defined protected grounds
which include gender, age, race, ethnicity, religion, belief, age, disability and sexual
orientation. The GDPR considers data that may expose these aspects of the data subject
as “special category” data.

• Protection against discrimination is not only present in EU Law but also within the
European Charter of Human Rights (ECHR) that was proclaimed by the European Union
and the Member States in 2000. The ECHR declared the fundamental human rights to
be protected and became legally binding after the 2009 Treaty of Lisbon.

• Most definitions in EU law and ECHR regard cases of direct discrimination. The EU
Agency of Fundamental Rights (FRA) [65], however, further defines indirect
discrimination, when a rule that appears to be neutral affects a specific group of citizens
in a significantly more negative way, by comparison to others in a similar situation. It
also defines harassment and instruction to discriminate as violating the dignity of a
person.

Hence, any data processing component that profiles aspects of the data subject with respect
to these protected grounds, should have safeguards in place to ensure that processing is lawful

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
63

and that such information cannot be misused and lead to discriminatory practices. The Council
of Europe has published a recommendation on safeguards for processing that leads to profiling,
although this predates the GDPR and there was no legal definition of profiling at the time.

4.1.2. Basic assumptions on the stakeholder roles and obligations

In order to properly map what the roles and obligations of each stakeholder, it is first necessary
to understand the ecosystem of actors across SHIELD use cases. The main stakeholders that
can be immediately identified include:

• The service provider that deploys the SHIELD vNSFs (e.g. an ISP or SecaaS provider),

• The vNSF developer that offers their products through a marketplace,

• Natural persons that purchase internet or SecaaS services from a provider (e.g. a person
who uses the internet in their home environment)

• Organisations (legal persons) that purchase internet or SecaaS services from a provider
(e.g. a company that purchases DDoS protection for their network) and the natural
persons that use their network,

• The Data Protection Authorities, Law Enforcement, CERTs etc. and all organisations that
might interface with the Data Controllers in case of a cyber security incident, data
breach etc.

The first step is to identify which actors take up the role of the Data Controller, the Data
Processor, the Data Protection Officer and the data subject, as well as their specific obligations.

Obligations of the Data Controller: The GDPR considers data subjects that are natural persons.
Across all use cases that role is assumed by the users that connect to a network protected by
SHIELD vNSFs. When a service provider utilises SHIELD vNSFs, it is their obligation to obtain
consent from their clients (i.e. the data subjects). Consent can be given in the form of the
contract between e.g. an ISP and the client purchasing services for a home network. Article 7
of the GDPR states that in this case all information “must be presented in a form that is easily
distinguishable and comprehensible, otherwise the declaration will not be considered binding.”
The service provider thus takes up the role of the Data Controller and appoints the Data
Processor and Data Protection Officer, whose contact information should be accessible to the
data subjects. This is applicable in Use Case 1, when the ISP uses the vNSFs to secure their own
network infrastructure. Use Case 2 (SecaaS), however, assumes a different ecosystem. When
a private or public organisation purchases Security-as-a-Service from a provider, both the client
and the provider take up the role of the Data Controller. The data subjects are the natural
persons using the client organisation’s network (e.g. employees etc.). This use case falls under
the case of Joint Controllers. In such a case, the existence of joint controllers and their
association should be transparent, and the data subjects should have access to the related data
protection information. Use Case 3 assumes that the Data Controller should provide
information to Law Enforcement agencies, CERT/CSIRT teams etc. in case of a major
cybersecurity incident. It is the responsibility of the vNSF provider to include such interfaces in
the vNSF if necessary, although its use hinges on the operational procedures adopted by the
Data Controller. The way that statutory processes are being implemented by the Data
Controller, should overlap with the vNSF, hence the Data Controller should remain in control
of the reporting. The Data Controller is also obligated to refer to the Data Protection Authority
to obtain consultation, authorisations or to report a data breach.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
64

Obligations of the vNSF developer: The vNSF developer that offers their products through a
Store or marketplace is obligated to provide the full specifications regarding how data
processing is performed within the vNSF, as well as all the APIs and interfaces that allow data
sharing. Using data minimisation practices within the vNSF, data encryption or
anonymisation/pseudonymisation is the obligation of the developer. It is the obligation of the
service provider that purchases and instantiates the vNSF to provide information on how it is
used (i.e. which data sharing APIs are being used, etc.) to their clients. If data outputs from the
vNSF are being used for further processing by an ISP, it is the obligation of the ISP to provide
the specifications for the additional processing. The vNSF developer is required to analyse
which types of personal information can be viewed by the vNSF (e.g. packet headers, email
accounts, device IDs etc.) and specify if identifiability of the data subject can arise from the
processing within the vNSF. In essence, the vNSF developer should complete a Data Protection
Impact Assessment for each vNSF product. The following subsection (Subsection 4.2) further
includes some best practices that could be adopted by the vNSF developer (and SHIELD overall).

Obligations of the Data Processor and Data Protection Officer: The system administrator that
onboards, instantiates and manages the vNSF acts as the Data Processor. The Data Processor
should be able to ensure that the rights of the data subject are being respected. Hence, the
Data Processor should have available interfaces to erase, rectify etc. personal data when asked,
either through the Dashboard or directly through the management interfaces of the vNSF. If
the vNSF device does not retain data, the existence of such an interface might be irrelevant. If
the data retained within the vNSF are not identifiable, the GDPR states that the data subject
must provide a way to identify their data. The Data Protection Officer should serve as a contact
point between the Data Controller and the appropriate Data Protection Authority. In case of a
data breach, both the data subjects and the Data Protection Authority should be notified.

ePrivacy Compliance: In the context of ePrivacy, the SHIELD vNSFs do not utilise cookies to offer
a user experience hence there is no obligation from the vNSF developer or ISP to provide cookie
disclaimers. The network traffic, however, that passes through the vNSF might contain cookie
information. In such a case, cookies receive the same level of protection as any identifiable
personal data under the GDPR. SHIELD can consider additional measures to protect cookies and
other communication metadata, should the ePrivacy regulation require additional protections
for cookies and other communication metadata.

Net Neutrality: Since the Dashboard logs remediation actions and the associated security
events, there is a certain level of transparency to remediation measures that apply rate limiting
or blocking actions to a specified type of traffic. SHIELD and especially the vNSF developers, are
obligated to ensure that appropriate interfaces are available to roll back these remediation
measures once the security incident has ended. This can be performed either through the
Dashboard or through the vNSF management interface.

Non-discrimination: The SHIELD vNSFs do not profile the user based on their network traffic or
look into personal communication contents (e.g. messages, emails etc.). Hence, the risk of
discrimination on the grounds of the Amsterdam Treaty is minimal. If additional processing
takes place outside of the vNSF (either in DARE or another third-party component) it is the
obligation of the ISP or SecaaS client to specify whether the user is being profiled and to ensure
that the profiling results are not being misused. There needs to be assurance that the profiling
information is not being used to deny access to basic services to a natural person based on their
gender, ethnicity, religious, political views etc. This extends to the provision of internet access,

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
65

to employment practices such as termination of a contract etc. In case of a remediation action
that denies access to a user due to a security event, there is a level of transparency since the
dashboard logs the security events attached to a remediation action. SHIELD and the vNSF
developer, however, are obligated to ensure that in case of a false positive detection of an
attack (i.e. when a user has been denied access to a network due to a false identification of a
cybersecurity incident), the remediation action can be rolled back and access to a user can be
restored. In SHIELD this can be implemented via either the Dashboard or directly through the
management interface of the vNSF.

4.2. Best practices

Value-sensitive design (VSD) is built around the simple concept of designing technology to
encompass human values and principles [66]. VSD addresses common design issues by taking
into account the ethical values of the involved stakeholders. Privacy by design is an example of
VSD that focuses on privacy during the entire development of a product. The way that Privacy-
by-design is achieved depends on the application and technologies involved although the
design is guided by a set of foundational principles [67]:

1. Proactive not reactive; preventative not remedial: the approach should be characterised
by proactive measures that come before-the-fact.

2. Privacy as the default setting: Even if a user does not set specific policies, their privacy
is still, automatically protected.

3. Privacy embedded into design: Privacy is integral to the system without diminishing
functionality and not “bolted on as an add-on”.

4. Full functionality – positive-sum, not zero-sum: False dichotomies (“privacy vs security”)
should be avoided and no unnecessary trade-offs should be made.

5. End-to-end security – full lifecycle protection: Strong security measures are essential and
should apply to the entire data lifecycle. This extends to the introduction of Security-
by-design.

6. Visibility and transparency – keep it open: Trust is easier to build when there is
transparency and the stated promises can be verified across all stakeholders.

7. Respect for user privacy – keep it user-centric: Keep in mind the interests of the
individual and provide privacy defaults, notices and empowering user-friendly options.

The GDPR further includes a definition of data protection by design and by default:

“In order to be able to demonstrate compliance with this Regulation, the controller should
adopt internal policies and implement measures which meet in particular the principles of data

protection by design and data protection by default.”

It dedicates Article 25 on data protection principles such as data minimisation, i.e. ensuring that
only the data that are required for processing are used.

A Data Protection Impact Assessment [68] is the process where the data protection risks of a
project are evaluated. The DPIA should include information on the nature and characteristics

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
66

of the data processing, the necessity and proportionality of processing, an assessment of risks
and the mitigation measures that might be applicable. The Data Protection Officer of an
organisation should review the DPIA with the assistance of the Data Processor and notify the
National Data Protection Authority if further authorisation or consultation is required. Article
35 of the GDPR provides the minimum requirements for a DPIA. It needs to provide:

• a systematic description of the planned processing operations and the purposes of the
processing, including, where applicable, the legitimate interest pursued by the
controller,

• an assessment of the necessity and proportionality of the processing operations in
relation to the purposes,

• an assessment of the risks to the rights and freedoms of data subjects,

• the measures intended to address the risks, including safeguards, security
measures and mechanisms to ensure the protection of personal data and
to demonstrate compliance with the GDPR with regard to the rights of data
subjects and other persons concerned.

Hence, the vNSF developers need to perform a DPIA and assess the data privacy risks of each
vNSF. To that extent, SHIELD reviews possible privacy risks, and lists specific mitigation
measures. This work, along with the analysis in 4.1.1, sets the basis for a set of compliance
specifications that are generated specifically for vNSF products, since no available DPIA
template covers the specificities of SDN/NFV technology. The main aim of this work is to ensure
that DPIA practices are adopted by the SHIELD partners and offer support for the development
of GDPR compliant future products. Therefore, D3.2 presents an overview of potential risks and
mitigation measures and provides detailed specifications regarding the amount of data
processing activities of the vNSF ecosystem. Similar work is also included in D4.2 regarding the
DARE components.

The Open Web Application Security Project (OWASP) maintains a list of top 10 Privacy risks and
related countermeasures [69]. In the following table an analysis of these risks is presented, in
the context of the SHIELD vNSF ecosystem, and an adaptation of the countermeasures is
provided so as to account for the platform’s specificities.

Table 2 Privacy risks and countermeasures.

Privacy Risk Application to SHIELD Countermeasures

P1 Web
Application
Vulnerabilities

Although the vNSFs are not web
applications, we can consider that failure to
suitably design it or apply a fix to known
security vulnerability can result to a privacy
breach, especially if the vNSF holds any
personal data stored. Attention should be
payed to the virtual machine’s hypervisor
technology as well. This also applies to the
Store as it should be hardened against
known vulnerabilities.

Perform penetration tests, monitor
vulnerabilities (including those
related to the vNSF hypervisors), train
developers in secure development,
install updates, fixes etc.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
67

P2 Operator-
sided Data
Leakage

Failure to prevent a data leak can result in
loss of confidentiality. This applies
especially to any vNSF that stores
information, as well as the SHIELD Store.

The Trust Monitor can identify untrusted
vNSF and NFVI and provide early warning.

Access control and Identity
management following the principle
of least privilege, strong encryption
for personal data, awareness training,
data classification and handling
policies, data leak prevention/early
warning, privacy-by-design, data
anonymization/pseudonymization.

P3 Insufficient
Data Breach
Response

The persons affected by a data leak should
be informed. Immediate action should be
taken to limit a data breach, which should
be followed by remediation measures. This
applies to all data processing components
and not only to vNSFs. The Store and any
interface requiring login credentials etc.
should follow the same approach to secure
a data breach. Breach notification is
addressed in SHIELD requirements.

Develop/Test/Maintain an incident
response plan, a data breach
notification system, determine the
scope/scale of the breach, notify the
Data Protection Officer, investigate
the data breach and provide
documentation and reports. The
Trust Monitor also provides early
warning against breaches in vNSFs.

P4 Insufficient
Deletion of
Personal Data

Appropriate data retention periods should
be defined. After the retention period is
over the data should be deleted, (or upon
request by the data subject). If retention is
not necessary, the data should be deleted
after processing.

Retention is addressed in the specifications
following in subsection 4.3.

Follow the data minimization
principle and adhere to GDPR data
subject rights (e.g right of deletion,
restriction of processing, right to be
forgotten etc.), document data
retention policies, deletion should be
verifiable.

P5 Non-
transparent
policies,
terms and
conditions

This relates to not providing sufficient
information to describe how data is
collected, processed, stored, managed etc.
This information should always be easily
accessible and understandable.

SHIELD provides this information in the
specifications for each data processing
component. The following subsection 4.4
discusses assurance and certification.

Develop terms and conditions for the
SHIELD services, make information
available and comprehensible,
separate terms and conditions for
GDPR in a contract, use visual
materials (icons, pictograms etc.),
document changes to terms and
conditions, keep track of user
consent, provide opt-out policies
(when feasible).

P6 Collection
of data not
required for
the primary
purpose

The collection of user-related data that are
not necessary for the purposes of the
system is a major privacy risk. This applies
to data that were collected without the
data subject’s knowledge or consent.

Purpose is addressed in the specifications
following in subsection 4.3, while
certification/assurance is addressed in 4.5.

The purpose of data
collection/processing should be
transparent. Data should only be
collected for the specified purpose
(data reduction/minimization), opt-
out policies should be set when
feasible, apply conditioned collection
(only under specific circumstances)

P7 Sharing of
Data with
third party

Provision of a user’s data to a third party
without the user’s knowledge and consent.
The existence of APIs for third party data

Proxy the content on self-hosted
servers and not directly with a third
party, apply tokenization or
anonymization, develop a monitoring

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
68

exchange should be clear. If data are being
monetized the user should be aware.

This is addressed in the specifications
following in subsection 4.3 (which defines
types of third parties), while
certification/assurance is addressed in 4.5.

framework that can whitelist/blacklist
third parties, develop appropriate
contractual arrangements, monitor
user complaints, special provisions
should be made for cross-border
sharing.

P8 Outdated
personal data

The use of outdated, incorrect or bogus
user data, failure to update or correct the
data. In SHIELD this applies particularly to
the IPs involved in remediation actions and
to the login credentials of the data
processors.

Implement a procedure to obtain
input from users and update their
data, ability to roll back a remediation
action in case of false positive attack
detection, in case of updates all
related subsystems should be aware.

P9 Missing or
insufficient
Session
Expiration

Failure to effectively enforce a session
termination. May result in additional data
collection without the user’s consent or
awareness or even to theft of credentials. In
SHIELD this applies particularly in the user
interfaces requiring login credentials (e.g.
administrators, dashboard users etc.)

Automatic session expiration should
be set with appropriate expiration
times based on the criticality of the
application and the data. Session
timeout could be configurable,
reminder messages to log out can be
implemented.

P10 Insecure
Data Transfer

Failure to provide data transfers over
encrypted and secured channels, may lead
to data leaks, failure to limit the leak
surface. In SHIELD this applies to the data
transfer between vNSF-vNSFO, vNSF-DARE,
DARE-vNSFO.

Send personal data through secure
protocols, apply secure
configurations, allow connections
over secure protocols and disallow
unsafe connections, avoid inclusion of
personal information in session
ID/URL, activate privacy extensions
(e.g in IPv6)

In terms of the Store, Orchestrator and Trust Monitor, the main GDPR compliance mechanisms
involve the use of identifiable data in the form of their administrators’ login credentials. In this
case, credentials are stored in encrypted form and can be removed from the system if a user
or administrator is no longer required to work with these components. Session expiration is
also a mitigation measure that minimises risk for a data breach. In terms of the vNSF
components, a detailed analysis follows.

4.3. Regulatory compliance specifications

Based on the previous analysis in 4.1-4.2, SHIELD developed a template for the definition of the
regulatory compliance specifications for each vNSF, showcased in Tables 3-12. This template
can of course be adapted to any components that store or process personal data (internal or
external to SHIELD). SHIELD provides instruction on how to fill out the specifications for a
component and provides the specifications for all SHIELD Y1-Y2 vNSFs. The information
provided in the template is organised in specific sections:

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium

69

General Information: This includes basic information on the vNSF such as its name, its developer
and a brief description of its key function. It also includes any certification or standardisation
marks.

Table 3 vNSF general information.

1
General

Information

vNSF Name <vnsf name>

vNSF version <vnsf version number>

vNSF Developer <vnsf developer>

vNSF Description <description of vnsf>

Certification & Standardisation <any existing certification or standardisation marks>

Interfaces and Formats: This is a brief overview of all the inputs and outputs that are
programmed in the vNSF. This includes all interfaces and a mention of all standard and non-
standard data formats.

Table 4 Overview of interfaces and data formats.

2
Interfaces

and Formats

Data Inputs <description of data inputs>

Data Outputs <description of data outputs>

Data Formats <description of data types and formats>

Data Types (based on Article 4 & Article 11): This section overviews the way that the GDPR
applies to the vNSF. It contains information on the types of personal data that can be parsed
by the vNSF (e.g if it collects IP addresses, emails, cookies etc.), any data in special categories
(e.g. medical, political, religious etc. This generally does not apply to the specific SHIELD vNSFs,
although it might be used in future developments). Identifiability refers to the possibility that
the data help identify a specific data subject with processing that is internal to the vNSF. This
helps assess the impact of a data breach and the level of protection that must be applied, within
the DPIA. It is the responsibility of the vNSF developer to include which types of personal data
can be parsed by the vNSF. An example is IP addresses in L3 network data, HTTP Cookies in L7
Data, etc. An analysis per protocol might be required2.

Table 5 Data types.

3 Data types

Personal Data Y/N <description of personal data types processed>

Special Categories Y/N <description of special/sensitive data processed>

Identifiability Y/N/P <is the data identifiable within the vNSF?>

Data Storage: This section details how the vNSF stores data, what is the retention period, if
there are additional protection mechanisms. It is the responsibility of the vNSF developer to
apply data protection in the form of encryption/pseudonymisation/anonymisation.

Table 6 Data storage.

4 Data Storage

Data Storage Y/N <description of local data storage>

Data Encryption Y/N <description of encryption scheme>

Data Retention Y/N <retention period for data>

2 (e.g. the headers From, Authorization, Proxy-Authorization, User-Agent, X-ATT-DeviceId, X-Wap-Profile, X-UIDH,
X-Csrf-Token, X-Request-ID, X-Correlation-ID, Set-Cookie could lead to identification of a person or device within
HTTP traffic).

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
70

Pseudonymisation Y/N <are the data decoupled or pseudonymised?>

Anonymisation Y/N <are the data decoupled or anonymised?>

Data Processing: This section details the processing of personal data within the vNSF. It includes
purpose, if processing is monetized or profiles the individual, a description of the data
processing algorithm, and a description of the obligations of the data processor etc. It includes
a justification on the lawfulness of processing and what is considered to be legitimate use for
the vNSF.

Table 7 Data processing activities performed by the vNSF.

5
Data

Processing

Purpose <purpose of data processing>
Monetisation Y/N <are the data being monetized?>

Profiling Y/N < personal aspects relating to a natural person?>

Data Processing Y/N <description of data processing algorithm>

Data Processor <who has access to the data & what are the obligations of the
controller>

Data Protection Officer <obligations of the Data Protection Officer>

Data Controller <obligations of the Data Controller>

Consent processes <Requirements for consent processes>

Lawfulness <description of the lawful uses of the vNSF>

Data sharing: This section details the possible data recipients. It lists the APIs and interfaces that
are available to the vNSF for data sharing. It considers GDPR stipulations, as well as the needs
of law enforcement and cybersecurity agencies. The vNSF provider is responsible to make clear
which APIs are available for a data sharing, but the service provider that chooses to on-board
the vNSF may opt-out from using them. It is the responsibility of the service provider to provide
information to their clients on how their data are being shared and if they are being monetized
or re-used.

Table 8 Available APIs/interfaces for data sharing per recipient category.

6 Data sharing

SHIELD components Y/N <which SHIELD components get data from the vnsf>

Third parties Y/N <which third parties get data from the vnsf>

Law enforcement Y/N <special API for law enforcement or national CERTs>

Cross-border sharing Y/N <potential for cross border data sharing>

CERT/CSIRT Y/N <access of CERT/CSIRTs to threat information>

Data Subject Rights: This section is relevant if the vNSF retains personal data (such as network
flows, IPs etc.). If there is no retention, the data subject rights do not apply. If data are retained
but are not identifiable, Article 11 states that the data subject should provide a way to identify
subsets of data relating to them.

Table 9 Data subject rights under the GDPR.

7
Data Subject

Rights

Right of access Y/N <is there an interface available from the vNSF
developer?>

Right of rectification Y/N <is there an interface available from the vNSF
developer?>

Right to be forgotten Y/N <is there an interface available from the vNSF
developer?>

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
71

Restriction Y/N <is there an interface available from the vNSF
developer?>

Notification Y/N <does the vNSF generate notifications of a data breach?>
Data portability Y/N <is there an interface available from the vNSF developer

to export data from the vNSF?>

Open Internet: This part is relevant to the Open Internet regulation and EU’s net neutrality
rules. If the vNSF applies traffic classification or rate limiting, it should be justified as lawful
according to the regulation’s stipulations.

Table 10 Net neutrality specifications.

8 Open Internet
Traffic Classification Y/N <Justification for traffic classification>

Rate Limiting Y/N <Justification for rate limiting>

Non-discrimination: This section applies only on vNSFs that perform any sort of behavioural
profiling or process data in sensitive categories. In this case, there should be justification of the
use of this processing and safeguards should be in place to ensure that the information cannot
be misused against the data subject or lead to discriminatory practices of any kind.

Table 11 Non-discrimination and misuse of data.

9
Non-

discrimination
Potential for misuse of data Y/N N/A

<relevant only if data are special category,
or if the vnsf profiles the user>

ePrivacy: This section regards processing of communication contents and the identifiability of
the data subject. The provider needs to ensure that communications are safe and secure and
that no unwarranted processing takes place (with the exception of Lawful Interception).

Table 12 ePrivacy compliance.

10 ePrivacy

Protection of the contents of a
communication

Y/N N/A
<relevant only if the vnsf looks into the
contents of the communications, i.e. the
packet payloads>

Use of cookies to provide a
user experience and track user
preferences

Y/N/ N/A
<relevant only if the processing includes
cookies or tracks the users preferences>

4.3.1. vNSF Compliance Specifications

According to the template that was presented, SHIELD provides the compliance specifications
of the SHIELD vNSFs in Tables 13-19.

Table 13 Compliance specifications for the NCSRD L3 firewall.

1
General

Information

vNSF Name L3 firewall

vNSF version V0.1

vNSF Developer NCSRD

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
72

vNSF Description This vNSF applies firewall rules to IP traffic

Certification &
Standardisation

None

2
Interfaces and

Formats

Data Inputs Ingress traffic, vNSFO traffic

Data Outputs Egress traffic

Data Formats Rules received by the vNSFO in xml format, netflow traffic

3
GDPR

applicability

Personal Data Y IP addresses

Special Categories N Does not apply

Identifiability N No identifiability within the vNSF

4 Data Storage

Data Storage N Network traffic is not stored or retained. The firewall
only stores firewall rules sent by the vNSFO

Data Retention N/A There is no retention of network data in the vNSF

Data Encryption N/A Does not apply since there is no retention

Pseudonymisation N/A Does not apply

Anonymisation N/A Does not apply

5 Data Processing

Purpose Cybersecurity

Profiling N No behavioural profiling of data subjects

Monetisation N Does not apply

Data Processing Network data IPs are checked against set firewall rules to block
or limit specific types of traffic (based on IP, protocol, port etc.)

Data Processor The administrator of the vNSF can act as the data processor.

Data Protection
Officer

Information must be available to the data subject. A Data
Protection Officer must be appointed by the data controller.

Data Controller The service provider that deploys the vNSF is the data
controller. In case of SecaaS deployments, joint controllers
may be envisioned.

Consent processes The client should be informed if the firewall is running on the
network and consent to its use. The Data Controller is
obligated to obtain consent.

Lawfulness Lawful use of the firewall includes cybersecurity, to ensure
infrastructure security and resilience and to protect the
interests of the ISP clients.

6 Data sharing

Other SHIELD
components

Y The vNSF can capture data and send them to DARE for
further analysis.

Third parties N No APIs for third party access.

Law enforcement N No APIs for Law Enforcement access; events and
mitigation actions can be reviewed through the
dashboard.

Cross-border data
sharing

N No APIs for cross-border data sharing.

CERT/CSIRT N No APIs for CERT/CSIRT access; events and mitigation
actions can be reviewed through the dashboard.

7
Data Subject

Rights

Right of access

Y

There is no identifiability and no data retention with
respect to network traffic, hence other measures to
ensure the data subject rights do not apply. The IP
addresses stored in iptables rules can be removed
through the dashboard or directly via the vNSF
management interface.

Right of rectification

Right to be
forgotten

Restriction

Notification

Data portability

8 Open Internet
Traffic Classification N No traffic classification.

Rate Limiting Y
vNSF can apply rate limiting rules per protocol or IP
etc. for cyberattack mitigation.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
73

9
Non

Discrimination
Potential for misuse N/A

The vNSF does not profile the user or process data in
sensitive categories, hence the potential for misuse is
minimized.

10 ePrivacy

Protection of the
contents of a

communication
N/A

The vNSF does not process the contents of
communications.

Use of cookies to
provide a user
experience and

track user
preferences

N/A The vNSF does not utilise cookies in any form.

Table 14 vIDS compliance specifications.

1
General

Information

vNSF Name vIDS (Virtual Intrusion Detection System)

vNSF version v0.1

vNSF Developer NCSRD

vNSF Description This vNSF monitors and logs the network traffic for signs of
malicious activity and generates an alert upon discovery of a
suspicious event.

Certification &
Standardisation

None

2
Interfaces and

Formats

Data Inputs Ingress traffic, vNSFO traffic (rules configuration)

Data Outputs Egress traffic (IPS mode), output (alerts) on threat identification
that includes specific threat information

Data Formats Rules received by the vNSFO (security orchestrator) in JSON
format, IDS alerts stored are Unified 2 (u2) format, IDS alerts
sent to DARE are in JSON.

3
GDPR

applicability

Personal Data Y IP addresses, packet headers may include emails, http
cookies etc.

Special Categories N Does not apply.

Identifiability Y Certain packet headers could provide identifiable
information (e.g. emails, login credentials etc.).

4 Data Storage

Data Storage N Network traffic is not stored or retained after processing.
Alerts with information of the identified threats are the
output of the vNSF which are stored in u2 format (IDS
logs). Alerts are transformed to JSON to be sent to DARE
but are not permanently stored.

Data Retention Y vIDS alerts are stored both in U2 and JSON formats and
vIDS logs are stored in U2 format. The alerts might
contain information of source/destination IP addresses,
source/destination ports, protocols used, rate of packets
per specified unit of time, Perl Compatible Regular
Expressions (PCREs), content contained in the packet
payload that might also include sensitive information
such as personal data, urls, telephone numbers, e-mail
addresses, etc.

Data Encryption N No data encryption in this vIDS version.

Pseudonymisation N The vNSF does not pseudonymise traffic.

Anonymisation N The vnSF does not anonymise traffic.

5
Data

Processing

Purpose Cybersecurity monitoring and reporting an incident to a CERT.
Profiling N No behavioural profiling of data subjects.

Monetisation N Does not apply.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
74

Data Processing This vNSF uses signatures/rules to identify security threats and
possible attacks based on traffic patterns or specific information
contained in the traffic.

Data Processor The administrator of the vNSF can act as the data processor.

Data Protection
Officer

Information must be available to the data subject. A Data
Protection Officer must be appointed by the data controller.

Data Controller
The service provider that deploys the vNSF is the data
controller. In case of SecaaS deployments, joint controllers may
be envisioned.

Consent processes
The client should be informed if the vNSF is running on the
network and consent to its use.

Lawfulness

Lawful use of the vIDS includes cybersecurity monitoring in case
of an incident, the vNSF monitors the offending traffic and
exports statistics in STIX 2.0 format for a CERT or other national
cybersecurity agency.

6 Data sharing

Other SHIELD
components

Y vIDS alerts are transformed to JSON and are sent to
DARE.

Third parties N No APIs for third party access.

Law enforcement
N No APIs for Law Enforcement access; events and

mitigation actions can be reviewed through the
dashboard or through external visualization tools.

Cross-border data
sharing

N No APIs for cross-border data sharing.

CERT/CSIRT Y CERT/CSIRTs can receive information in STIX 2.0 format.

7
Data Subject

Rights

Right of access

Y

There is no identifiability and no data retention with
respect to network traffic, hence other measures to
ensure the data subject rights do not apply. The IP
addresses stored in rules or logs can be removed through
the dashboard or directly via the vNSF management
interface.

Right of rectification

Right to be
forgotten

Restriction

Notification

Data portability

8 Open Internet
Traffic Monitoring Y

The vNSF monitors traffic and identifies specific patterns
that signify a possible security threat. Use for
cybersecurity monitoring is legitimate according to the
Open Internet Regulation.

Rate Limiting N
The vNSF does not apply rate limiting rules, does not
discriminate against specific types of traffic.

9
Non

Discrimination
Potential for misuse N

The vNSF does not profile the user or process data in
sensitive categories, hence the potential for misuse is
minimized.

10 ePrivacy

Protection of the
contents of a
communication

N/A
The vNSF does not process the contents of
communications.

Use of cookies to
provide a user
experience and
track user
preferences

N

The vNSF does not utilise cookies. Cookies may be part
of the network traffic in higher OSI layers and receive
the same protection as other personal data under the
GDPR.

Table 15 vDPI compliance specifications.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
75

1
General

Information

vNSF Name vDPI (Virtual Deep Packet Inspection)

vNSF version v0.4

vNSF Developer ORION

vNSF Description This vNSF inspects packet headers and classifies traffic in
categories (e.g. per application type etc.)

Certification &
Standardisation

None

2
Interfaces and

Formats

Data Inputs Ingress traffic, vNSFO traffic

Data Outputs Egress traffic, classification results/statistics, STIX threat
information

Data Formats Rules received by the vNSFO in xml format, netflow traffic

3
GDPR

applicability

Personal Data Y IP addresses, packet headers may include emails, http
cookies etc.

Special Categories N Does not apply

Identifiability Y Certain packet headers could provide identifiable
information (e.g. emails, login credentials etc.)

4 Data Storage

Data Storage N Network traffic is not stored or retained after processing,
only classified. Results of the classification are output
from the vNSF.

Data Retention N Retention ends after processing

Data Encryption N No data encryption in this vDPI version

Pseudonymisation N The vNSF does not pseudonymise traffic

Anonymisation N The vnSF does not anonymise traffic

5
Data

Processing

Purpose Cybersecurity monitoring and reporting an incident to a CERT

Profiling N No behavioural profiling of data subjects

Monetisation N Does not apply

Data Processing This vNSF uses nDPI to classify traffic types.

Data Processor The administrator of the vNSF can act as the data processor.

Data Protection
Officer

Information must be available to the data subject. A Data
Protection Officer must be appointed by the data controller.

Data Controller
The service provider that deploys the vNSF is the data
controller. In case of SecaaS deployments, joint controllers may
be envisioned.

Consent processes
The client should be informed if the vNSF is running on the
network and consent to its use.

Lawfulness

Lawful use of the vDPI includes cybersecurity monitoring in case
of an incident, the vNSF monitors the offending traffic and
exports statistics in STIX 2.0 format for a CERT or other national
cybersecurity agency.

6 Data sharing

Other SHIELD
components

Y The vNSF may send classification results to an InFlux DB
which are visualized in a dashboard.

Third parties N No APIs for third party access

Law enforcement
N No APIs for Law Enforcement access; events and

mitigation actions can be reviewed through the
dashboard or through external visualization tools.

Cross-border data
sharing

N No APIs for cross-border data sharing

CERT/CSIRT Y CERT/CSIRTs can receive information in STIX 2.0 format

7
Data Subject

Rights

Right of access

N/A
There is no data retention once processing ends; hence
the data subject rights measures do not apply.

Right of rectification

Right to be
forgotten

Restriction

Notification

Data portability

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
76

8 Open Internet
Traffic Classification Y

The vNSF monitors and classifies traffic. Use for
cybersecurity monitoring or load balancing is legitimate
according to the Open Internet Regulation.

Rate Limiting N
The vNSF does not apply rate limiting rules, does not
discriminate against specific types of traffic

9
Non

Discrimination
Potential for misuse N

The vNSF does not profile the user or process data in
sensitive categories, hence the potential for misuse is
minimized.

10 ePrivacy

Protection of the
contents of a
communication

N/A
The vNSF does not process the contents of
communications.

Use of cookies to
provide a user
experience and
track user
preferences

N

The vNSF does not utilise cookies. Cookies may be part
of the network traffic in higher OSI layers and receive
the same protection as other personal data under the
GDPR.

Table 16 ProxyTLS compliance specifications.

1
General

Information

vNSF Name ProxyTLS

vNSF version v0.1
vNSF Developer TID

vNSF Description This vNSF proxy HTTP/S traffic to detect and block malicious
URLs.

Certification &
Standardisation

None

2
Interfaces and

Formats

Data Inputs Ingress traffic, vNSFO traffic, Mgmt traffic
Data Outputs Egress traffic, security proxy logs to DARE

Data Formats Rules received by the vNSFO in xml format, text based logs

3
GDPR

applicability

Personal Data Y IP addresses, HTTP packet headers may include user
agents and destination URLs

Special Categories N Does not apply

Identifiability Y Certain http packet headers could provide identifiable
information (e.g. login credentials in url.)

4 Data Storage

Data Storage N Network traffic is not stored or retained after processing,
only detection. Results of the processing are output from
the vNSF.

Data Retention N Retention ends after processing

Data Encryption N No data is encrypted

Pseudonymisation N The vNSF does not pseudonymise traffic

Anonymisation N The vNSF does not anonymise traffic

5
Data

Processing

Purpose Cybersecurity monitoring and reporting an incident to a CERT

Profiling N No behavioural profiling of data subjects

Monetisation N Does not apply

Data Processing HTTP headers URL field is collected and compare with a
blacklist. Matchs are reported to DARE and in case of
remediation the flow is stopped. In the case of HTTPS the
process is similar but TLS session is end and reconstructed to
read the header.

Data Processor The administrator of the vNSF can act as the data processor.

Data Protection
Officer

Information must be available to the data subject. A Data
Protection Officer must be appointed by the data controller.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
77

Data Controller
The service provider that deploys the vNSF is the data
controller. In case of SecaaS deployments, joint controllers may
be envisioned.

Consent processes

The client should be informed that his HTTP traffic is inspected
and decrypted by security reason. Indeed, explicit consents is
necessary for use the functionality, because clients need to
connect and install a ProxyTLS certificate.

Lawfulness
Lawful use of the HTTP monitor includes cybersecurity
monitoring and traffic filtering in case of an incident.

6 Data sharing

Other SHIELD
components

Y The vNSF may send all proxy traffic logs not only
malicious ones based on blacklist for ML analysis in DARE.

Third parties N No APIs for third party access

Law enforcement
N No APIs for Law Enforcement access; events and

mitigation actions can be reviewed through the SHIELD
dashboard

Cross-border data
sharing

N No APIs for cross-border data sharing

CERT/CSIRT N No APIs fro CERT

7
Data Subject

Rights

Right of access

N/A
There is no data retention once processing ends; hence
the data subject rights measures do not apply.

Right of rectification

Right to be forgotten

Restriction

Notification

Data portability

8 Open Internet
Traffic Classification Y

The vNSF monitors and classifies traffic as malicious or
benign. Use for cybersecurity monitoring is legitimate
according to the Open Internet Regulation.

Rate Limiting N
The vNSF does not apply rate limiting rules, does not
discriminate against specific types of traffic

9
Non

Discrimination
Potential for misuse N

The vNSF does not profile the user or process data in
sensitive categories, hence the potential for misuse is
minimized.

10 ePrivacy

Protection of the
contents of a
communication

N/A
The vNSF does not process the contents of
communications. Only work with HTTP headers.

Use of cookies to
provide a user
experience and track
user preferences

N
The vNSF does not process cookies. Cookies may be part
of the network traffic in HTTP header or body but these
are ignored.

Table 17 HTTP/S Analyser compliance specifications.

1
General

Information

vNSF Name HTTP/S Analyser

vNSF version v0.1
vNSF Developer TID

vNSF Description This vNSF generate network flows and classify traffic without
content analysis.

Certification &
Standardisation

None

2
Interfaces and

Formats

Data Inputs Ingress traffic (Mirrored), vNSFO traffic, Mgmt traffic

Data Outputs Network flows and labels of classification to DARE

Data Formats Rules received by the vNSFO in xml format, netflow, log text file

3 Personal Data Y IP addresses

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
78

GDPR
applicability

Special Categories N Does not apply.

Identifiability N Only by ISP if correlate IPs with identities, i.e.:
subscription database and IPs dynamic assignment. Does
not provide identifiability within the vNSF.

4 Data Storage

Data Storage N Network traffic is not stored or retained after processing,
only detection. Results of the processing are the output
from the vNSF.

Data Retention N Retention ends after processing.

Data Encryption N No data is encrypted.

Pseudonymisation N The vNSF does not pseudonymise traffic.

Anonymisation N The vNSF does not anonymise traffic.

5
Data

Processing

Purpose Cybersecurity classification in a family of the traffic

Profiling N No behavioural profiling of data subjects

Monetisation N Does not apply

Data Processing Layer 3-4 data analysis to estimate a label where to classify the
traffic. The possible labels are: web. Video, storage, other.

Data Processor The administrator of the vNSF can act as the data processor.

Data Protection
Officer

Information must be available to the data subject. A Data
Protection Officer must be appointed by the data controller.

Data Controller
The service provider that deploys the vNSF is the data
controller. In case of SecaaS deployments, joint controllers may
be envisioned.

Consent processes
The client should be informed if the vNSF is running on the
network and consent to its use.

Lawfulness
Lawful use of the HTTP monitor includes cybersecurity
monitoring and traffic classification in case of an incident.

6 Data sharing

Other SHIELD
components

Y The vNSF may send classified traffic flow logs to DARE.

Third parties N No APIs for third party access

Law enforcement
N No APIs for Law Enforcement access; events and

mitigation actions can be reviewed through the SHIELD
dashboard

Cross-border data
sharing

N No APIs for cross-border data sharing

CERT/CSIRT N No APIs for CERT

7
Data Subject

Rights

Right of access

N/A
There is no data retention once processing ends; hence
the data subject rights measures do not apply.

Right of rectification

Right to be forgotten

Restriction
Notification

Data portability

8 Open Internet
Traffic Classification Y

The vNSF monitors and classifies traffic in generic
categories. Use for cybersecurity monitoring is legitimate
according to the Open Internet Regulation.

Rate Limiting N
The vNSF does not apply rate limiting rules, does not
discriminate against specific types of traffic

9
Non

Discrimination
Potential for misuse N

The vNSF does not profile the user or process data in
sensitive categories, hence the potential for misuse is
minimized.

10 ePrivacy
Protection of the
contents of a
communication

N/A
The vNSF does not process the contents of
communications.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
79

Use of cookies to
provide a user
experience and track
user preferences

N The vNSF does not process cookies.

Table 18 - Compliance specifications for the POLITO L3 Filter.

1
General

Information

vNSF Name L3 Filter

vNSF version V0.1

vNSF Developer POLITO

vNSF Description This vNSF applies filtering rules to network traffic depending
on the (source, destination) IP address and port

Certification &
Standardisation

None

2
Interfaces and

Formats

Data Inputs Ingress traffic, vNSFO traffic

Data Outputs Egress traffic

Data Formats Rules received by the vNSFO in xml format, netflow traffic

3
GDPR

applicability

Personal Data Y IP addresses

Special Categories N Does not apply

Identifiability N No identifiability within the vNSF

4 Data Storage

Data Storage N Only firewall rules are stored by the vNSF, not actual
traffic.

Data Retention N/A There is no retention of network data in the vNSF

Data Encryption N/A Does not apply since there is no retention

Pseudonymisation N/A Does not apply

Anonymisation N/A Does not apply

5 Data Processing

Purpose Cybersecurity/Filtering

Profiling N No behavioural profiling of data subjects

Monetisation N Does not apply

Data Processing Network data IPs are checked against set firewall rules to block
or limit specific types of traffic (based on IP, protocol, port etc.)

Data Processor The administrator of the vNSF can act as the data processor.

Data Protection
Officer

Information must be available to the data subject. A Data
Protection Officer must be appointed by the data controller.

Data Controller The service provider that deploys the vNSF is the data
controller. In case of SecaaS deployments, joint controllers
may be envisioned.

Consent processes The client should be informed if the firewall is running on the
network and consent to its use.

Lawfulness Lawful use of the firewall includes cybersecurity, to ensure
infrastructure security and resilience and to protect the
interests of the ISP clients.

6 Data sharing

Other SHIELD
components

Y The vNSF can capture data and send them to DARE for
further analysis (via distributed collector)

Third parties N No APIs for third party access

Law enforcement N No APIs for Law Enforcement access; events and
mitigation actions can be reviewed through the
dashboard

Cross-border data
sharing

N No APIs for cross-border data sharing

CERT/CSIRT N No APIs for CERT/CSIRT access; events and mitigation
actions can be reviewed through the dashboard

7
Data Subject

Rights
Right of access

N/A
Right of rectification

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
80

Right to be
forgotten

There is no identifiability and no data retention hence
other measures to ensure the data subject rights do
not apply. Restriction

Notification

Data portability

8 Open Internet
Traffic Classification N No traffic classification.

Rate Limiting Y
vNSF can apply rate limiting rules per protocol or IP
(specific, range) for cyberattack mitigation.

9
Non

Discrimination
Potential for misuse N/A

The vNSF does not profile the user or process data in
sensitive categories, hence the potential for misuse is
minimized.

10 ePrivacy

Protection of the
contents of a

communication
N/A

The vNSF does not process the contents of
communications, only headers.

Use of cookies to
provide a user
experience and

track user
preferences

N/A
The vNSF does not track user experience and it does
not store cookies.

Table 19 - Compliance specifications for the POLITO Forward L7 Filter

1
General

Information

vNSF Name Forward L7 Filter

vNSF version V0.1

vNSF Developer POLITO

vNSF Description This vNSF inspects traffic for specific Layer 7 protocols and
headers (e.g. HTTP, FTP), URL filtering and Access Control List
as a reverse proxy and Web Application Firewall.

Certification &
Standardisation

None

2
Interfaces and

Formats

Data Inputs Ingress traffic, vNSFO traffic

Data Outputs Egress traffic, classification results

Data Formats Rules received by the vNSFO in xml format, netflow traffic

3
GDPR

applicability

Personal Data Y IP addresses, packet headers may include emails, http
cookies etc.

Special Categories N Does not apply

Identifiability Y Certain packet headers could provide identifiable
information (e.g. emails, login credentials etc.).

4 Data Storage

Data Storage N Network traffic is not stored or retained after
processing.

Data Retention Y Retention ends after processing.

Data Encryption N Does not apply since there is no long-term retention

Pseudonymisation N/A Does not apply

Anonymisation N/A Does not apply

5 Data Processing

Purpose Cybersecurity/Monitoring/Filtering

Profiling N No behavioural profiling of data subjects

Monetisation N Does not apply

Data Processing This vNSF uses Mod Security to process traffic headers in a
rule-based approach.

Data Processor The administrator of the vNSF can act as the data processor.

Data Protection
Officer

Information must be available to the data subject. A Data
Protection Officer must be appointed by the data controller.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
81

Data Controller The service provider that deploys the vNSF is the data
controller. In case of SecaaS deployments, joint controllers
may be envisioned.

Consent processes The client should be informed if the vNSF is running on the
network and consent to its use. It is the responsibility of the
service provider to obtain consent.

Lawfulness Lawful use of the Forward L7 Filter includes cybersecurity
monitoring, to ensure infrastructure security and resilience
and to protect the interests of the ISP clients.

6 Data sharing

Other SHIELD
components

Y The vNSF can capture data and send them to DARE for
further analysis (via distributed collector). Data may
include logged requests detected by the Web
Application Firewall (in case they match any of the
filtering rules).

Third parties N No APIs for third party access

Law enforcement N No APIs for Law Enforcement access; events and
mitigation actions can be reviewed through the
dashboard

Cross-border data
sharing

N No APIs for cross-border data sharing

CERT/CSIRT N No APIs for CERT/CSIRT access; events and mitigation
actions can be reviewed through the dashboard

7
Data Subject

Rights

Right of access

Y

There is no data retention once processing ends, hence
other measures to ensure the data subject rights do not
apply. Regarding firewall rules, they can be altered via
the dashboard or the vNSF management interface upon
request to the data processor.

Right of rectification

Right to be
forgotten

Restriction

Notification

Data portability

8 Open Internet
Traffic Classification Y

The vNSF monitors and classifies traffic with a rule-
based approach. Use for cybersecurity monitoring or
load balancing is legitimate according to the Open
Internet Regulation.

Rate Limiting N
The vNSF does not apply rate limiting rules, does not
discriminate against specific types of traffic

9
Non

Discrimination
Potential for misuse N/A

The vNSF does not profile the user or process data in
sensitive categories, hence the potential for misuse is
minimized.

10 ePrivacy

Protection of the
contents of a

communication
Y

The vNSF can be instructed to process request and
response payloads along their headers. This capability is
required to address web-based attacks that are pursued
by including specific information in the payload. No data
is used to eavesdrop the user. The vNSF can inspect
payloads of packets, but no data is used to profile the
user. The vNSF does not inspect encrypted traffic. The
vNSF is not capable of monitoring messaging, personal
communications, emails etc.

Use of cookies to
provide a user
experience and

track user
preferences

N No use of cookies.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
82

Based on the specifications provided by each vNSF developer, SHIELD can trace the vNSF to the
ERC requirements they need to fulfil (Table 20).

Table 20 ERC requirements tracing.

SHIELD vNSF ERC requirement Description

vIDPS

ERC01 Access to and portability of
personal data, ERC02 Data
rectification and erasure, ERC03
Access to related Data Protection
information

Access is provided by an external interface as
well as via the vNSF management interface.

vDPI

ERC01 Access to and portability of
personal data, ERC02 Data
rectification and erasure, ERC03
Access to related Data Protection
information

Access is provided by an external interface as
well as via the vNSF management interface.

ERC06 Transparency in traffic
classification, ERC08 Net Neutrality

vDPI classifies traffic but does not take remedial
actions or throttle the rate.

ProxyTLS

ERC04 Trasparency in data
processiong, ERC6 Transparency in
traffic classification, ERC08 Net
Neutrality

Classification between malicious or bening
traffic is done based on known blacklist or
provided by the ISP, traffic filtering is based on
security reasons.

ERC01 Access to and portability of
personal data, ERC02 Data
rectification and erasure, ERC03
Access to related Data Protection
information

No personal data is retained to be portable,
modified or erased in the vNSF. Access to Data
protection information will be done through
the SHIELD Dashboard. i.e. DARE data retained

HTTP/S
analyser

ERC11 Privacy and Security by
design, ERC12 ePrivacy

Classification process is design to use only Layer
3-4, data therefore no payload is analyzed. This
is a clear effort to preserve the user privacy on
the communication content in the vNSF desing.

ERC04 Transparency in data
processiong, ERC06 Transparency
in traffic classification, ERC08 Net
Neutrality

Classification is done by a automate process to
assign a label, based in machine learning
techniques, not modification or alteration is
done in the labeling or in the traffic to bias the
process.

ERC01 Access to and portability of
personal data, ERC02 Data
rectification and erasure, ERC03
Access to related Data Protection
information

No personal data is retained to be portable,
modified or erased in the vNSF. Access to Data
protection information will be done through
the SHIELD Dashboard. i.e. DARE data retained

L3 Filter & Υ1
vFW

ERC01 Access to and portability of
personal data, ERC02 Data
rectification and erasure, ERC05
Data retention

The vNSF does not retain personal data and
does not allow data to be modified or erased in
the vNSF.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
83

ERC09 Lawful Interception The vNSF does not change public IP addresses
or encrypts traffic, hence it does not require to
integrate a LI system.

Forward l7
Filter

ERC01 Access to and portability of
personal data, ERC02 Data
rectification and erasure, ERC05
Data retention

The vNSF only retains personal data for the
processing. After processing, data is
automatically removed. No data can be
modified in the vNSF.

4.3.2. Integrating specifications in the Store

The legal compliance specifications, as well as the technical specifications for the vNSFs should
be visible in the Store. This would enable the user to select which vNSFs to use by making an
informed decision. In the context of privacy and data protection it is considered a good practice
to use privacy iconsets that allow the user to quickly visualize data protection concepts without
legal and technical jargon. An example of an iconset is presented in Figure 25. Icons include the
type of data that are used, the various types of processing, how it is stored and shared, or
deleted. This concept can easily be adapted for SHIELD, although a more comprehensive
iconset would be necessary to cover the breadth of the compliance specifications. Figure 26
provides a mockup for the NCSRD L3 filter that was utilised in Y1 demos. This way, the user
browsing the store can view the compliance specifications for the vNSFs and make an informed
decision on which vNSF to utilise. Access to the full specifications (compliance and technical) is
of course, also available.

Figure 25: Iconset for Data-Privacy Declarations v0.1 (by Matthias Mehldau, licensed under Creative
Commons 2.0).

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
84

Figure 26: Mock-up showing how to the compliance specifications can be easily visualised in the Store.

4.4. Compliance and GDPR Certification

An important aspect to address at this point is the difference between compliance and
certification. Some operational examples of successful privacy certifications include:

• PrivacyTrust (formerly eTrust) [70]: a private company that provides privacy
certifications for websites and online businesses. A PrivacyTrust certification indicates
that a website has been reviewed by the company and is aligned with their privacy and
data protection requirements. Similar certifications are available by other providers
such as WebTrust, etc. although they are not focused on GDPR or software-oriented
architectures

• The Health Information Trust Alliance (HITRUST) [71] is a US-based association of
organisations, that certifies products for compliance with the Health Insurance
Portability and Accountability Act of 1996 [72] (HIPAA). HIPAA sets rules for the handling
of medical data in the US. HITRUST, therefore, is able to certify products for HIPAA
compliance. It is therefore a case where legal compliance for data protection is certified
by an appropriate body, although its scope is not as broad as the EU GDPR.

In SHIELD’s case, certification requires the existence of a trusted third party that inspects the
vNSF and verifies that it is compliant with GDPR and that the information provided in its
specifications are accurate. According to the GDPR Article 42, “the Member States, the
supervisory authorities, the Board and the Commission shall encourage the establishment of
data protection certification mechanisms and of data protection seals and marks”. The
certification should be voluntary and transparent, and the certification body should be granted
cooperation and access to the processing. Article 43 of the GDPR states that certification bodies
should be accredited (ISO 17065). As GDPR is being implemented in each Member State, it is
expected that multiple data protection certification providers will be accredited with the
relevant national authorities. Thus, it will be possible in the future for vNSF developers to get
their products certified for GDPR compliance. At consortium level, SHIELD partners intend to

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
85

reach out to certification bodies that are accredited for GDPR compliance certifications, but it
is uncertain if certifications will be available across all member states by the date of the
project’s completion (February 2018).
Apart from the GDPR, compliance with well-known standards and privacy reference
frameworks can be taken into account. ISO/IEC 27001 Information Security Management
Systems [73] is a well-known international standard for information security that provides a set
of standardised requirements for an information security management system (ISMS). ISO/IEC
27018 [74] similarly defines guidelines for implementing personal data protections and
specifies controls within ISO/IEC 27001. ISO certification in this context can be considered
suitable for SHIELD’s case. ISO/IEC 29100 [75] provides a privacy framework. The OASIS Privacy
Management Reference Model [76] can also be considered, as an open standard for privacy and
data protection.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
86

5. VALIDATION AND TECHNICAL CERTIFICATION

Following the publication of the D5.1 deliverable [13], this section briefly discusses the
certification and validation of the SHIELD vNSF ecosystem. This focuses on the certifying the
vNSF ecosystem and its performance as carrier-grade (as opposed to GDPR certification or
other privacy and data protection certifications).

5.1. Technical certification of vNSFs

Technical certification of vNSFs can be a major step towards their adoption in the market as it
increases trust in the final product. Especially in the case of the SHIELD Store, a vNSF that is
certified by an appropriate, accredited certification body and bears a certification mark, could
potentially be more easily adopted by a client, and at the same time foster the development of
the Store into a viable marketplace.

Related certification environments are starting to be available to VNF developers. In most
cases, the certification they offer is driven by either a major association of suppliers, or by
telco/service providers. The purpose is each case is quite different; telco providers often focus
on the certification of VNFs they intend to deploy on their own networks, while suppliers usually
focus on the creation of a VNF marketplace based on their cloud offerings.

The Nokia CloudBand ecosystem [77] (Figure 27) is such an example. CloudBand is being
marketed as “the world’s first carrier-grade OpenStack NFV platform”. Nokia offers
membership to an association of members that comprises VNF developers, other suppliers etc.
and allows them to certify their products in this ecosystem. According to Nokia, the purpose of
this effort is:

• To validate VNF suppliers’ compliance with NFV standards,
• Expedite deployment and reduce risk,
• Accelerate time to market with pre-validated VNFs,
• Access a broader range of pre-validated VNFs, offering greater choice for service

creation,
• Gain the opportunity to create a self-service marketplace for applications for enterprise

and residential customers.
The environment is based on OpenStack and the CloudBand line of products which provide the
functionalities of the Orchestrator (NFVO), the Virtual Infrastructure Manager (VIM), etc. The
creation of a marketplace is aligned with SHIELD’s vision although it is highly dependent on the
CloudBand product line. This means that when an NFV supplier is certified for this platform,
they are inevitably “locked-in” to use CloudBand products for the deployment of their VNFs.
The certification and the association of members, however, has built a “critical mass” since it is
backed by a major supplier.

Huawei follows a similar approach in their Open Labs [78]. Open Lab partners include China
Mobile, VMware, Red Hat, Canonical and the Linux Foundation, OPNFV etc. These efforts mark
a key step to realizing Huawei's future-oriented open SoftCOM architecture, based on their
proprietary All Cloud technology.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
87

Figure 27 Nokia’s CloudBand certification environment.

Red Hat’s VNF certification [79] (Figure 28) can offer a deeper integration for NFV and verify
that providers of virtual network functions are taking full advantage of the cloud platform for
customer deployments. It is currently used by Cisco, Huawei, Citrix, Ericsson, Juniper networks
etc. Red Hat’s environment closely resembles the SHIELD environment. It uses the CloudForms
Open Source VIM, and a very similar NFVI (e.g. support for KVM and Docker, OpenDayLight SDN
Controller, CentOS is closely related to Red Hat Enterprise Linux, etc). RedHat’s environment
also takes into account VNF standardisation and differs in that it provides validation per vertical
industry and for different over-the-top (OTT) services.

Figure 28 Red Hat’s NFV certification environment.

Considering these alternatives, the Red Hat environment is a closer match to SHIELD’s
architecture and could be considered as a more appropriate selection for the certification of
vNSFs for future exploitation. In all three cases, however, the NFVO/VIM used is different from
SHIELD which makes exploitation of these certifications within the context of the Store difficult
at the time, although it can be easily considered for future deployments. Hence, the best-case
scenario for the Store, would be to certify VNFs in an OpenStack/OSM environment similar to
SHIELD’s current deployment. One such certification environment is supported by Telefónica’s
NFV Reference Lab [80]. As a telco operator, Telefónica uses this certification environment to

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
88

validate VNFs for operational use on its network. This environment lacks the broader
exploitation potential of the previous examples, although it is closer to SHIELD’s deployment
configuration. Furthermore, Telefónica collaborates closely with ETSI and OpenMANO and
supports the development of the OSM Orchestrator. Through partner TID, SHIELD reached out
for some information on how a VNF can be certified for carrier-grade performance. Although
this information is proprietary, some base requirements were communicated to SHIELD, and
were adapted to its architecture.

According to Telefónica, the objective of this certification would be to validate if a vNSF works
as intended and without adverse effects to the rest of the SHIELD platform. The test process
must be simple and effective and, to result in a certification, it must cover (Figure 29):

• Documentation: The vNSF should include a clear deployment guide.

• Clear Resource Requirements: The resources that are needed (memory, hard disk,
network interfaces etc.) and the requirements should be clearly documented.

• Instantiation: the vNSF can be created (and removed) successfully through the
orchestrator (OSM) with the Network Service Descriptor (NSD) defined for the tests.

• Management: The vNSF management interfaces should be clearly defined and
accessible by OSM. Same principle also applies to the policy configurations that
originate from the DARE and are relayed to the vNSF through the Orchestrator.

• Non-functional Testing procedures for vNSF:
o Durability: Continuous running for periods of 4hs, 8hs, 24hs, 48hs.
o Failure recovery: show report incident and recovery process in the case of

VM/platform restart or shutdown,
o vNSF hardening as defined in NF09.

• Functional Testing procedures for vNSF:
o Testing of actual vNSF functionality (as defined in the vNSF documentation).
o Testing the API with DARE for sending logs and the API for receiving mitigation

actions.
o Testing of vNSF performance: Clearly defined throughput targets are met by the

vNSF. Testing includes different packet sizes (including IMIX) and protocols (UDP
and TCP). For each target, delay, packet loss and jitter should be measured.

Figure 29 Test process for a vNSF certification.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
89

5.2. Integration and validation tests

The SHIELD test plan that is defined in D5.1 [13] (Section 3 and Annex B Definition of tests)
already covers multiple aspects of the testing process that was described. Specifically:

Table 21 SHIELD’s integration and testing plan in counterpoint with the testing process suggested by
Telefónica.

Documentation Documentation is not addressed within D5.1 but D3.1/D3.2 contain the
specifications and design of the SHIELD vNSFs. The SHIELD wiki is also used for
preliminary documentation. The bitbucket and github repositories of the project
will feature the official documentation information.

Resource
requirements

Network scaling is covered under requirement PF07 and D5.1 defines scale-in and
scale-out platform tests for the vNSFs (coded as PLT in D5.1/Annex B). On-the-fly
autoscaling is not considered at the moment since it is not supported in OSM.
Specific resource requirements for the SHIELD vNSFs are included in Section 3 as
they currently stand; further optimisation leading to better resource allocation can
be envisioned. Y1 vNSFs were deployed in 20-40GB(storage)/4GB(memory)
flavours. The number of VNFC in a specific vNSF and the need for internal storage
directly impacts the size of the storage required. CPU resources are dependent on
the functionality of the vNSF and can range from a single virtual processor to
multiple ones. This document also includes resource requirements for all
components in its Requirements mapping subsections.

Instantiation Instantiation and management of the vNSF lifecycle is covered in PF01-PF02 and
multiple platform tests are defined in D5.1 to test instantiation, policy
configuration, scale-in and scale-out etc. Communication with the DARE is covered
in the test plan and it involves the vNSFs sending monitoring information to the
DARE and receiving remediation actions through OSM.

Management

Non-Functional
testing

The non-functional testing of vNSFs’ performance is assessed in the Performance
and Usability tests (coded as PUT in D5.1/Annex B) as well as some platform tests
regarding scalability with respect to data volume (up to near-operational telco
conditions). vNSF hardening is addressed and it effect on vNSF performance is also
taken into account. Various performance metrics are defined. Availability defines
total uptime until a failure as a KPI that is closely related to the Durability
requirement, although durability tests can be added, i.e. continuous running for
periods of 4hs, 8hs, 24hs, 48hs should be performed for Y1-Y2 vNSFs to assess their
performance. Failure recovery should be sufficiently addressed; vNSF behaviour
under platform and VM failures/restarts etc. should be assessed and there is no
incident reporting from the vNSFs at the moment. This work can be roadmapped
for future vNSF developments.

Functional
testing

Functional Testing for the SHIELD vNSFs is already covered in the Integration plan
(D5.1 Section 3). This regards the use of cybersecurity tools, specialised operating
systems or frameworks to generate traffic and cyberattack patterns to test SHIELD
cybersecurity Network Services, DARE detection and remediation as well as
individual vNSFs. These are defined as Service Tests in D5.1 (coded as SET in
D5.1/Annex B). Platform tests that regard vNSF interactions with the vNSFO and
the DARE are also covered. Testing of vNSF performance include different
protocols although different packet sizes (outside of UDP/TCP/ICMP protocols) can
be tested in Y2 as well. Latency and packet loss are considered although jitter is

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium 90

considered in fewer tests and can be more explored. The performance of vNSFs is
assessed in the Performance and Usability tests (coded as PUT in D5.1/Annex B).

Based on the D5.1 plan and during Y1, SHIELD performed integration and validation tests on
the entire SHIELD platform including the vNSF ecosystem. The results were demonstrated in 3
scenarios, specifically:

Demo 1: Detection of data exfiltration through DNS tunnelling,

Demo 2: On-boarding a SHIELD vNSF and mitigation of DDoS attacks, and

Demo 3: NFVI/vNSF attestation.

The SHIELD Y1 demos were presented internally during the project’s 4th General Assembly and
the project’s first Review Meeting. They were also presented publicly during:

• the ENISA Bonding EU Cyber Threat Intelligence (CTI – EU) workshop that took place in
October 30th -31st 2017 in Rome, Italy.

• the IEEE Conference on Network Function Virtualization and Software Defined Networks
(IEEE NFV/SDN), held November 6-8, 2017 in Berlin, Germany, where they received the
Best Demo Award among 22 competitors. The demo was submitted under the title
“NFV-based network protection: the SHIELD approach”.

The videos presenting the demos are publicly available in the project’s YouTube channel3.
Specifically, demos 2 and 3 are mostly focused on the vNSF ecosystem. Demo 2 showed the on-
boarding process for a vNSF and demonstrated end-to-end functionality, including
communication of the vNSF with the DARE Security Analytics module (TALAIA) that detects the
attack, the recommendation and remediation engine that provides the mitigation actions
(POLITO), the dashboard where the user visualizes the recommendation and selects whether
to apply it, and the vNSF receiving the mitigation action through the vNSFO. Demo 3 focused
on the Trust Monitor and showed the attestation process for the NFVI and a SHIELD vNSF. D5.1
provides a more comprehensive presentation of the demo results [13]. Deliverable D2.2
includes the basic requirements for the upcoming SHIELD Demonstrations, while D5.2 will focus
on presenting results from all the SHIELD demo scenarios. The next section defines the
performance and availability requirements for carrier-grade vNSFs that would be the final
targets for testing and validation.

5.3. Requirements for carrier-grade performance

Carrier-grade performance relates to the “five-nines”, which translates to 99,999% uptime and
“extremely high availability”. Moreover, customers only care that the service they are paying
for and rely on works as offered. In SHIELD there are two factors that affect the customers’
service:

- The SHIELD vNSFs, and
- the DARE.

3 https://www.shield-h2020.eu/about/social-networks.html

https://www.shield-h2020.eu/about/social-networks.html

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
91

SHIELD features vNSFs that monitor the traffic without intrusion in the communications by
working with a traffic copy (e.g. an IDS) as well as vNSFs that they are inserted in the flow of
the traffic (e.g. a firewall). A fail in the first category may affect the service but not break the
customer communication. A fail in the second category could be more critical. For this reason,
the degree of reliability and protection have to be greater for vNSFs that are inserted in the
flow of the traffic.

Regarding the DARE, a failing in such system can affect the service of a great number of users
but not affect their communications. Since SHIELD focuses mainly on offering a security service,
it is highly critical to its business case to have the maximum availability of this module.

Availability is only one part of the concept of carrier-grade performance. Several other
considerations must be taken into account: Reliability/Dependability, Maintainability,
Manageability, Scalability, Accountability, and Durability, all collected as requirements in the
D2.2.

With these considerations, it is important to validate the KPIs collected in the D2.2 using
procedures defined in D5.1. The analysis of these tests has to give as result in a loss of service
lower than 6 minutes in the worst case. For critical vNSFs where is necessary to deploy high
availability to avoid interrupt the customers communications it is necessary to test this high
availability with the vNSF. Regarding DARE it is important to verify redundancy with one node
failure. Measure recovery time in reasonable time (e.g. less than 5 minutes). Furthermore, the
selected hardware will need to meet the carrier grade specification and fulfil the requirements
of MTBF (Mean-Time-Between-Failures) and MTTR (Mean-Time-To-Repair):

(Equation 1) 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝐵𝐹∗100

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
= 99,999%.

5.4. Evolution of a service marketplace

SHIELD’s Store component focuses on providing a secure and trustable virtual network security
function and network service software catalogue. It validates all the on-boarded network
solutions even before attempting the deploying of each one of them in the NFVI environment
by SHIELD’s Orchestrator. The Store also accommodates information on what personal data is
collected by the vNSFs composing a service and the rationale for its collection. Hence, the Store
is in a place to provide a high quality standard repository of network functions already
addressing privacy concerns such as GDPR compliance.

In order to evolve the Store from a repository to a service marketplace, some features such as
user management and billing mechanisms need to be developed. In SHIELD, these are provided
by the Dashboard [10]. Following this rationale, SHIELD’s marketplace concept is based on both
the Store and the Dashboard. This architectural decision allows a clear separation of the main-
feature plug-n-play blocks of the marketplace (user/role management, billing mechanism,
function and service secure repository). This choice enables the easy creation of network
services that accommodate different business-oriented needs as well as the individual
evolution of each one of them.

The proposed marketplace is envisioned to be able to serve both a single instance of a SHIELD
deployment (to be demonstrated in the context of SHIELD project) as well as multiple SHIELD
deployments or other solutions compatible with SHIELD package format. The second scenario

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
92

is the most profitable scenario since it would provide a centralised place for service/function
providers to share their solutions among the different potential clients. This scenario holds the
highest value for the creators and maintainers of such a marketplace that may receive, for
instance, a fee of the transactions performed, but also for the all the envisioned actors of such
an ecosystem. Focusing on the function/service providers, a centralised marketplace would
allow using a single market to provide their solution portfolio to the current and potential clients.
Maintenance and software upgrade routines are eased by this centralised marketplace
environment. This approach would in fact allow the creation of a vNSF/NS ecosystem thus
promoting the competition (both in terms of quality as well as pricing) between providers of
similar/alternative solutions. The benefit arising from this would impact the service providers
offering services to end users, either by allowing to use software in this marketplace to provide
services as well as to use this marketplace also to provide services to end users. Internet service
providers could therefore use this marketplace not only to retrieve the building blocks (virtual
network functions) to be used in their services (either developed in-house or ultimately being
also developed and exposed in this marketplace) but also to advertise to potential end users
the services provided and that they can acquire either for their residential or commercial
installations. By this means, this marketplace can not only boost the vNSF and NS development
ecosystem but also provide visibility to potential end users on the services provided by different
internet service providers thus allowing comparing the added value of each internet service
provider as well as the prices associated with each one.

The marketplace is intended to not only allow different providers (both business-to-business
and business-to-consumer) to share their solution to potential and effective clients but also
managing all the monetisation associated to this ecosystem. Billing model is the component
associated with this set of features, thus responsible for managing the money flow and
authorizations associated with both the acquisition of vNSFs or NSs from Internet Service
Providers (B2B) as well as the acquisition of NSs from end users (B2C). Different billing
strategies should be accommodated in this billing framework allowing consumers to adapt to
what best suits its internet habits or business model. The charging rationale for B2B and B2C
should be decoupled allowing the billing to be as adaptable to the market needs as possible.
Some of the currently envisioned strategies for the B2C market are listed below:

• Charge by instantiation of a service or function: The client pays a rent for the time each
service/function is running and dedicated to him.

• Charge by resource consumption of the services/functions instantiated in the context of
a client: The client pays a rent on the hardware resources used to instantiate the
services/functions running in the context of his account.

• Charge by added value service bundle: The client pays a fixed rate associated with a set
of added value features, i.e. different security enhancements being provided on the
context of its connections regardless of what services or functions are currently
instantiated to achieve them.

Now focusing on the B2B market, listed below are some potential billing methodologies that
should be provided in the context of the marketplace:

• Fixed charge value by the number of instantiations of a given service or function.
Software providers would charge a fixed value associated with the number of times a
given function/service from its authority is instantiated by a service provider.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
93

• A percentage on the profit that internet service provider bills on end clients by using one
of the services/functions developed by a software provider.

• Licensing payment effectively acquiring a given function/service payed at acquisition time
and not depending on when and how many times a service/functions is instantiated.

The billing framework requires usage statistics (i.e. when a given function is instantiated, total
uptime, etc) in order to monetise the offered services. Hence, the billing framework should
provide an interface allowing the Orchestrator and/or OpenStack to share instantiation
information at the NFVI level. Resource usage statistics can also be collected through
OpenStack Ceilometer. A full implementation of the billing mechanisms, however, is out of the
scope of the project. This would require the additional implementation of accounting
mechanisms, rights management, service level agreement assurance, etc. Further work on
definition of clear liability borders in an ecosystem of multiple stakeholders is also required.
Certification, as discussed in Sections 4 and 5, would also increase trust in the service market
and contribute to its adoption.

Additional business models could be added to this component allowing for instance the
appearance of auctions enabling both sellers and consumers to bid on the providing/acquisition
of software artefacts managed by the marketplace. Furthermore, the marketplace’s vision
allows also for instance a penalisation billing rationale allowing internet service providers to
protect themselves if client’s SLAs are breached due to the malfunction of third party software.
To achieve so, besides receiving monitoring usage information, the billing framework should
also receive error reports to apply fines to the entities responsible for the development of the
defective functions/services. These fines could be billed for instance following the following
principles:

• Charged rate by detected anomaly based on a severity level (Very low, Low, Medium,
High, Very High, Critical)

• Charged a percentage rate on the profit this entity would make for the usage of the
defective function/service

• Charged a percentage level on the fine applied to internet service provider for not
fulfilling the SLAs of the client

Aligned with the previous penalisation philosophy, the marketplace could also provide a
reputation-based ranking system associated with the fulfilment or failure of the provided
software comparing with the promised and charged behaviour. This would enable buyers to
avoid providers/services/functions with a high number of malfunctions.

User management is another important feature of a marketplace allowing different users with
different roles/scopes to interact with the system with different goals. These features and roles
are envisioned and implemented in the scope of Dashboard following the envisioned actors for
SHIELD as a platform and not dedicated solely to the requirements of the marketplace.
However, if the marketplace is to be instantiated in a way to serve multiple SHIELD deployments
(or other solutions compatible with SHIELD’s envisioned marketplace) user management
implementation would have to be instantiated in the scope of the marketplace allowing this
solution to have an intended and trustable user management system. A minor adaptation
would have to be performed, trimming some roles that are not valid actors in the context of
the marketplace but need to exist in the scope of SHIELD solution.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
94

Both vertical and horizontal business scenarios can be supported in this context. Currently, the
marketplace already provides privacy policy features (through Store’s GDPR features) as well
as pre-validation features ensuring that the onboarded software is compatible with the
Orchestration environment (e.g. Store’s vNSF syntax, integrity and topology validation). Higher
quality and sustainability of the marketplace service ecosystem, would require existing
certification marks to be integrated in the marketplace’s ecosystem. Providing a SHIELD
certification that would ensure to potential bidders/buyers that certain functions or services
have a high-quality standard could be envisioned although it would require a rigorous testing
process and the existence of a SHIELD accredited association (as per ISO 17065). Even though
this is not envisioned in the current version of the marketplace, this implementation is possible
by first roadmapping an analysis of the roles and user profiles in this ecosystem as well as the
certification acquisition, administration and eviction processes for each function or service.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
95

6. CONCLUSIONS

6.1. Status of vNSF ecosystem

This document presents the finalised technical details of the vNSF ecosystem, starting with the
high-level architecture and design to the specifications and implementation choices. Section 2
deals with the high-level picture of the SHIELD vNSF platform, its purpose and interconnections
between components, whilst the latter presents low-level details, such as the specifications to
cover, its mapping with the requirements defined in D2.1 and the decisions regarding
implementation aspects.

As depicted in the document, SHIELD’s vNSF ecosystem is composed by the vNSFs, Store,
Orchestrator and Trust Monitor components. High-level architecture is provided per each of
these components, taking into consideration the requirement specification as well as SHIELD’s
use cases. On the other hand, the high-level specifications, especially for the vNSFs and vNSFO,
have been defined by following the recommendations and specifications of ETSI, considering it
as the main standardisation body in the area. This alignment is one of the main goals of the
consortium since it greatly promotes and eases the dissemination and exploitation of SHIELD’s
results into this standardisation body or other reference ecosystems. An example of the
envisioned collaboration deals with the contribution of extensions developed within the project
into some of the current standardisation bodies.

The low-level details specified for each of the scoped components result in an important asset
for the next development phase of the project, concerned with the implementation of such
components. Specifically, the definition of the intra and inter-connectivity workflows makes it
easier to agree on the responsibilities and behaviour of each component, how these will be
implemented, and which features will be provided by each one of them ensuring its integration
at a later stage of the project. The specifications of these connections (provided in Section 3)
took into consideration the full set of components involved in the architecture, including some
from the analytics and visualisation part which is comprehensively covered in D4.2.

The details on the implementation per component indicate the intention to reuse the results
of previous projects and other open-source solutions as much a possible; covering a fair
amount of functionality and thus allowing to better focus on innovative aspects not yet covered
by the community. As a result, SHIELD enters a new development cycle in Y2, where new vNSFs
will be developed, with novel functionalities derived from the updated requirements in D2.2.

The D2.2 deliverable introduced new ethical and regulatory compliance requirements for the
SHIELD platform. Section 4 also addressed these new requirements and provided a
specifications template for regulatory compliance with the EU legal landscape. It further
discussed how these specifications can be introduced in context of the Store, analysed some
best practices for GDPR compliance and touched upon GDPR certification as a future
development.

Finally, this document also discussed how to improve the exploitation potential of SHIELD vNSFs
by means of appropriate certification and qualification (Section 5). Certification environments
driven by mobile suppliers (like Nokia or Huawei) are available although they cannot be used in
the context of the SHIELD Store due to major differences in deployment configurations. An

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
96

OSM-based certification could easily be exploited in the current deployment of the SHIELD
architecture. Some basic requirements on the tests required by a certification process were
also included, with input from Telefónica, which is a major telco operator. Compliance,
certification and the appropriate billing mechanisms are key aspects towards the evolution of
the project Store in a future service marketplace.

6.2. Future work

The work of T3.1 “vNSF infrastructure and software specifications, design and architecture”
concludes with this document that provides the results of the second design cycle in SHIELD.
Tasks 3.2-3.5 continue the work with the development of all SHIELD vNSFs, the vNSF Store, and
the attestation framework. A rigorous testing plan is in place to validate the new components,
based on the work in D5.1. Results of WP3 activities will be presented in SHIELD’s upcoming
demonstrations as presented in the D2.2 demonstration roadmap. D3.3 “Integrated secure
framework ready for experiments” will report all the results stemming from WP3 developments
and accompany the delivery of the WP3 prototypes.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
97

REFERENCES

[1] ETSI, “Network Functions Virtualisation (NFV); Virtual Network Functions Architecture”.

[2] SONATA Consortium, “The Sonata Project,” [Online]. Available: http://sonata-nfv.eu. [Accessed
March 2018].

[3] ETSI OSM, “Open Source MANO,” [Online]. Available: https://osm.etsi.org/ . [Accessed March
2018].

[4] The SECURED consortium, “The SECURED project,” [Online]. Available: http://www.secured-
fp7.eu. [Accessed March 2018].

[5] “Open Attestation project,” [Online]. Available:
https://github.com/OpenAttestation/OpenAttestation/tree/v1.7. [Accessed March 2018].

[6] “Apache Cassandra 2 project,” [Online]. Available: https://cassandra.apache.org/ . [Accessed
March 2018].

[7] L. Jacquin, A. L. Shaw and C. Dalton, “Towards trusted software-defined networks using a
hardware-based Integrity Measurement Architecture,” in 2015 1st IEEE Conference on Network
Softwarization (NetSoft), London, UK, 2015.

[8] The SHIELD consortium, “D2.1 Requirements, KPIs, design and architecture,” 2017.

[9] The SHIELD consortium, “D2.2 Updated requirements, KPIs, design and architecture,” 2018.

[10] The SHIELD Consortium, “D4.1 Specifications, design and architecture for the usable information-
driven engine,” 2017.

[11] SHIELD Consortium, “Updated specifications, design and architecture for the usable information-
driven engine,” 2018.

[12] The SHIELD Consortium, “D3.1 Specifications, design and architecture for the vNSF ecosystem,”
2017.

[13] The SHIELD Consortium, “D5.1 Integration results of SHIELD HW/SW modules,” 2018.

[14] “mcTLS,” [Online]. Available: - http://mctls.org/ . [Accessed March 2018].

[15] “ACME STAR protocol,” [Online]. Available: https://tools.ietf.org/html/draft-ietf-acme-star-03.
[Accessed March 2018].

[16] POLITO, “TCP STatistics and Analysis Tool,” [Online]. Available: http://tstat.polito.it. [Accessed
March 2018].

[17] “RFC 8329,” [Online]. Available: https://datatracker.ietf.org/doc/rfc8329. [Accessed March 2018].

[18] “Trusted Computing,” [Online]. Available: https://trustedcomputinggroup.org/trusted-
computing/ . [Accessed March 2018].

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
98

[19] CHARISMA consortium, “Charisma D3.2 deliverable,” [Online]. Available:
http://www.charisma5g.eu/wp-content/uploads/2015/08/CHARISMA-D3.2_v1.0.pdf. [Accessed
March 2018].

[20] “Snort IPS,” [Online]. Available: https://www.snort.org/ . [Accessed March 2018].

[21] “Barnyard2 a dedicated spooler for snort's unified2 binary output format,” [Online]. Available:
https://github.com/firnsy/barnyard2. [Accessed March 2018].

[22] “PulledPork fo Snort and Suricata rule management (from Google Code),” [Online]. Available:
https://github.com/shirkdog/pulledpork. [Accessed March 2018].

[23] “Ruby on Rails Application for Network Security Monitoring,” [Online]. Available:
https://github.com/Snorby/snorby. [Accessed March 2018].

[24] “ntop nDPI,” [Online]. Available: http://www.ntop.org/products/deep-packet-inspection/ndpi/ .
[Accessed March 2018].

[25] “OpenDPI code repository,” [Online]. Available: http://code.google.com/p/opendpi/ . [Accessed
March 2018].

[26] “PF_RING,” [Online]. Available: http://www.ntop.org/products/packet-capture/pf_ring/.
[Accessed March 2018].

[27] “Data Plane Development Kit,” [Online]. Available: http://dpdk.org/ . [Accessed March 2018].

[28] “Structured Threat Information Expression (STIX 2.0) CTI documentation,” [Online]. Available:
https://oasis-open.github.io/cti-documentation/. [Accessed March 2018].

[29] “mitmproxy,” [Online]. Available: https://mitmproxy.org/. [Accessed march 2018].

[30] “CertBot,” [Online]. Available: https://certbot.eff.org/. [Accessed March 2018].

[31] “Boulder GitHub page,” [Online]. Available: https://github.com/letsencrypt/boulder. [Accessed
March 2018].

[32] “Let's encrypt,” [Online]. Available: https://letsencrypt.org/. [Accessed March 2018].

[33] “Nfdump,” [Online]. Available: http://nfdump.sourceforge.net/. [Accessed March 2018].

[34] “The iptables project,” [Online]. Available:
https://www.netfilter.org/projects/iptables/index.html. [Accessed March 2018].

[35] “OpenBSD PF - User's Guide,” [Online]. Available: https://www.openbsd.org/faq/pf/. [Accessed
March 2018].

[36] “ModSecurity,” [Online]. Available: https://www.modsecurity.org/. [Accessed March 2018].

[37] “HTTPD Apache Hypertext Transfer Protocol Server,” [Online]. Available:
https://httpd.apache.org/docs/2.4/programs/httpd.html. [Accessed March 2018].

[38] “OWASP ModSecurity CRS,” [Online]. Available: https://github.com/SpiderLabs/owasp-
modsecurity-crs. [Accessed March 2018].

[39] “Apache Traffic Server,” [Online]. Available: http://trafficserver.apache.org/. [Accessed March
2018].

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
99

[40] “HAProxy - The reliable, high-performance TCP/HTTP load balancer,” [Online]. Available:
http://www.haproxy.org/. [Accessed March 2018].

[41] “Varnish HTTP Cache,” [Online]. Available: https://varnish-cache.org/. [Accessed March 2018].

[42] “nginx - Flawless application delivery for the modern web,” [Online]. Available:
https://www.nginx.com/. [Accessed March 2018].

[43] “NAXSI is an open source, high performance, low rules maintenance WAF for NGINX,” [Online].
Available: https://github.com/nbs-system/naxsi. [Accessed March 2018].

[44] “Eve. The Simple way to REST,” [Online]. Available: http://python-eve.org/. [Accessed March
2018].

[45] “Flask-RESTful,” [Online]. Available: https://flask-restful.readthedocs.io/. [Accessed March 2018].

[46] “Cerberus for a lightweight and extensible data validation,” [Online]. Available:
http://docs.python-cerberus.org/. [Accessed March 2018].

[47] “MongoDB for GIANT ideas,” [Online]. Available: https://www.mongodb.com/. [Accessed March
2018].

[48] “Behavior Driven Development,” [Online]. Available: https://www.agilealliance.org/glossary/bdd/.
[Accessed March 2018].

[49] “TeNOR Repository,” [Online]. Available: https://github.com/T-NOVA/TeNOR . [Accessed March
2018].

[50] “OpenBaton,” [Online]. Available: https://openbaton.github.io . [Accessed March 2018].

[51] “Open Source MANO releas 2,” [Online]. Available:
https://osm.etsi.org/wikipub/index.php/OSM_Release_TWO . [Accessed March 2018].

[52] “Open Source MANO release 2 - Whitepaper,” [Online]. Available:
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTWO-FINAL.pdf . [Accessed
March 2018].

[53] “OpenCIT project,” [Online]. Available: https://github.com/opencit/opencit/wiki/Open-CIT-2.2-
Product-Guide. [Accessed March 2018].

[54] “Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Da,” [Online]. Available:
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679. [Accessed March
2018].

[55] “Regulation (EU) 2015/2120 of the European Parliament and of the Council of 25 November 2015
laying down measures concerning open internet access and amending Directive 2002/22/EC on
universal service and users’ rights relating to electronic communications,” [Online]. Available:
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1520936363145&uri=CELEX:32015R2120.
[Accessed March 2018].

[56] “Directive 2002/58/EC of the European Parliament and of the Council of 12 July 2002 concerning
the processing of personal data and the protection of privacy in the electronic communications
sector (Directive on privacy and electronic communications),” [Online]. Available: http://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32002L0058. [Accessed March 2018].

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
100

[57] “Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL concerning
the respect for private life and the protection of personal data in electronic communications and
repealing Directive 2002/58/EC (Regulation on Privacy and Electronic Commu,” [Online].
Available: http://eur-lex.europa.eu/legal-
content/EN/TXT/?qid=1520936405198&uri=CELEX:52017PC0010. [Accessed March 2018].

[58] “Directive (EU) 2016/680 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data by competent
authorities for the purposes of the prevention, investigation, detectio,” [Online]. Available:
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1520936541517&uri=CELEX:32016L0680.
[Accessed March 2018].

[59] “ Directive (EU) 2016/1148 of the European Parliament and of the Council of 6 July 2016
concerning measures for a high common level of security of network and information systems
across the Union,” [Online]. Available: http://eur-lex.europa.eu/legal-
content/EN/TXT/?qid=1520936601568&uri=CELEX:32016L1148. [Accessed March 2018].

[60] “Council Directive 2000/78/EC of 27 November 2000 establishing a general framework for equal
treatment in employment and occupation,” [Online]. Available: http://eur-lex.europa.eu/legal-
content/EN/TXT/?qid=1520936644204&uri=CELEX:32000L0078. [Accessed March 2018].

[61] “Charter of Fundamental Rights of the European Union (2000/C 364/01),” [Online]. Available:
http://www.europarl.europa.eu/charter/pdf/text_en.pdf. [Accessed March 2018].

[62] “Treaty of Amsterdam amending the Treaty on European Union, the Treaties establishing the
European Communities and certain related acts,” [Online]. Available:
http://www.europarl.europa.eu/topics/treaty/pdf/amst-en.pdf. [Accessed March 2018].

[63] “Treaty of Lisbon amending the Treaty on European Union and the Treaty establishing the
European Community, signed at Lisbon, 13 December 2007,” [Online]. Available: http://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A12007L%2FTXT.

[64] “Council of Europe Recommendation CM/Rec(2010)13 and explanatory memorandum,” [Online].
Available: https://rm.coe.int/16807096c3. [Accessed March 2018].

[65] “European Agency of Fundamental Rights (FRA) Handbook on non-discrimination case law,”
[Online]. Available: http://fra.europa.eu/en/publication/2011/handbook-european-non-
discrimination-law-2011-edition. [Accessed March 2018].

[66] K. E. Himma and H. T. Tavani, The Handbook of Information and Computer Ethics, Hoboken, New
Jersy: Wiley, 2008.

[67] A. Cavoukian, Privacy by Design - the 7 foundational principles, www.privacybydesign.ca, 2011
(rev).

[68] “Data protection impact assessment,” Information Commissioner's Office, UK , [Online]. Available:
https://ico.org.uk/for-organisations/guide-to-the-general-data-protection-regulation-
gdpr/accountability-and-governance/data-protection-impact-assessments/. [Accessed March
2018].

[69] “OWASP Top 10 Privacy Risks and Countermeasures,” [Online]. Available:
https://www.owasp.org/images/0/0a/OWASP_Top_10_Privacy_Countermeasures_v1.0.pdf.
[Accessed March 2018].

[70] “PrivacyTrust,” [Online]. Available: http://www.etrust.org/. [Accessed March 2018].

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
101

[71] “HITRUST Alliance,” [Online]. Available: http://www.hitrustalliance.net/. [Accessed March 2018].

[72] “Health Insurance Portability and Accountability Act,” 2016. [Online]. Available:
http://www.legalarchiver.org/hipaa.htm. [Accessed March 2018].

[73] “ISO/IEC 27001 Information Security Management Systems,” [Online]. Available:
https://www.iso.org/isoiec-27001-information-security.html. [Accessed March 2018].

[74] “Information technology -- Security techniques -- Code of practice for protection of personally
identifiable information (PII) in public clouds acting as PII processors,” [Online]. Available:
https://www.iso.org/standard/61498.htm. [Accessed March 2018].

[75] “ISO/IEC 29100:2011,” [Online]. Available: https://www.iso.org/standard/45123.html. [Accessed
March 2018].

[76] “OASIS PMRM,” [Online]. Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=pmrm. [Accessed March 2018].

[77] “Nokia CloudBand,” [Online]. Available: https://networks.nokia.com/solutions/cloudband-
ecosystem . [Accessed March 2018].

[78] “Huawei NFV Integration Service,” [Online]. Available:
http://www.huawei.com/en/news/2017/11/NFV-Integration-Service-Innovation-Award .
[Accessed March 2018].

[79] Red, Hat, “Momentum has grown for VNF certification,” [Online]. Available:
https://www.redhat.com/en/blog/momentum-has-grown-vnf-certification. [Accessed March
2018].

[80] “Telefónica NFV Reference Lab,” [Online]. Available: http://www.tid.es/long-term-
innovation/network-innovation/telefonica-nfv-reference-lab . [Accessed March 2018].

[81] “Automated Certificate Mangement Environment (ACME),” [Online]. Available:
https://datatracker.ietf.org/wg/acme/charter/ . [Accessed March 2018].

[82] “mcTLS code repository,” [Online]. Available: https://github.com/scoky/mctls . [Accessed March
2018].

[83] “Linux Integrity Measurement Architecture,” [Online]. Available: https://sourceforge.net/p/linux-
ima/wiki/Home/ . [Accessed March 2018].

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
102

LIST OF FIGURES

Figure 1: High-level picture of use case 1 focusing on the ISP network. 6

Figure 2: High-level picture of use case 2, focusing on SecaaS. .. 7

Figure 3: High-level picture of use-case 3, focusing on national, European and global security.7

Figure 4: High-level architecture of SHIELD, with components per WP. 8

Figure 5: SHIELD vNSF environment’s architecture mapped to ETSI NFV architecture. 10

Figure 6: Network Service example. ... 12

Figure 7: Types of VNF interfaces. .. 13

Figure 8: Internal structure of a SHIELD vNSF. ... 14

Figure 9: Internal elements of a vNSF composed by two VNFCs. ... 14

Figure 10: Typical IDS architecture. .. 16

Figure 11: vIDS internal components. .. 17

Figure 12: vDPI design and main components. ... 18

Figure 13: ProxyTLS Gateway elements. .. 19

Figure 14: HTTP/S Analyser design and main components. .. 20

Figure 15: L3 Filter design and main components. .. 21

Figure 16: Forward L7 Filter design and main components. ... 22

Figure 17 : vNSF Store subcomponents. .. 25

Figure 18: Data flow diagram of Store. .. 26

Figure 19: vNSFO subcomponents and modules. .. 27

Figure 20: Data flow diagram of vNSFO. .. 29

Figure 21: vNSF instantiation management in I2NSF framework. .. 30

Figure 22: Trust Monitor subcomponents. .. 32

Figure 23: Data flow diagram of Trust Monitor. .. 34

Figure 24: OSM mapped to ETSI NFV architecture. ... 51

Figure 25: Iconset for Data-Privacy Declarations v0.1 (by Matthias Mehldau, licensed under
Creative Commons 2.0). .. 83

Figure 26: Mock-up showing how to the compliance specifications can be easily visualised in
the Store. ... 84

Figure 27 Nokia’s CloudBand certification environment. ... 87

Figure 28 Red Hat’s NFV certification environment. ... 87

Figure 29 Test process for a vNSF certification. ... 88

Figure 30: vNSF onboarding. ... 110

Figure 31: NS Onboarding. .. 111

Figure 32: vNSF onboarding failure. ... 112

Figure 33: NS instantiation. ... 113

Figure 34: NS configuration. ... 114

Figure 35: NS monitoring. ... 115

Figure 36: NS scaling.. 115

Figure 37: NS termination. .. 116

Figure 38: VDU image store. ... 117

Figure 39: vNSF decommissioning. ... 118

Figure 40: Interaction between Trust Monitor and vNSFO in the initial attestation of a
newcomer. ... 119

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
103

Figure 41: Interaction between the vNSFO and the DARE. ... 120

Figure 42: Interaction between the vNSFO and the Security Dashboard. 120

Figure 43: Interaction between Trust Monitor and vNSF Store. ... 121

Figure 44: Interaction between Trust Monitor and vNSF Orchestrator in the periodic attestation
task. .. 122

Figure 45: Interaction between Trust Monitor and DARE. .. 123

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
104

LIST OF TABLES

Table 1: Functionality Mapping. ... 23

Table 2 Privacy risks and countermeasures. .. 66

Table 3 vNSF general information. ... 69

Table 4 Overview of interfaces and data formats. .. 69

Table 5 Data types. .. 69

Table 6 Data storage.. 69

Table 7 Data processing activities performed by the vNSF. .. 70

Table 8 Available APIs/interfaces for data sharing per recipient category. 70

Table 9 Data subject rights under the GDPR. ... 70

Table 10 Net neutrality specifications. ... 71

Table 11 Non-discrimination and misuse of data. ... 71

Table 12 ePrivacy compliance. .. 71

Table 13 Compliance specifications for the NCSRD L3 firewall... 71

Table 14 vIDS compliance specifications. ... 73

Table 15 vDPI compliance specifications. .. 74

Table 16 ProxyTLS compliance specifications. ... 76

Table 17 HTTP/S Analyser compliance specifications.. 77

Table 18 - Compliance specifications for the POLITO L3 Filter. .. 79

Table 19 - Compliance specifications for the POLITO Forward L7 Filter 80

Table 20 ERC requirements tracing. ... 82

Table 21 SHIELD’s integration and testing plan in counterpoint with the testing process
suggested by Telefónica. ... 89

Table 22 vNSF package .. 131

Table 23 vNSF manifest datamodel .. 132

Table 24 OSM-based vNSF package example .. 134

Table 25 Network Service package ... 135

Table 26 Network Service manifest datamodel ... 135

Table 27 OSM-based NS package example .. 137

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
105

LIST OF ACRONYMS

Acronym Meaning

ACL Access Control List

ACME Automated Certificate Management Environment

API Application Programming Interface

BSS Business-Support System

C&C Command and Control

CDN Content Delivery Network

CERT Computer Emergency Response Team

CoT Chain of Trust

CRTM Core Root of Trust for Measurement

CSIRT Computer Security Incident Response Team

DARE Data Analysis and Remediation Engine

DoS Denial of Service

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

EM Element Management

EMS EM System

FAB Fulfilment, Assurance and Billing

FCAPS Fault, Configuration, Accounting, Performance and Security

ETSI European Telecommunications Standards Institute

FTP File Transfer Protocol

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

HTTPS HTTP Secure

I2NSF Interface to Network Security Functions

ID Identifier

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
106

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

IMA Integrity Measurement Architecture

IP Internet Protocol

IPS Intrusion Prevention System

IRC Internet Relay Chat

ISP Internet Service Provider

JSON JavaScript Object Notation

LoC Lines of Code

MAC Media Access Control

MANO MANagement and Orchestration

mcTLS Multi-Context TLS

ML Machine Learning

MSPL Medium-level Security Policy Language

NFV Network Function Virtualisation

NFVI NFV Infrastructure

NS Network Service

NSD NS Descriptor

NSM NS Manager

ODL Open Day Light

ONOS Open Network Operating System

OSI Open Systems Interconnection

OSS Operations Support System

PCR Platform Configuration Registers

PF Platform Functional

PFR PF Requirement

PNF Physical Network Function

PoP Point of Presence

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
107

R&D Research and Development

RDP Remote Desktop Protocol

REST REpresentational State Transfer

RO Resource Orchestrator

SDN Software-Defined Networking

SecaaS Security as a Service

SMB Server Message Block

SO Service Orchestrator

SP Service Provider

SPI Stateful Packet Inspection

STAR Short-Term and Automatically Renewed

SQL Structured Query Language

TC Trusted Computing

TCG TC Group

TLS Transport Layer Security

TM Trust Monitor

TPM Trusted Platform Module

TSTAT TCP STatistic and Analysis Tool

STIX Structured Threat Information Expression

UC Use Case

VCA vNSF Configuration and Abstraction

VDU Virtual Deployment Unit

VIM Virtual Infrastructure Manager

VL Virtual Link

VLD VL Descriptor

VM Virtual Machine

VNF Virtual Network Function

VNFC VNF Component

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
108

vNSF Virtual Network Security Function

VNFC vNSF Component

vNSFD vNSF Descriptor

vNSFFG vNSF Forwarding Graph

vNSFFGD vNSFFG Descriptor

vNSFM vNSF Manager

vNSFO vNSF Orchestrator

WAIS Wide Area Information Server

XML Extensible Markup Language

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
109

ANNEX A. INTRA-COMPONENT INTERACTIONS

This section provides a detailed description of the internal processes carried out within the
different components, along with explanations on each step of the process.

Store

vNSF Onboarding

Onboarding a vNSF Figure 30 comprises several steps to ensure the data provided complies
with the SHIELD constraints and policies. To avoid potential vNSF misbehaviour or malfunction
the onboarding process encompasses an approval stage. In this stage the vNSF is registered but
kept on a sandboxed state which makes it only visible to the Service Provider. Once this Service
Provider deems the vNSF approved, it will be available in the Store for all the other users. Whilst
the vNSF is sandboxed the Service Provider can perform any kind of validations to ensure the
vNSF delivers as expected. To perform such validations a special kind of tenant may be used to
provide a self-contained environment where the vNSF runs and allows the Service Provider to
perform the validation in any way, shape or form, be it only the vNSF lifecycle (start/stop/etc.),
any additional traffic or behaviour analysis, or operating as integrated in a NS (instantiated for
the approval stage).

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
110

Figure 30: vNSF onboarding.

NS Onboarding: The Network Service onboarding (Figure 31) is very much like the one for vNSF
with the difference being the Service Provider is the one who builds a service through chaining
one or more vNSFs.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
111

Figure 31: NS Onboarding.

vNSF/NS Onboarding Failure: The onboarding may fail (Figure 32) due to errors in the
descriptors, integrity checks or final approval by the Service Provider. An example of a workflow
of an onboard failure of a vNSF is provided below.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
112

Figure 32: vNSF onboarding failure.

vNSFO Orchestrator

NS instantiation

The vNSFO exerts the instantiation workflow (Figure 33) upon deployment of a given NS, which
in turn deploys the constituent vNSFs and interconnect appropriately. As part of deployment,
the configuration process can occur as well in order to perform pre-boot configuration on
vNSFs.

• NS deployment
1. The vNSFO retrieves the NS descriptor from the Store.
2. The NS descriptor is parsed to identify the constituent vNSFs and virtual links

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
113

3. The NS Manager requests the VIM on each operation, which delegates the
execution to the NFVI.

4. The virtual links are defined for the vNSFs contained in the NS.
5. Upon termination of the process, the resulting status is sent to the vNSFO.

• vNSF deployment
6. For each vNSF, the vNSFO retrieves the vNSF descriptor from the Store.
7. The VIM downloads the image corresponding to the specific vNSF to be

deployed.
8. The request is forwarded to the NS Manager, then to the vNSF Manager.
9. The compute nodes are allocated by the VIM and interconnected afterwards

with the virtual links defined during the first stages of the NS deployment.
10. Upon termination of the process, the resulting status is sent to the vNSFO.

Figure 33: NS instantiation.

NS configuration: The workflow is triggered when the vNSFO receives a request for configuring
a deployed NS; for instance after a user selects a recommendation from the Security
Dashboard, which will provide the vNSFO with policies to apply on specific vNSFs of a given NS.
Then, the vNSFO calls upon the configuration on a given vNSF (Figure 34), deploying if needed
the constituent vNSFs of the service and interconnecting them.

• NS configuration
1. The request is forwarded to the NS Manager
2. According to the configuration requested, the NS may be required to perform a

change on the virtual links interconnecting the vNSFs within the service
(updating, adding or deleting them) or address configurations on vNSFs only

3. The NS Manager requests the VIM on each operation, which delegates the
execution to the NFVI

4. Upon termination of the process, the resulting status is sent to the vNSFO

• vNSF configuration

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
114

5. For each vNSF, the request is forwarded to the NS manager, then to the vNSF
Manager

6. The vNSF Manager ensures that the provided configuration policies are valid
7. If the policies are valid; the vNSF Manager makes use of specific EMs to

introduce configuration into the vNSFs. The vNSFs provide endpoints to listen
for configuration changes

8. Upon termination of the process, the resulting status is sent to the vNSFO.

Figure 34: NS configuration.

NS monitoring: The workflow (Figure 35) is triggered when the vNSFO receives a request for
monitoring a running/deployed NS.

• NS monitoring
1. The request is forwarded to the NS Manager
2. Using the metrics retrieved from the constituent vNSFs, the metrics are

aggregated to provide information on the status of the different monitoring
values. These values are described in the NSD during its registration in the Store

3. Upon termination of the process, the resulting status is sent to the vNSFO

• vNSF monitoring
4. For each vNSF, the request is forwarded to the NS Manager, then to the vNSF

Manager
5. The vNSF Manager asks the NFVI for metrics on the vNSF running instance

(operation data on the compute nodes themselves) and requests the vNSFs for
any metric on the processes running within them (such as load within specific
services, etc)

6. Upon termination of the process, the resulting status is sent to the vNSFO

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
115

Figure 35: NS monitoring.

NS scaling: The workflow (Figure 36) is triggered when the vNSFO receives a request for scaling
(reduce, increase or extend resources) an existing NS.

• NS scaling
1. The request is forwarded to the NS Manager, then to the VIM
2. According to the operation requested, the NS may be required to update, add or

delete virtual links interconnecting the vNSFs within the service
3. The VIM interacts with the NFVI to update the definition of the links and their

interconnection with the vNSFs
4. Upon termination of the process, the resulting status is sent to the vNSFO

• vNSF scaling
5. For each vNSF, the request is forwarded to the NS Manager, then to the vNSF

Manager
6. The vNSF Manager forwards the request to the VIM
7. The VIM interacts with the NFVI to remove or extend the capacity of the vNSF with

additional resources
8. Upon termination of the process, the resulting status is sent to the vNSFO.

Figure 36: NS scaling.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
116

NS termination: The workflow (Figure 37) is triggered when the vNSFO receives a request for
terminating a running/deployed NS.

• NS termination:
1. The request is forwarded to the NS Manager, then to the VIM
2. The VIM interacts with the NFVI to remove the virtual links between the constituent

vNSFs
3. Upon termination of the process, the resulting status is sent to the vNSFO

• vNSF termination:
4. For each vNSF, the request is forwarded to the NS Manager, then to the vNSF

Manager.
5. The vNSF Manager forwards the request to the VIM.
6. The VIM interacts with the NFVI to terminate the vNSF and release additional

physical resources associated to these.
7. Upon termination of the process, the resulting status is sent to the vNSFO.

Figure 37: NS termination.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
117

ANNEX B. INTER-COMPONENT INTERACTIONS

This section will include the description of the processes carried out between the components
of the infrastructure. Each subsection will be focused on the processes initiated by a specific
component.

Store

VDU Image Storage: Upon successful vNSF validation all referenced VDU images must be stored
locally to allow faster instantiations. The Store provides the vNSFO with the VDU image(s)
associated with the vNSF and receives a path to the image(s) storage location (Figure 38). Even
though the VDU image(s) are downloaded to a Store-controlled storage location for integrity
checks, these will only live in the storage controlled by the VIM. Once the images are stored by
the VIM the Store do not need these anymore, so it deletes the local copy and records the final
location in the Catalogue.

Figure 38: VDU image store.

NS/vNSF Decommissioning: When a NS or vNSF reaches the end of life it must be removed from
the Store. This operation (Figure 39) is triggered by the Store which marks the NS or vNSF as
decommissioned to prevent further instantiations. For a running NS or vNSF a graceful
decommission is provided through the schedule of the operation to a later date.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
118

Figure 39: vNSF decommissioning.

vNSF Orchestrator

Interaction with the Store: The interaction between the Orchestrator and Store is effective
during the deployment or instantiation. The vNSFO requests the NSD or vNSFD from the Store,
as a first step to gather all resources for the NS instantiation, as depicted in Figure 33.

Interaction with the Network infrastructure: The vNSFO talks with the NFVI on every operation
defined for the vNSF and NS Managers. It accounts for two type of operations: creating,
updating or removing virtual links and fetching metrics from the infrastructure. The different
interactions can be observed from Figure 33 to Figure 37.

Interaction with the Trust Monitor: The vNSFO will interact with the Trust Monitor at two points:
first, when adding a physical node to the NFVI, so as to attest its software integrity before
allowing it the access to the NFVI; and second, during the periodic attestation of the
infrastructure. The process for the initial attestation is initiated by the vNSFO and is defined

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
119

below, whereas the periodic attestation is depicted within the Trust Monitor section (Figure
34). This part of the process is depicted in Figure 30, and it is described as follows:

1. The vNSFO queries the Trust Monitor to attest a newcomer and provides information
about the target

2. The Trust Monitor registers the node internally if not already there
3. For each node in the NFVI, the Trust Monitor establishes a Remote Attestation process
4. Each node of the NFVI sends back its integrity report to the Trust Monitor
5. The Trust Monitor assesses each integrity report by leveraging the list of known

measurements in the whitelist, as well as expected dynamic configuration such as SDN
forwarding rules

6. The Trust Monitor replies to the vNSFO with the attestation result (failure or success)

Figure 40: Interaction between Trust Monitor and vNSFO in the initial attestation of a newcomer.

Interaction with DARE: The vNSFO provides the DARE with information on the network
topology, the list of vNSFs per tenant and the running NSs and vNSFs. Such information is used
by the subcomponents within DARE to analyse the most appropriate deployment to mitigate
an active threat (Figure 41).

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
120

Figure 41: Interaction between the vNSFO and the DARE.

Interaction with Security Dashboard: The end-user will access the Security Dashboard to obtain
relevant information about the infrastructure and possible suggestions to exert to mitigate a
given threat. The interaction between the Security Dashboard and the vNSFO occurs at this
point; where the suggestions are provided to the vNSF Orchestrator as a set of NSs to deploy,
as well as the policies to provide to the specific constituent vNSFs at the deployed NSs (Figure
42).

Figure 42: Interaction between the vNSFO and the Security Dashboard.

Trust Monitor

Interaction with Store: The Trust Monitor interacts with the Store to retrieve attestation-
specific information needed to verify the integrity of the vNSFs running in the NFVI.

The process, pictured in Figure 43, is described as follows:

1. The Trust Monitor sends a request to the vNSF Store containing a specific vNSF identifier
2. The vNSF Store sends back a response with the requested vNSF’s security manifest

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
121

3. The Trust Monitor extracts the measurements (digests) of the software executed by the
vNSF

4. The Trust Monitor checks if the digests are included in the Whitelist Database
5. If no matching digest is present, the TM updates the whitelist with the new

measurements and links them to the correct vNSF identifier

Figure 43: Interaction between Trust Monitor and vNSF Store.

Interaction with vNSF Orchestrator: The Trust Monitor interacts with the vNSFO when
performing attestation of the NFVI; either on the initial attestation of a newcomer of the NFVI
or during the periodic attestation task. The former process is described in the vNSF
Orchestrator section (Figure 40), whereas the process for the periodic attestation is described
below (Figure 44).

1. The Trust Monitor retrieves the NFVI state from the vNSFO
2. The Trust Monitor extracts the list of nodes to be attested from the NFVI
3. For each node in the NFVI, the Trust Monitor initiates a Remote Attestation procedure
4. Each node of the NFVI sends back its integrity report to the Trust Monitor
5. The Trust Monitor assesses each integrity report by leveraging the list of known

measurements in the whitelist, as well as the expected dynamic configuration such as
SDN forwarding rules

6. If any of the verifications fails:
a. The Trust Monitor sends a notification about the failure to the vNSFO
b. The vNSFO excludes the node from the NFVI

7. In the other case, the process successfully terminates

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
122

Figure 44: Interaction between Trust Monitor and vNSF Orchestrator in the periodic attestation task.

Interaction with DARE: The Trust Monitor sends by sending security event information to the
DARE (i.e., a node is found to be compromised during initial or periodic attestation tasks); this
can then be processed by the Big Data engine for logging and further sense extraction thanks
to its security modules. The workflow is depicted in Figure 45 and goes as follows:

1. The TM detects a security event that should be logged in the DARE, such as an
attestation failure of a NFVI node or vNSF (either during initial or periodic attestation)

2. The TM sends the alarm to the DARE with the detailed information about the failure.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
123

Figure 45: Interaction between Trust Monitor and DARE.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
124

ANNEX C. TRUSTED COMPUTING TECHNOLOGIES

Trusted Computing aims at providing specific technologies and mechanisms to establish a
hardware-based assessment of the integrity of a computing system. The Trusted Computing
Group (TCG) [26] is the major company-backed TC consortium, which mainly focuses on the
development of solutions for enabling TC in computing platform from mobile and embedded
devices to data-centre class servers.

One of the fundamental principle of TC is the Chain of Trust (CoT), a transitive mechanism that
ensures the trustworthiness of a computing system via a step-by-step extension process. The
process requires the definition of a minimal combination of hardware and software - called
Core Root of Trust for Measurement (CRTM) - that initiate the CoT measuring - and storing the
measurement - the next software to be executed; it is implicitly trusted by a remote verifier.
Each element of the CoT is responsible for measuring and storing the integrity of the next
element, so that the whole chain can be verified by a third party. The starting point of the
verification process is the CRTM, whose establishment requires a dedicated hardware security
chip, called Trusted Platform Module (TPM).

The TPM is a device, standardised by the TCG, acting as a secure cryptoprocessor capable of
storing keys, secrets, identities and measurements of the platform integrity. The standard has
undergone different revisions, reaching the 2.0 version at the time of writing. Integrity
measurements are protected by the TPM’s Platform Configuration Registers (PCR). PCRs can
only be updated by the TPM itself, using an internal secure hash function, via the “extend”
operation: at each step, the current value of a PCR is concatenated with the new measurement
and the digest of the resulting message is stored in the PCR. This mechanism ensures that
unless the platform is rebooted, no PCR-stored measurement can be erased - thus software-
based attacks cannot hide execution of untrusted binaries.

The TCG also defines a specific workflow to attest the trustworthiness of TPM-equipped and
measured boot enabled entities by a remote third party, called Remote Attestation. The PCRs’
value can be accessed by a remote entity by challenging the TPM with a nonce; using a
hardware-protected key (i.e. only the TPM can use the private key for signing), the TPM
protects the integrity of the PCRs’ with a signature which include the challenge nonce for
freshness. Using the prior knowledge of all the platform’s TPM public key used for attestation,
the remote entity can verify the genuineness of the signature - which also validates the
hardware identity, as well as the content of the logged software events.

The TPM specification does not specify the measurement strategy to be adopted by the
computing system for logged software events. The Integrity Measurement Architecture (IMA)
[27] in Linux is a specific implementation that maintains a log of measured software events (e.g.
the execution of a binary, using a configuration file) at runtime and, if enabled with a TPM, an
aggregate integrity value is stored in one of the static PCRs. Although the log file might be
manipulated by an attacker, the hardware register can’t be directly altered, meaning that a
verifier could detect any unexpected tampering to the log file.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
125

ANNEX D. APPLICATION PROGRAMMING INTERFACES

(APIS)

This Annex presents a first definition of the methods (and arguments) to be supported by the
APIs exposed by each component.

Orchestrator

This section includes the low-level specifications of the operations offered by each API exposed
by the vNSFO.

Dashboard API: The vNSFO will provide an interface so that the Security Dashboard can retrieve
the necessary information to provide the visualisation to the end-user.

Operation Arguments Description

get_network_topology - Provides the topology of the network as provided by the VIM

get_deployed_vnsfs - Provides the running vNSFs

get_deployed_vnsfs tenant_id Provides the running vNSFs, filtered by tenant

Trust Monitor API: The vNSFO will provide an interface so that the Trust Monitor can obtain the
information to perform the periodic attestation task.

Operation Arguments Description

get_physical_nodes - Provides the list of active physical nodes in the NFVI

get_deployed_vnsfs - Provides the running vNSFs

get_network_topology - Provides the topology of the network as provided by the VIM

get_network_flowtable - Provides the contents of the flow tables of the SDN controller

DARE API: The vNSFO will provide an interface for the DARE to obtain a global view on the NFVI
and thus be able to perform the analytics and provide the recommendations.

Operation Arguments Description

get_network_topology - Provides the topology of the network as provided by the VIM

get_deployed_vnsfs tenant_id Provides the running vNSFs, filtered by tenant

get_deployed_vnsfs - Provides the running vNSFs

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
126

get_deployed_nss - Provides the running NSs

Trust Monitor

This section includes the low-level specifications of the operations offered by each API exposed
by the Trust Monitor.

Management API: The Trust Monitor will provide a Management API with operations that would
allow other components to check the status of the infrastructure’s attestation.

Operation Arguments Description

get_status_info

Retrieves status information about the Trust Monitor

get_vnsf_attestation_info node_id Retrieves attestation-specific information for a single
vNSF

get_nfvi_attestation_info

Retrieves attestation-specific information for the whole
NFVI

get_nfvi_pop_attestation_info node_id Retrieves attestation-specific information for a specific
NFVI PoP

Newcomer Attestation API: The Trust Monitor will provide an interface for receiving attestation
requests for a newcomer in the NFVI. Note that the interface should be specific for the
newcomer’s attestation, as the Trust Monitor will later on perform periodic attestation tasks
over the different nodes that have been pre-registered to it. The API may be used for both
physical nodes, during the initial authentication phase, or for vNSFs, during their instantiation
phase.

Operation Arguments Description

register_node node_id, address,
distribution, ...

Registers the node to the Verifier, given a unique identifier (which
will be used for further attestation procedure), the address of the
node, the distribution of the OS running in it.

attest_node node_id,
analysis_type

Remote Attestation request to the node, identified by a unique ID.
The client to be attested will provide the integrity measurements
according to the type of requested analysis (e.g. load-time analysis
with a certain trust level for the measurements)

Store

The Store will provide an interface to obtain the information it persists as well as accessing
features it provides.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
127

Operation Arguments Description

onboard_vnsf security_manifest,
vnsf_descriptor

Onboards a vNSF

onboard_ns security_manifest,
ns_descriptor

Onboards a NS

get_vnsf_onboarding_status id Provides the status for the vNSF onboarding
operation

get_ns_onboarding_status id Provides the status for the NS onboarding
operation

list_vnsfs - Provides a list of all the onboarded vNSFs along
with a brief description for each one

list_nss - Provides a list of all the onboarded NSs along with a
brief description for each one

get_vnsf_info id Provides all the information on the onboarded vNSF

get_ns_info id Provides all the information on the onboarded NS

decommission_vnsf id Retire a vNSF

decommission_ns id Retire a NS

get_vnsf_security_info id Provides all the security information concerning a
vNSF

get_ns_security_info id Provides all the security information concerning a
NS

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
128

ANNEX E. TECHNOLOGY SELECTION

Orchestrator

The analysis of different vNSFOs has been carried out to choose which one to use in SHIELD. To
do this we selected a subset of some well-known open-source NFV MANO (TeNOR, OSM,
SONATA, OpenBaton) and considered the adequateness depending on the mapping to the
SHIELD’s Platform Functional Requirements, the support of some relevant key features within
the project and the status of its community and development.

Platform Functional mapping

PF Requirement TeNOR OSM SONATA OpenBaton

PF01 - vNSF and Network
Service (NS) deployment

Y Y Y-
(No external cloud

deployment)

Y

PF02 - vNSF lifecycle
management (on boarding,
instantiation, chaining,
configuration, monitoring
and termination)

Y Y-
(Monitoring based

on VIM
implementation
integrated in R3)

Y Y

PF03 - vNSF status
management (DEPLOY,
START, STOP, MODIFY,
DELETE)

Y Y Y-
(Ongoing for: adding
restart, stop, pause)

Y-
(Some may
be missing)

PF04 - Security data
monitoring and analytics

Y-
(Delegated
to NSM and

vNSFM)

Y-
(Delegated to the

EM)

Y-
(Custom metrics

allowed, infra metrics)

Y-

PF05 - Analytics
visualisation

N/A N/A N/A
(son-gui shows

monitoring metrics)

N/A

PF06 - Ability to offer
different management roles
to several users (multi-user
with possibility of
configuring different roles)

N N Y
(Static dev/customer

roles; new roles will be
customised and

dynamic)

N

PF07 - Service elasticity
[optional]

Y Y
(Experimental NS

scaling. manual GUI,
support for

adding/removing full
VNFs to/from a

running NS)

Y-
(Will allow scale-out)

Y

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
129

PF08 - Platform
expandability

Y Y Y Y

PF09 - Access control Y
(Tokens)

Y
(Certificates)

Y
(User/sw, sw-sw using

tokens)

Y

PF10 - vNSF validation N/A N/A N
(Signed packages in

store, control mangling)

N/A

PF11 - vNSF attestation N N N N

PF12 - Log sharing N/A N/A N/A N/A

PF13 - Mitigation Y Y N Y

PF14 - Multi-tenancy Y
(1 tenant: 1
running NS)

Y- N N
(1 tenant for

all)

PF15 - Service store N/A N/A Y N/A

PF16 - History reports N/A N/A N
(alerts aggregated)

N/A

PF17 - Interoperability N/A Y
(Multiple VIMs)

N N/A

PF17 - Interoperability Y Y Y Y

PF19 - Network
infrastructure attestation

N/A N/A N N/A

PF20 - Billing framework N
(Delegated

to BSS)

N
(Delegated to BSS)

N/A
(License concept in NS

related to billing)

N

Feature-focused analysis

Feature TeNOR OSM SONATA OpenBaton

Type of
virtualisation

VMs VMS
(Containers may be possible)

VMs VMs

VIM supported OpenStack OpenVIM (R1/R2), OpenStack
(R2), VMWare (R2)

OpenStack OpenStack

SDN controller
supported

ODL
(through netfloc)

ODL (R1/R2), Floodlight
(R1/R2), ONOS (R2)

ODL ODL, ONOS
(ongoing)

Service Function
Chaining

Y
(Using netfloc plug-

in and ODL)

Y
(Direct, no plug-in)

Y
(ODL SFC)

Y

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
130

Lifecycle
management

Y
(Start, stop)

Y
(Available for VNF & NS)

Y Y

Event
management

Y
(Custom)

Y
(Provide messages about the

deploy of vNSF & NS)

Y-
(ongoing)

Y
(Generic and

specific)

Elasticity Y
(Scale-in, scale-out)

Y
(Scale-in, scale-out;

experimental support to
modify running NSs)

Y-
(Will allow scale-

out)

Y
(Auto-scaling)

Monitoring Y
(Per NS, per vNSF
instance and inner

service)

Y
(Based on VIM, delegated to

EM)

Y
(Prometheus, log
aggregation per

component)

Y
(Zabbix for
NFVI and

VNFs)

Dynamic vNSF
placement

Y-
(Algorithms in

place, not tested)

N N
(Ongoing design
for auto-location
and distributed

NSs)

Y

Maintenance-focused analysis

Key TeNOR OSM SONATA OpenBaton

LoC 441217 340861 6596 118322

Development
language

Ruby Python Ruby,
Python

Java

Community i2CAT

ETSI and 60 orgs (8 net
operators)

ATOS,
i2CAT, etc

Fraunhofer/FOKUS, TUB

Projects in use EU and national
R&D ongoing

projects

EU R&D projects,
Telefónica VNF cert Lab,

RIFT.ware

EU R&D
projects

EU R&D project,
5GBerlin testbed

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
131

ANNEX F: SHIELD PACKAGING

vNSF Packaging

Elements

To foster VNF reuse and remove SHIELD applicability barriers the SHIELD VNF package format
extends existing VNF formats by introducing:

• a security manifest to ensure VNF tamper-proofing

• a digitally-signed security manifest to prove provenance and integrity

• support for including Orchestrator-specific VNF package format

• a .tar.gz package format to enclose everything

A SHIELD vNSF package (.tar.gz file) comprises:

Table 22 vNSF package

Element Format Purpose

manifest.yaml YAML Security manifest which defines the tamper-proof

metadata to ensure the vNSF in operation wasn't

tampered with since when it was onboarded

<vnf_package_file> Orchestrator

specific

The VNF package to onboard into the vNSF

Orchestrator

Structure

The structure of a SHIELD vNSF package is as follows:

.

├── manifest.yaml # SHIELD security manifest

└── <vnf_package_file> # Orchestrator-specific VNF package

This packaging is Orchestrator agnostic and allows for onboarding an existing VNF into SHIELD
simply by providing a security manifest tailored to the VNF in question. Once this is done it is
just a matter of producing a .tar.gz file with the contents mentioned and submit it to the Store.

Datamodel

The security manifest (manifest.yaml) datamodel is described in Table 23.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
132

Table 23 vNSF manifest datamodel

Field Purpose

manifest:vnsf Defines a SHIELD vNSF package

type The type of VNF the manifest describes. Allowed values: OSM

package VNF file name within the SHIELD package. This file name, contents and

format is Orchestrator specific. This manifest only identifies the file which

holds the VNF package

hash The message digest for the VNF package mentioned in the package field.

descriptor VNF Descriptor file within the VNF-specific package. Tipically a path to the

actual file itself

properties vNSF characterization and purpose-related details

security_info The metadata used for attestation purposes to ensure the VNF wasn't

tampred with

Schema

'schema': {

 'manifest:vnsf': {

 'type': 'dict',

 'required': True,

 'schema': {

 'type': {

 'type': 'string',

 'empty': False,

 'allowed': ["OSM"],

 'required': True

 },

 'package': {

 'type': 'string',

 'empty': False,

 'required': True

 },

 'hash': {

 'type': 'string',

 'empty': False,

 'required': True

 },

 'descriptor': {

 'type': 'string',

 'empty': False,

 'required': True

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
133

 },

 #vNSF description.

 'properties': {

 'type': 'dict',

 'required': True,

 'schema': {

 'vendor': {

 'type': 'string',

 'empty': False,

 'required': True

 },

 'capabilities': {

 'type': 'list',

 'empty': False,

 'required': True

 },

 }

 },

 'security_info': {

 'type': 'dict',

 'required': True,

 'schema': {

 'vdu': {

 'type': 'list',

 'required': True,

 'schema': {

 'type': 'dict',

 'schema': {

 'id': {

 'type': 'string',

 'empty': False,

 'required': True

 },

 'hash': {

 'type': 'string',

 'empty': False,

 'required': True

 },

 'attestation': {

 'type': 'dict',

 'required': True,

 'schema': {

 'somekey': {

 'type': 'string',

 'empty': False,

 'required': True

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

}

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
134

Example: OSM VNF packaging

The SHIELD vNSF package extends the OSM VNF package definition by adding the security
details. The SHIELD vNSF package is thus a wrapper that contains the elements in Table 24.

Table 24 OSM-based vNSF package example

Element Contents [(M)andatory | (O)ptional] Source

manifest.yaml (M) package contents definition along with the security

information

SHIELD

<vnf_name>_vnfd.yaml (M) vNSF descriptor information. Follows the OSM

Information Model (page 47)

OSM

charms (O) juju charm configuration for the VNF OSM

checksums.txt (M) image file(s) hash(es) OSM

cloud_init (O) instantiation configurations OSM

icons (O) used on the OSM Composer OSM

images (O) VDU image files for the vNSF OSM

README (O) vNSF related information OSM

scripts (O) base configuration scripts once the vNSF is up and

running

OSM

The security manifest for an OSM VNF would look like this:

manifest:vnsf:

 type: OSM

 descriptor: cirros_vnf/cirros_vnfd.yaml

 package: cirros_vnf.tar.gz

 hash: bVa7rrrYocuye2TMbUEk+8NXUPRJ6TYhfRWip66kfO0=

 properties:

 vendor: some vendor name

 capabilities: ['Virtual Cirr OS']

 security_info:

 vdu:

 - id: cirros_vnfd-VM

 hash: KFQDLBG64WUZZKd/RSetWD/ymcyn4hcOn9oFpMd6rLE=

 attestation:

 somekey: <TBD - provided by TM>}

 somekey: <TBD - provided by TM>}

https://osm.etsi.org/wikipub/images/2/26/OSM_R2_Information_Model.pdf
https://osm.etsi.org/wikipub/images/2/26/OSM_R2_Information_Model.pdf
https://jujucharms.com/

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
135

NS Packaging

Elements

To foster Network Service reuse and remove SHIELD applicability barriers the SHIELD Network
Service package format extends existing formats by introducing:

• a digitally-signed security manifest to prove provenance and integrity

• support for including Orchestrator-specific Network Service package format

• a .tar.gz package format to enclose everything

A SHIELD NS package (.tar.gz file) comprises:

Table 25 Network Service package

Element Format Purpose

manifest.yaml YAML Security manifest which defines the tamper-proof metadata
to ensure the Network Service in operation wasn't tampered
with since when it was onboarded

<ns_package_file> Orchestrator
specific

The Network Service package to onboard into the Network
Service Orchestrator

Structure: The structure of a SHIELD Network Service package is as follows:
.

├── manifest.yaml # SHIELD security manifest

└── <ns_package_file> # Orchestrator-specific Network Service package

This packaging is Orchestrator agnostic and allows for onboarding an existing Network Services
into SHIELD simply by providing a security manifest tailored to the Network Service in question.
Once this is done it is just a matter of producing a.tar.gz file with the contents mentioned and
submit it to the Store.

Datamodel: The security manifest (manifest.yaml) datamodel is described in Table 26.

Table 26 Network Service manifest datamodel

Field Purpose

manifest:ns Defines a SHIELD Network Service package

type The type of VNF the manifest describes. Allowed values: OSM

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
136

package Network Service file name within the SHIELD package. This file name, contents and
format is Orchestrator specific. This manifest only identifies the file which holds
the Network Service package

hash The message digest for the NS package mentioned in the package field.

descriptor Network Service Descriptor file within the Network Service-specific package.
Tipically a path to the actual file itself

properties Network Service characterization and purpose-related details

Schema

'schema': {

 'manifest:ns': {

 'type': 'dict',

 'required': True,

 'schema': {

 'type': {

 'type': 'string',

 'empty': False,

 'allowed': ["OSM"],

 'required': True

 },

 'package': {

 'type': 'string',

 'empty': False,

 'required': True

 },

 'hash': {

 'type': 'string',

 'empty': False,

 'required': True

 },

 'descriptor': {

 'type': 'string',

 'empty': False,

 'required': True

 },

 #NS description.

 'properties': {

 'type': 'dict',

 'required': True,

 'schema': {

 'vendor': {

 'type': 'string',

 'empty': False,

 'required': True

 },

 'capabilities': {

 'type': 'list',

 'empty': False,

 'required': True

 },

 }

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
137

 },

 }

 }

}

Example: OSM NS packaging

The SHIELD Network Service package is a wrapper that contains the elements described in Table
27.

Table 27 OSM-based NS package example

Element Contents [(M)andatory | (O)ptional] Source

manifest.yaml (M) package contents definition along with the security information SHIELD

<ns_name>_nsd.yaml (M) Network Service descriptor information. Follows the OSM
Information Model (page 12)

OSM

checksums.txt (M) image file(s) hash(es) OSM

icons (O) used on the OSM Composer OSM

README (O) vNSF related information OSM

The security manifest for an OSM NS would look like this:

manifest:ns:

 type: OSM

 package: cirros_ns.tar.gz

 hash: qrv4hyEUbgcU7j(zkepfubmdotU69436bkbndRGUUo0=

 descriptor: cirros_ns/cirros_nsd.yaml

 properties:

 capabilities: ['Virtual Cirr OS']

https://osm.etsi.org/wikipub/images/2/26/OSM_R2_Information_Model.pdf
https://osm.etsi.org/wikipub/images/2/26/OSM_R2_Information_Model.pdf

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
138

ANNEX G. TECHNICAL UPDATES AND REVISIONS

Technical advances and updates since D2.1/D3.1
vNSFO: The subcomponents of the vNSFO have been further analysed against the
requirements, and consequently adapted. This analysis resulted in some subcomponents being
renamed to better state their functionality (the “Orchestrator Engine” has been renamed to
“NS Manager”, the “Infrastructure Repository” was renamed to “Repositories”, “Northbound”
and “Data engine” APIs were renamed to “Store”, “Dashboard”, “DARE” Connectors and APIs).
Some were added to cover extra functionalities (the connection with the Trust Monitor) and
others were removed to define the architecture more clearly and avoid duplicities (the
“Catalogue”, introduced as a separate subcomponent, is kept in the Store; and the
“Monitoring” is a feature provided by the NS and vNSF Managers). The mapping of the
functionality of the vNSFO with the requirements from SHIELD is revised according to the
specifications proposed. “PF10 - vNSF validation” is now a responsibility of the Store. On the
other hand, other Platform Functional (PF) requirements and Non-Functional (NF)
requirements have been now mapped to vNSFO to cover related, though not direct,
responsibilities. After further analysis, the interface between the Trust Monitor and the vNSFO
should be extended to support enrolment of a newcomer node on the NVFI PoP in the TM.

DARE/Trust Monitor: The mapping between the component and the Platform Requirements
(PF), as envisioned in D2.1, has been reconsidered with regards to the capabilities of the other
components of the platform. More specifically, "PF04 - Security data monitoring and analytics"
is addressed by the data acquisition and analysis capabilities provided by the DARE, as the Trust
Monitor does not receive logs straight from the vNSFs to detect occurring security incidents.
The "PF13 - Mitigation" requirement is addressed by the recommendation and remediation
capabilities of the DARE; the corresponding requirement for the Trust Monitor is “PF19 -
Network infrastructure attestation”. The "PF18 - Service composition" requirement is
addressed by the Security Dashboard and the DARE, as they are the components involved in
the selection and deployment of vNSFs. Differently from D2.1, the "PF11 - vNSF attestation"
requirement is fulfilled by the Trust Monitor, which is collecting attestation's data from the
hosts running the vNSFs and check their integrity information against the known values
retrieved from the Store.

Store: As a result of the specification activities, it was decided to keep a single NS/vNSF
catalogue instance for use in the SHIELD platform, placing this catalogue as a subcomponent of
the Store. This approach helps to reduce information replication throughout SHIELD’s
components and define more clearly the responsibilities of both Store and vNSFO components.
The Store will be responsible for managing and providing the information of all the onboarded
NSs and vNSFs. Additionally, after further analysis of the requirements in D2.1, two additional
platform requirements were mapped to the Store component: “PF02 - vNSF lifecycle
management” was included since the Store is responsible for managing partially the lifecycle
of vNSFs, being responsible for the onboarding process; “PF11 - vNSF attestation” is now
mapped to the Store, since the Store will validate the digital-signature of each artefact
onboarded, thus assessing the validity of its provenance.

SHIELD D3.2 • Updated specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
139

SHIELD vNSFs: The scope of the vDPI was altered since D2.2 to account for user case 3 and the
input provided by cybersecurity agencies.

Document revision

The following table tracks the changes to this document, as compared to its preliminary (base)
version, D3.1.

Page
No

Revision
Date

Revision
action

Revision description Tracking notes

1 58-
86

20/2/2018 Added Chapter 4, “Regulatory
Compliance
Specifications”

Added to ensure GDPR compliance for
vNSFs, and to address comments during Y1
review

2 87-
96

23/2/2018 Added Chapter 5, “Validation
and Certification”

Added to discuss performance and testing
of vNSFs, certification options, marketplace
development and to address comments
during Y1 review

3 2-3 2/3/2018 Updated Executive Summary Executive summary reflects the new
requirements in D2.2 and the scope of the
deliverable w.r.t. D3.1

4 8-9 2/3/2018 Added Subsections 1.2 Scope
of this deliverable, 1.3
Organisation of this
document

Added to provide the scope of the
document, links to other deliverables and
the organisation of its contents

5 10-
11

2/3/2018 Added Subsection 2.1 Guiding
Principles

Addresses standardisation, legal
compliance and exploitation and basic
design principles, text has been separated in
a new subsection.

6 - 2/3/2018 Removed 2.2.2, 2.3.2, 2.4.2
Updates since D2.1

This text was removed as it was deprecated.
Technical Updates w.r.t. D2.2/D3.1/D4.1
are included in the present Annex.

7 24 23/3/2018 Updated 2.2.2.4 Functionality
Mapping

Updated to include all requirements in D2.2
and Map the vNSF ecosystem functionalities
to the demos/use cases.

8 36-
57

23/3/2018 Updated 3.1.x.1 Implementation
details

Finalised implementation details for Y1
vNSFs (vDPI, vIDPS)

9 36-
57

23/3/2018 Added 3.1.x.1 Implementation
details

added implementation details for Y2 vNSFs
(proxyTLS, HTTP/S analyser, L3 filter,
forward L7 filter)

10 36-
57

23/3/2018 Updated 3.1.x.2 Requirements
Mapping

Updated to include the new requirements
in D2.2, and resource requirements.

11 96-
97

23/3/2018 Updated Section 6 Conclusions Updated section number and includes
future work for WP3 and
conclusions/lessons learned after Y1

12 139-
140

26/3/2018 Added Annex F Tracks changes in technical content and in
the text since D3.1.

