
SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
1

Deliverable D3.1

Specifications, design and
architecture for the vNSF ecosystem

Editor R. Preto (Ubiwhere)

Contributors F. Ferreira, T Batista (Ubiwhere), C. Fernández, B.
Gastón (i2CAT), M. De Benedictis, A. Lioy (POLITO), E.
Trouva (NCSRD), O. Segou (ORION), H. Attak, L. Jacquin
(HPE), A. Pastor (TID)

Version 1.0

Date June 5th, 2017

Distribution PUBLIC (PU)

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
2

Executive Summary

Following the work done in D2.1, where the requirements of the SHIELD platform were elicited
and the high-level design and architecture of the platform was exposed, a detailed study of the
different components has been done in order to obtain the low-level architecture and design
(subcomponent granularity), the specifications (transformation of the user requirements into
technical requirements/specifications) and the implementation guide (technologies to use).
This work has been divided into the two technical development work packages of SHIELD
namely WP3 and WP4. This deliverable covers the components developed for WP3, namely i)
the vNSF Store, which holds a registry of NS and vNSF-related information; ii) the vNSF
Orchestrator, which deploys and manages the lifecycle of the NSs and vNSFs; iii) the monitoring
vNSFs, which produce the information to detect the threats; iv) the remediation vNSFs, which
provide the means to actuate and mitigate detected threats sand and v) the Trust Monitor,
which verifies that both NSs and vNSFs, as well as other nodes from the infrastructure, are
trusted at all times.

One of the main aspects exposed in this deliverable is the transformation of the user
requirements into specifications or technical requirements. The requirements identified in D2.1
were categorised into platform requirements, non-functional requirements and service
requirements. Firstly, we have identified which of these requirements have implications in
every phase and subcomponent (D2.1 already did this work but only at a component level).
Secondly, we have translated the requirements from the business language used in D2.1 to the
technical language needed for the developments.

This deliverable defines the vNSF architecture blueprint to be used in SHIELD, in which the
common elements of a vNSF are defined and the available interfaces depicted. The case of
Network Services is covered and we provide an example of a NS built from two vNSF with the
intent to stipulate the mandatory internal elements when more than one vNSF is employed,
that ensure control and configuration of the entire vNSF set. Both the architecture and the
interfaces presented for vNSF comply with the ETSI NFV group recommendations and
specifications [1].

This deliverable also details the vNSFs currently envisioned for implementation in SHIELD,
specifically, an Intrusion Detection System (IDS), a TLS re-encryption gateway, a traffic analysis
vNSF, a deep packet inspection vNSF, a packet filter vNSF acting at network layer, and a forward
proxy vNSF acting at application layer.

From the detailed research conducted on previous projects, open source implementations
related to NFV technology and state-of-the-art technologies embraced by the community, we
have concluded that the Store shall incorporate the VNF and NS descriptors validation work
done in the SONATA [2] project; the vNSFO shall build on the work carried out within the OSM
project [3]; and the TM makes use of the work from the SECURED [4] project where it reuses
the Third-party Verifier based on Open Attestation v1.7 [5], the Whitelist Database based on
Apache Cassandra 2 [6] and the SDN-enabled switch attestation prototype [7].

From all the information presented in this deliverable, one can grasp the architecture and
design envisaged for the WP3, how the components work internally and how they interact with
each other and for which purposes, along with the vNSFs to implement for SHIELD. As a final
remark, it is estimated that, during the course of the project, and as a result of the increased

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
3

knowledge gathered over time, additional vNSFs may be defined or components tailoring may
be required to better frame the project scope and goals.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
4

Table of Contents

1. INTRODUCTION ... 7

2. DESIGN AND ARCHITECTURE .. 11

2.1. Security network functions and services .. 12

2.1.1. General vNSF architecture ... 12

2.1.1.1. vNSF interfaces .. 12

2.1.1.2. vNSF common elements ... 13

2.1.1.3. vNSF Descriptor (vNSFD) and NS Descriptor (NSD) ... 16

2.1.2. SHIELD vNSFs ... 16

2.1.2.1. Monitoring vNSFs .. 16

2.1.2.2. Remediation vNSFs .. 16

2.1.2.3. List of vNSFs ... 17

2.1.2.4. Functionality mapping ... 21

2.2. Store .. 21

2.2.1. Subcomponents .. 22

2.2.2. Update since D2.1 ... 24

2.2.3. General workflow ... 24

2.2.4. Internal operation ... 25

2.2.5. Interactions with other components ... 25

2.3. Orchestrator ... 25

2.3.1. Subcomponents .. 26

2.3.2. Update since D2.1 ... 27

2.3.3. General workflow ... 28

2.3.4. Internal operation ... 28

2.3.5. Interactions with other components ... 28

2.4. Trust Monitor ... 29

2.4.1. Subcomponents .. 30

2.4.2. Update since D2.1 ... 32

2.4.3. General workflow ... 32

2.4.4. Internal operation ... 33

2.4.5. Interaction with other components .. 34

3. SPECIFICATIONS AND IMPLEMENTATION... 35

3.1. Security network functions and services .. 35

3.1.1. Virtual Intrusion Detection System (vIDS) ... 35

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
5

3.1.1.1. Implementation details ... 35

3.1.1.2. Requirements mapping ... 37

3.1.2. Virtual Deep Packet Inspection (vDPI) ... 38

3.1.2.1. Implementation details ... 38

3.1.2.2. Requirements mapping ... 38

3.1.3. mcTLS Middlebox and Gateway ... 40

3.1.3.1. Implementation details ... 40

3.1.3.2. Requirements mapping ... 40

3.1.4. HTTP/S Analyser .. 40

3.1.4.1. Implementation details ... 40

3.1.4.2. Requirements mapping ... 40

3.1.5. L3 Filter .. 41

3.1.5.1. Implementation details ... 41

3.1.5.2. Requirements mapping ... 42

3.1.6. Forward L7 Filter ... 42

3.1.6.1. Implementation details ... 42

3.1.6.2. Requirements mapping ... 43

3.2. Store .. 43

3.2.1. Specifications .. 43

3.2.2. Implementation details .. 46

3.2.3. Requirements mapping .. 46

3.3. Orchestrator ... 47

3.3.1. Specifications .. 48

3.3.2. Implementation details .. 49

3.3.3. Requirements mapping .. 50

3.4. Trust monitor ... 52

3.4.1. Specifications .. 52

3.4.2. Implementation details .. 54

3.4.3. Requirements mapping .. 55

4. CONCLUSIONS .. 57

REFERENCES .. 58

LIST OF ACRONYMS ... 59

APPENDIX A. INTRA-COMPONENT INTERACTIONS .. 63

APPENDIX B. INTER-COMPONENT INTERACTIONS ... 71

APPENDIX C. DEFINITION OF TECHNOLOGIES .. 79

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
6

APPENDIX D. APPLICATION PROGRAMMING INTERFACES (APIS) ... 80

APPENDIX E. TECHNOLOGY SELECTION .. 84

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
7

1. INTRODUCTION

This document presents the detailed architecture, design and specifications of the components
involved in the Virtual Network Security Function (vNSF) ecosystem, within WP3. It summarises
the work done in the first iteration of T3.1. This deliverable starts from the high-level
architecture, design and requirements presented in D2.1; and provides specific details of the
components’ design, definition and their adequateness regarding the SHIELD requirements.

SHIELD, as a Use-Case (UC) driven project, aims to cover the functionality required by the
following three Use Cases (defined in D2.1 and briefly repeated here for the sake of
completeness):

 Use Case 1: An Internet Service Provider (ISP) using SHIELD to secure its own
infrastructure. This UC involves the ISPs deploying vNSFs in their network to detect
security incidents and provide protection against those incidents (Figure 1).

Figure 1: High-level picture of the use case 1

 Use Case 2: An ISP is leveraging SHIELD to provide advanced Security as a Service
(SecaaS) services to its customers. This UC assumes that network security services
(consisting of vNSFs), along with real-time incident detection and mitigation services,
are offered as-a-Service to ISP clients, such as enterprises, public bodies, etc. (Figure 2).

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
8

Figure 2: High-level picture of the use case 2

 Use Case 3: Contributing to national, European and global security. This UC assumes
that incident information is exposed, in a secure and private manner, to public
cybersecurity authorities (Figure 3).

Figure 3: High-level picture of the use-case 3

The high level architecture defined in WP2 and reproduced on Figure 4 states that SHIELD
consists of 6 main components; of these, WP3 deals with the vNSF Ecosystem, the vNSF
Orchestrator (vNSFO), the Store and the Trust Monitor (TM).

Although the three use-cases act as the basis of the analysis, the resulting architecture, design,
specifications and implementation have been elaborated to produce a unified and universal
solution i.e. a single cybersecurity solution that can be used for multiple purposes. To this
intent, the SHIELD platform provides the actors in the different use-cases with different views

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
9

and roles on the network. For example, while an ISP (use-case 1) can view the big picture of the
cybersecurity analysis and can deploy vNSFs in any location of the network, the ISP client (use-
case 2) only has access to a limited vision of the cybersecurity picture (information that is
offered by the ISP and/or paid by the client) and can deploy vNSFs in specific places of the
network (i.e. to its gateways) to protect their own services. Cybersecurity agencies (use-case 3)
have a country- or European-wide security view of the communication infrastructure and the
security threats and incidents that take place over this infrastructure, without having access to
sensitive information that belongs to ISPs and their clients, which could reveal potential
business plans or data.

Figure 4: High-level architecture of SHIELD, with components per WP

Based on these use cases and the requirements highlighted in Deliverable D2.1, the
designed high-level architecture for the SHIELD platform is articulated around different
components, illustrated in Figure 4 and described in more detail in this deliverable. From the
point of view of the vNSF environment; the vNSF Store holds a record of Network Services (NS)
and vNSF-related information, whose data is used by the vNSF Orchestrator to deploy them
into its managed infrastructure. Once deployed, vNSFs and NSs are managed by the vNSFO and
verified by the Trust Monitor during the start and at runtime, along with other nodes from the
infrastructure, assessing their trustworthiness at all times. These core components, as part of
WP3, are complemented by those in WP4: i) the DARE, storing and analysing the security logs
and events provided by the running NSs and vNSFs; and ii) the Security Dashboard, presenting
the results from DARE to the operator. Both DARE and Security Dashboard components are

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
10

detailed in deliverable D4.1 but for the sake of providing a self-explained deliverable a brief
summary of their function will be presented here.

Monitoring vNSFs inspect captured data and provide valuable information to the DARE
component. The network status is reported periodically and all this information is centralised
in the DARE. Then, the data analytics framework (DARE subcomponent) analyses all the
heterogeneous network information previously collected via monitoring vNSFs and Trust
monitor. It features cognitive and analytical components capable of predicting specific
vulnerabilities and attacks. Finally, the remediation engine (another DARE subcomponent)
provides recommendations in the form of new network services (sets of vNSFs) or medium
level policies (configurations of existing VNSFs) to remediate the detected threats. These
recommendations and the attack information is given to the intuitive and appealing graphical
user interface provided by the Security Dashboard component, which allows authenticated and
authorized users to access SHIELD’s functionalities. From this dashboard, operators have access
to monitoring information showing an overview of the security status. Furthermore, Security
Dashboard allows operators as well as tenants to visualized recommendation generate by DARE
allowing to take actions and resolve detected vulnerabilities. Authorized users will therefore
be able to react through the Security Dashboard, NFVO by deploying new services (NS, VNSFs)
if required, or configuring the existing services (NS, VNSFs) to mitigate the attack.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
11

2. DESIGN AND ARCHITECTURE

Network function virtualisation (NFV) technology is one of the cornerstone technologies used
within the SHIELD project and has ETSI as one of its main standardisation drivers. The ETSI NFV
architecture is used as the starting point for SHIELD’s architecture, aiming to place SHIELD in a
position where it can contribute with these standardisation activities and align itself to the de-
facto architecture. Thus, the software components envisioned in SHIELD’s vNSF environment
have been aligned wherever possible with the current vision of ETSI community. This
vision/architecture may be extended as needed in order to accommodate components or
features not yet considered or agreed by this standardisation body. The following figure (Figure
5) displays how SHIELD’s architecture aligns with ETSI NFV architecture.

Figure 5: SHIELD vNSF environment’s architecture mapped to ETSI NFV architecture

Summarising, the Store lies in the Operational and Business Support layer, the vNSFO directly
fits into the role of the Orchestrator envisioned in the ETSI NFV architecture and the vNSFs also
have a direct mapping within the VNF section. The subcomponents and even modules or
elements were successfully mapped as well, e.g. the NS and vNSF information (descriptors,
records, infrastructure-related data, etc.), as well as the vNSF Manager (vNSFM) that directly
corresponds to the VNF Manager following what ETSI envisions for the mechanism used to
control the vNSFs (EMS subcomponent and so on). The only remaining component present in
SHIELD’s architecture and in the scope of WP3 (Trust Monitor) performs attestation tasks,
which are not contemplated in the ETSI NFV architecture and thus it has no direct mapping.
 The following section describes the design and architecture for the SHIELD’s WP3 components,
i.e. the list of vNSFs to be deployed in the network, the vNSF Store, the vNSF Orchestrator and
the Trust Monitor. This description is more detailed than its counterpart in D2.1, as it
specifically addresses low-level details such as the subcomponents within the vNSF

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
12

environment, their detailed workflows and relation between these and other components in
the SHIELD platform.

2.1. Security network functions and services

The NFV concept achieves, through virtualisation, the reduction of the capital expenditures
incurred by common specialised hardware devices and provides a broad spectrum of network
functionalities that are deployed on top of common hardware. The Virtual Network Functions
(VNFs) can be moved, restarted or erased rapidly, up to the order of seconds. VNFs implement
common network functions such as gateways, proxies, firewalls and transcoders, traditionally
carried out by specialised hardware devices and deployed on top of commodity IT
infrastructure. The focus within SHIELD will be the development of VNFs implementing security
functions (hereinafter called vNSFs). To ease their management, the developed vNSFs will
conform to the ETSI NFV group recommendations. In the following subsections we describe a
general architecture to be followed by the SHIELD vNFSs.

2.1.1. General vNSF architecture

Each vNSF is composed by one or more VNF Components (VNFCs) that are interconnected
through Virtual Network Links (VLs). Security services offered in SHIELD will consist of one or
more vNSFs. These services will be dynamically deployed to identify and mitigate security
attacks, threatening conditions or anomalous behaviours. The vNSFO will be responsible for the
orchestration of the vNSFs into services and the deployment, management and configuration
of the resulting end-to-end network services. An example of a network service (NS) that
consists of three different vNSFs (VNF1, VNF2 and VNF3) connected through virtual links is
shown in Figure 6. As depicted, VNF2 is composed by three VNFCs connected through virtual
links that are internal to the VNF.

Figure 6: Network Service example

2.1.1.1. vNSF interfaces

According to ETSI NFV specifications [1], there are five types of interfaces identified relevant to
a VNF. As illustrated in Figure 7:

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
13

 SWA-1 interface: This interface enables communication between various network
functions within the same or different network services. The SWA-1 interface can be
established between two VNFs, a VNF and a Physical Network Function (PNF), or
between a VNF and an End Point. A VNF may support more than one SWA-1 interface.

 SWA-2 interface: This interface refers to VNF internal interfaces, for the communication
between the different VNFCs of a VNF, i.e. for VNFC to VNFC communication. The type
of information exchanged through this interface depends on the function of the VNF.

 SWA-3 interface: This interface interconnects the VNF with the NFV management and
orchestration layer specifically with the VNF Manager (VNFM). Through this interface
the lifecycle management of the VNF is performed (e.g. instantiation, termination,
scaling, etc.). The SWA-3 interface corresponds to the Ve-Vnfm reference point.

 SWA-4 interface: This interface is used by the Elemental Management (EM) to
communicate with a VNF. It is a management interface used for the runtime
management of the VNF to perform functions related to Fulfilment, Assurance, and
Billing (FAB) as well as Fault, Configuration, Accounting, Performance and Security
(FCAPS). This interface will cover also the NSF-facing interface’s functionality defined in
the IETF I2NSF standard, within the task for defining policy recommendations.

 SWA-5 interface: The SWA-5 interface links the VNF with the NFVI and corresponds to
the Vn-Nf reference point. This interface provides access to a virtualised slice of the
NFVI resources allocated to the VNF, i.e. to all the virtual compute, storage and network
resources allocated to the VNF depending on the VNF type and its special requirements
for resources.

As the SHIELD framework is compliant to the ETSI MANO specifications, the SHIELD vNSFs will
support the aforementioned interfaces.

Figure 7: Types of VNF interfaces

2.1.1.2. vNSF common elements

The internal structure of a SHIELD vNSF is illustrated in Figure 8. Although the internal
implementation of a vNSF concerning its functionality (vNSF functionality) is to be decided by
each vNSF developer, there are some common elements that vNSFs should have to be
compatible with the SHIELD framework. Specifically, these elements are:

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
14

 The vNSF controller is the internal element devoted to the support of the vNSF lifecycle
through the vNSFM. The interaction between the vNSFM and the vNSF takes place
through the SWA-3 interface.

 The init configuration element is responsible for the initialisation of the vNSF that
happens at the beginning of the vNSF execution. This is an optional component that is
present in the vNSFs for which an initial configuration should take place on the vNSF
before its execution.

 The data collector element is the component responsible for gathering the output data
from the vNSF. The format of the output data are in low-level application-dependent
format.

 The data transformation element, whose role is to transform the output data of the
vNSF from a low level, application-dependent format (Data Collector) to a high-level
format that is understandable by DARE.

 The configuration listener, an element responsible to listen for new policy
configurations recommended by the Remediation Engine of DARE and injected by the
vNSFO into the vNSF.

 The policy transformation element, whose role is to transform the high-level format
rules recommended by the Remediation Engine of DARE (policies) to low-level,
application-dependent format rules that can be enforced to the vNSFs. This element
will be part of each vNSF on which policy enforcement is expected to take place.

 The streaming service is the element responsible for transmitting application-level
monitoring data, such as security logs or alerts produced by the vNSF, to the Streaming
Service located at the DARE.

 The vNSF Functionality element represents the functionality performed by the vNSF.

It is important to note that the above elements are not what we refer to as vNSFCs (or vNFCs
in ETSI terminology). It is possible that all the above elements reside in a single vNSFC.
Additionally, apart from the vNSF Controller that allows the lifecycle management of each vNSF,
none of the other described elements are mandatory for all vNSFs. The presence of the other
components listed above is dependent of the type of each developed vNSF. The data collector,
the data transformation and the streaming service will be present in all vNSFs that produce
some output, which will be used by the Data Analytics Engine of DARE for the identification of
security incidents and threats. Similarly, the policy transformation and the configuration
listener will be present in all vNSFs that permit some application-level configuration for security
purposes (threat identification or mitigation) through the Security Orchestrator.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
15

Figure 8: Internal structure of a SHIELD vNSF

Figure 9 depicts the internal elements of a vNSF comprised of two vNSFCs. In the case of having
a vNSF comprised of more than one vNSFCs, the vNSF Controller element will be present in one
of the available vNSFCs. Additionally, the vNSF Functionality element will be present in all
vNSFCs composing the vNSF. The remaining elements of the common vNSF architecture can be
freely allocated in the different vNSFCs, again taking into account the type and function of the
vNSF (vNSF that provides output, vNSF that accepts configuration, etc.). In the specific example
illustrated in Figure 9, the data collector, the LH data transformation and the streaming service
components reside in the second vNSFC (vNSF-C2).

Figure 9: Internal elements of a vNSF composed by two vNSFCs

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
16

2.1.1.3. vNSF Descriptor (vNSFD) and NS Descriptor (NSD)

Each vNSF will have an associated descriptor document, whose role is to instruct the vNSFO on
how to deploy it and how it should be connected to other virtual functions. This descriptor
document, usually referred as vNSF Descriptor (vNSFD) is a deployment template which
describes a vNSF in terms of deployment and operational behaviour requirements. Information
typically detailed in the vNSFD contains deployment rules, scaling policies and monitoring
parameters related to the function of the vNSF. Moreover, the vNSFD will contain connectivity,
interface and KPIs requirements that can be used by the vNSFO to establish appropriate virtual
links between vNSF components instances, or between a vNSF instance and the endpoint
interface to other virtual functions. A similar descriptor file is accossiated with each network
service (NSD), providing information on the vNSFs that comprise a particular network service,
as well as connectivity information that specifies how these vNSFs are chained together to
provide a given network service.

2.1.2. SHIELD vNSFs

SHIELD will implement several monitoring and remediation vNSFs. Monitoring security
functions perform traffic monitoring and analysis to detect intrusions and report illegitimate
traffic or malicious activity. On the contrary, the role of the remediation security functions is to
mitigate security threats or risks by applying security policies and taking actions, such as
dropping/rejecting specific packets or flows and blocking data coming from specific users. It
must be noted that several vNSFs implemented in the project may assume both roles, i.e.
monitoring and remediation.

2.1.2.1. Monitoring vNSFs

The monitoring vNSFs will probe the network in different ways to extract relevant low-level
information from the NFVI. This network data is called “Network data collection” and its
contents will vary depending on the purpose of each monitoring vNSF. After the network data
collection is obtained, it is transformed from an application specific format into a high-level
structure with a generic format via the “data transformation” process and then is sent to the
DARE through the “Streaming Service” interface (as depicted in Figure 8). The rationale of
converting the data to a generic format and provide the DARE’s Streaming Service with a
generic format is to allow DARE’s compatibility with different implementations for a sigle vNSF
type. For example, the definition of a generic format for monitoring data coming from intrusion
detection systems would allow the compatibility with different IDS vNSFs implementations (e.g.
Snort, Bro, Suricata).

2.1.2.2. Remediation vNSFs

The reacting vNSFs will be in charge of providing mitigation actions, as defined by the DARE.
The rules or policies composing a mitigation action and expressed via an application-
independent configuration's abstraction, will be proxied to the vNSFO by the Security
Dashboard, when accepted by the final user. Each reacting vNSF involved in a particular
mitigation action will receive the set of policies via the SWA-4 interface (Figure 8) and will be in

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
17

charge of translating it to low level configuration, understandable by the implemented security
network function. Thus, the translation process will be offloaded to the different reacting vNSFs
in a specific module, named policy transformation in Figure 8. This is done in order to reduce
the load on the centralised points of the architecture, as well as to ease any
modification/update in the translation process by the vNSF developer.

2.1.2.3. List of vNSFs

The consortium has selected a number of candidate vNSFs that will allow to demonstrate
SHIELD capabilities (detection and mitigation) in security attacks. Specifically, the following
vNSFs are targeted for implementation: an Intrusion Detection System (IDS), a mcTLS gateway,
a traffic analysis vNSF,a deep packet inspection vNSF, a packet filter vNSF acting at network
layer, a forward proxy vNSF acting at application layer. The specific functionalities selected for
the vNSFs implementation depends on the security requirement analysis as defined in WP2 and
on the security threats to be addressed during the project’s demonstrations.

The detail associated with the specification of each vNSF differs based on its maturity level. As
a consequence, some vNSFs already provide a detailed low-level specification of its internal
architecture/workflow while others are still in a preliminary stage, therefore presenting only its
envisioned functionalities.

Virtual Intrusion Detection System (vIDS)

An IDS is equipped with advanced traffic analysis and monitoring capabilities for attack and
vulnerability detection. It monitors and logs the network traffic for signs of malicious activity
and generates an alert upon discovery of a suspicious event. Two different techniques are used
to detect malicious traffic/activity, separating IDSs into two main categories: i) statistical
anomaly-based IDS and ii) signature-based IDS. Anomaly detection IDSs have the advantage
over signature based IDSs in detecting novel attacks for which signatures do not exist. However,
anomaly detection IDS suffer from high false detection rate.

IDS deployment typically consists of one or more sensors placed strategically on the network.
Additionally, the solution may contain an optional central console for easier management of all
sensor nodes.

Figure 10: Typical IDS architecture

The functionality of an IDS involves three distinct phases: a) Monitoring, b) Analysis and c)
Notification. A typical architecture of an IDS is illustrated in Figure 10. During the Monitoring
phase, the IDS is collecting data from the monitored system, through the deployed sensors. At

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
18

the Analysis phase, the IDS Detection Engine analyses the gathered data by using a Knowledge
Base. The Knowledge Base includes information that allows the Detection Engine to classify the
analysed data as threatening events. This information includes predefined rules (signatures),
user defined rules or historical data. The historical data allows the modelling of the normal
behaviour of the monitored system into a profile enabling the detection of deviations of the
current status when compared to this considered normal profile. Finally, during the notification
phase, the IDS will output notifications of the detected events by logging this information into
specific files and user interfaces or trigger alerts that can be consumed by other components.

Deep Packet Inspection (DPI)

DPI is the practice of filtering and examining IP packets, across Layers 2 through 7. Although
Stateful Packet Inspection (SPI, often employed by firewalls) is more restricted, DPI may extend
to headers, protocol structure and payloads, thus allowing for the implementation of advanced
cybersecurity measures. DPI can be an effective detection tool for a multitude of cyberattacks
such as Denial of Service (DoS), buffer overflow, cross-site scripting exploits, injection attacks
etc. DPI capabilities, however, can be limited as the payload structure becomes more complex
(e.g. through obfuscation, encryption etc). SHIELD aims to implement a vNSF dedicated to DPI,
as part of the trusted platform.

Figure 11: vDPI design and main components

SHIELD will implement a trusted vDPI encompassing several vNSF components (vNSFCs) as
illustrated in Figure 11:

 vDPI-C1 (Forwarding and Classification): This vNFC handles routing and packet
forwarding. It accepts incoming network traffic and consults the flow table for
classification information for each incoming flow. Traffic is forwarded using default
policies until it is properly classified and alternate policies are enforced. It is often
unnecessary to mirror packet flow in its entirety in order to achieve proper
identification. Since a smaller number of packets may be utilized, the expected response
delay can therefore be close to negligible. In a case where the Inspection, Forwarding

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
19

and Classification VNFCs are not deployed on the same compute node, traffic mirroring
may introduce additional overhead. A classified packet can be redirected,
marked/tagged, blocked, rate limited, and reported to a reporting agent or
monitoring/logging system within the network.

 vDPI-C2 (Inspection): The traffic inspection vNFC implements the filtering and packet
matching algorithms and is the necessary basis to support additional forwarding and
classification capabilities. It is a key component for the successful implementation of
the vDPI and the most computationally intensive. The component includes a flow table
and an inspection engine. The flow table utilises hashing algorithms for fast indexing of
flows, while the inspection engine serves as the basis for traffic classification.

 vDPI-C3 (Internal Metrics Repository) & vDPI-C4 (Monitoring Dashboard): The internal
metrics repository acts as local storage, while the Monitoring Dashboard handles data
sharing with DARE.

The vDPI lifecycle is managed by the vNSF Orchestrator, and specifically the vNSF Manager
Engine. The vNSFO is in charge of starting, stopping, pausing, scaling and configuring the vDPI.
Thus, the Forwarding and Classification component acts as a managing/controlling vNFC and is
assigned a floating IP for management. Internal communication is implemented via vlinks
(detailed in section “Specifications and Implementation”). Policies are relayed from the Security
Orchestrator and translated within the managing vNFC.

mcTLS Middlebox and Gateway

Multi-Context TLS (mcTLS) [8] is a secure protocol that extends TLS to incorporate trusted
middleboxes into a secure session. In the mcTLS negotiation, server and client decide the TLS
policy (for example: allow trusted middleboxes to access the headers). Middleboxes have
access only to information required for accomplishing their function (negotiated during the
mcTLS policy definition).

The objective of this vNSF is to provide an environment able to monitor only the necessary
payload of HTTPS traffic in order to identify security issues. The mcTLS Gateway can be used
during the process of adoption of the mcTLS protocol and until it is widely adopted. The
Gateway is deployed close to the legacy TLS Web server, which is subject to monitoring.

Figure 12: mcTLS Gateway elements

As shown in Figure 12, mcTLS will be deployed using two different elements:

 Gateway: Provides a mcTLS interface to the client (requires the use of a client with
mcTLS) without modifying the server.

 Middlebox: Performs the monitoring of the payload negotiated with the client and the
Gateway.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
20

Functionalities provided:

 Gateway to translate between the mcTLS and TLS protocols providing a conversion tool
for companies wishing to monitor their Web services in HTTPS traffic (controlling which
parts of the data that can be read or written by trusted middleboxes) for security
reasons or for CDN providers in order to monitor their clients TLS traffic.

 Middlebox for traffic monitoring: authorised data (e.g. selected HTTP headers, specific
Content-Types…) over mcTLS traffic.

 Potential direct interaction with other vNSFs able to block traffic when a security threat
is detected through SHIELD framework.

 Certificate delegation and control from origin servers through ACME (Automated
Certificate Management Environment) [9].

HTTP/S Analyser

The objective of this vNSF is to provide the classification of HTTP and HTTPS traffic without
analysing the payload content in a privacy-friendly way.

This vNSF will be trained through machine learning techniques to provide the HTTP traffic
classification in order to be able to analyse the behaviour of a device or network. The vNSF will
be able to work with the traffic mirror or with stored information in tstat [10] format.

Functionalities provided:

 Traffic capture and tstat format traffic generation.

 HTTP/S traffic and classification in several categories: BROWSING, VIDEO, DOWNLOAD
by network flow. Traffic analysis is based only in L2-L4 (it is not a DPI vNSF).

L3 Filter

This vNSF will implement a filtering application acting at the network layer, or Layer 3 of the
ISO/OSI stack. It will allow or deny traffic by specifying an Access Control List (ACL), in form of
a whitelist or blacklist. The ACL will be configured by translating the high level configuration to
a set of filtering rules for specific IP addresses.

Functionality provided:

 Allow or deny traffic identified by a certain IP address (source, destination).

Forward L7 Filter

This vNSF will implement a forward proxy that would offer the possibility to block all the traffic
the user wants to block. To do so, it will inspect traffic at application layer (also named Layer 7
in the ISO/OSI stack) and filter it according to defined rules. The vNSF will behave as an agent
that will receive requests from a client (e.g. a web browser) and forward them to the specified
server, if it doesn’t match a blacklist.

Functionalities provided:

 Traffic inspection for specific Layer 7 protocols and headers(e.g. HTTP, FTP);

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
21

 URL filtering;

 Access Control List (e.g. IP based, MAC based, domain based).

2.1.2.4. Functionality mapping

The following table describes, per vNSF, how these provide the specific monitoring or
remediation capabilities.

vNSF Monitoring (description) Remediation (description)

vIDS Real-time traffic analysis (L3-L4 and
L7) for intrusion detection based on
signatures. It can also be used as a
simple packet sniffer or packet
logger.

No

vDPI Filtering and examining traffic (L2-
L7), extending acquisition of
headers, protocol structure,
application types. Payload analysis
might be available on a per-case
basis.

Mirroring suspicious flow to
DARE and limiting or blocking it

mcTLS Gateway Monitoring the necessary payload
of HTTP requests to identify threats.

No

Traffic analysis for
HTTP/HTTPS

Classification of HTTP and HTTPS
traffic using ML techniques, without
analysing the payload content.

No

L3 Filter No Allow or deny traffic identified
by a certain IP address (source,
destination)

Forward L7 Filter No Traffic inspection for specific
Layer 7 protocols and headers
(e.g. HTTP, FTP), URL filtering,
Access Control List (e.g. IP
based, MAC based, domain
based)

2.2. Store

SHIELD aims to set up a single, centralised digital store for vNSFs and NSs. This approach allows
SPs to offer new security features for protecting the network or extend already existing
functionalities without the need of modifying core elements of the framework. The store acts
as a repository for vNSFs and NSs that have been previously published.

The main novelty in the Store is the onboarding of vNSFs/NSs in a secure and trusted way. The
onboarding process will ensure the provenance is from a trusted source and that the contents

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
22

integrity can be assured. Once this is achieved the security information is stored for safekeeping
and provided upon request so other components can check that the vNSF/NS has not been
tampered with since it was onboarded.

Another relevant feature provided by the Store is the verification done on the vNSF and NS
associated descriptors to ensure the instantiation process by an Orchestrator is performed
without hassle. Building on the descriptors syntax check concept from the SONATA project [2],
the submission process shall check all descriptors for inconsistencies as well as implement a
network topology validation. This last check will prevent issues such as unwanted loops in the
forwarding graphs or reference to undefined networks or missing ports.

Figure 13 presents all the Store sub-components, along with their relations depicted.

Figure 13 : vNSF Store subcomponents

2.2.1. Subcomponents

The current section will present each subcomponent depicted in Figure 13 mentioning its main
role. STORE component encloses four main subcomponents (LIFECYCLE MANAGER, INTEGRITY
CHECKER, DESCRIPTOR VALIDATOR and CATALOGUE) as well as four subcomponents aiming to
provide connectivity with other SHIELD components. These subcomponents (DEVELOPER
ADAPTER, DASHBOARD ADAPTER, ORCHESTRATOR ADAPTER, TRUST MONITOR API and DARE
API) will be translated to either: APIs (providing a connection point to external components);

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
23

Connectors (using the features of external components); Adapters (enclosing both API and
Connectors features.

Lifecycle Manager

This subcomponent manages the vNSF/NS onboarding lifecycle. From the moment a NS/vNSF
is submitted to the Store this sub-component takes over the entire process and ensures the
proper steps are performed for a successful onboarding. In the event of a failure it notifies the
Developer of the situation and performs all the necessary housekeeping steps.

Descriptors Validator

Successful vNSF/NS onboarding comprises parsing its descriptor and validate the specified
deployment and operational behaviour requirements. This job is performed by the Descriptors
Parser sub-component.

The two main tasks assigned to this component are syntax validation to prevent incorrect
vNSF/NS descriptors from being processed for instantiation, and topology validation to assure
the integrity of the vNSF/NS topology and avoid inconsistencies such as potential loops in the
forwarding graphs or referenced to an undefined network or missing ports.

Integrity Checker

When submitting a vNSF/NS to the Store the Developer must provide a manifest of the files
used (or referenced) by the vNSF/NS. This manifest must contain hashes of each referenced
file, and must be digitally-signed so its contents can be trusted.

It is paramount to a secure environment to ensure that the vNSF/NS content is trusted and
wasn't tampered with in any way once onboarded. The goal of the Integrity Checker sub-
component is to verify the integrity and provenance of the submitted data. This process
encompasses validating the manifest which holds the hashes for the all files, as well as the ones
regarding the descriptors. This information is provided later on to any component assessing
that the vNSF/NS wasn't tampered with.

Catalogue

All the onboarded and sandboxed vNSFs/NS are kept in a repository. The Catalogue sub-
component manages the records-keeping activities. Any additional metadata associated with
the onboarding process or the vNSF/NS itself is managed here as well.

Developer Adapter

Ensures integration features with the developer.

Dashboard Adapter

Ensures integration features with the Security Dashboard.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
24

Orchestrator Adapter

Ensures integration features with the Orchestrator.

Trust Monitor API

For vNSF security-related queries an API is provided to the Trust Monitor. Any interaction with
the Store is done through this interface.

DARE API

For DARE-related queries an API is provided to DARE. Any interaction with DARE is done through
this interface.

2.2.2. Update since D2.1

As a result of the specification activities, it was decided to keep a single NS/vNSF catalogue
instance for use in the SHIELD platform, placing this catalogue as a subcomponent of the Store.
This approach helps to reduce information replication throughout SHIELD’s components and
define more clearly the responsibilities of both Store and vNSFO components. The Store will be
responsible for managing and providing the information of all the onboarded NSs and vNSFs.

Additionally, after further analysis of the requirements in D2.1, two additional platform
requirements were mapped to the Store component: “PF02 - vNSF lifecycle management” was
included since the Store is responsible for managing partially the lifecycle of vNSFs, being
responsible for the onboarding process; “PF11 - vNSF attestation” is now mapped to the Store,
since the Store will validate the digital-signature of each artefact onboarded, thus assessing the
validity of its provenance.

2.2.3. General workflow

The Store interacts with multiple components, both in the vNSF environment (vNSFO, Trust
Monitor) to provide information of NSs and vNSFs available at the catalogue; and with other
components of the SHIELD platform (DARE and Security Dashboard) for analytics and
visualisation purposes. Besides this, the Store exposes endpoints to the NS/vNSF developers to
onboard new NSs. The data flow diagram of the Store (Figure 14) depicts these interactions.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
25

Figure 14: Data flow diagram of Store

2.2.4. Internal operation

The subcomponents of the Store work together to perform operations related to the
onboarding process, such as the validation of the vNSF and the registration of the VDU image(s);
as well as the decommissioning of NSs and vNSFs. The specific workflows for such operations
are described in the “Appendix A Intra-component interactions”.

2.2.5. Interactions with other components

The Store interacts with other components, namely the vNSFO, the Trust Monitor, the DARE
and the Security Dashboard; as well as with the end users. Specific details are provided in the
“Appendix B Inter-component interactions”.

2.3. Orchestrator

The vNSF orchestrator (vNSFO) used in SHIELD is an implementation following the NFV MANO
(Network Functions Virtualisation Management and Orchestration) WG specifications. This
orchestration component deploys the vNSFs and the NSs (made up of vNSFs) and manages their
lifecycle; while also performing the global resource management, monitoring, validation and
the authorisation of the NFVI resource requests. The specific functionality is delegated to
specific subcomponents (Figure 15).

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
26

Figure 15: vNSFO subcomponents

2.3.1. Subcomponents

The functionality of the vNSFO is distributed among the following subcomponents: NS
Manager, vNSF Manager, Repositories and APIs. These are explained below.

NS Manager

This manager controls the lifecycle of any given NS. It can instantiate (deploy) or terminate
(destroy) a given service into/from the NFVI. Modifying the configuration of the constituent
vNSFs is supported as well. Finally, monitoring and scaling capabilities are permitted to inspect
and adapt the service to varying conditions of the network capabilities, namely those produced
under attack.

vNSF Manager

This subcomponent manages the lifecycle of one or more vNSFs. Therefore, it is able to interact
with the vNSFs in order to deploy (instantiate) or terminate these interacting with the NFVI to
ensure these features. Configuration (or modification of their configuration) is supported as
well, typically done at boot but also allowed for passing policies to be translated within the
vNSFs. Other operations such as monitoring and scaling features are also envisioned to be
provided by this component.

Repositories

Different repositories and registries offer helper functionality to the vNSF and NS Managers,
acting as records for run-time information on the operation of the deployed NSs/vNSFs or on
the status of the resources managed by the VIM. Such data is required for multiple operations;
from attestation to analytics or mitigation, and also for visualisation purposes.

Connectors and APIs

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
27

The vNSFO exposes data through APIs and implements connectors to consume other
components’ APIs:

 Store Connector: The vNSFO queries the vNSFO Connector from the Store to retrieve all
data related to a given NS or vNSF, given its ID in the Store. This step is required to
initiate the deployment of a specific NS.

 Dashboard Connector: A user may select a recommendation from the Security
Dashboard in order to deploy a specific NS in the network infrastructure and mitigate a
specific threat. The Security Dashboard initiates then the communication with the
vNSFO by pushing specific instances to deploy on specific locations and the Medium-
level Security Policy Language (MSPL) policies that allow the configuration the vNSFs.

 Dashboard API: The vNSFO provides the Security Dashboard with data on the NFVI and
running instances for visualisation purposes; namely the network topology and the
running instances deployed per tenant.

 Trust Monitor Connector: The vNSFO contacts the Trust Monitor in order to perform the
attestation on any given virtual or physical nodes. In case the attestation fails, the node
shall be excluded from the NFVI.

 Trust Monitor API: The vNSFO provides the Trust Monitor with information on the
network, the flow tables and the list of active physical nodes and running virtual
instances.

 DARE API: The vNSFO provides the DARE component with the topology of the network,
the list of instances per tenant and the active deployed instances. This provides DARE
with enough information on the network view to adequately provide mitigation
recommendation.

 Other connectors will certainly be used in order to perform orchestration-related
operations; for instance the connector to the VIM will allow provisioning resources in
the NFVI and retrieving metrics.

2.3.2. Update since D2.1

The subcomponents of the vNSFO have been further analysed against the requirements, and
consequently adapted. This analysis resulted in some subcomponents being renamed to better
state their functionality (the “Orchestrator Engine” has been renamed to “NS Manager”, the
“Infrastructure Repository” was renamed to “Repositories”, “Northbound” and “Data engine”
APIs were renamed to “Store”, “Dashboard”, “DARE” Connectors and APIs). Some were added
to cover extra functionalities (the connection with the Trust Monitor) and others were removed
to define the architecture more clearly and avoid duplicities (the “Catalogue”, introduced as a
separate subcomponent, is kept in the Store; and the “Monitoring” is a feature provided by the
NS and vNSF Managers).

The mapping of the functionality of the vNSFO with the requirements from SHIELD is revised
according to the specifications proposed. “PF10 - vNSF validation” is now a responsibility of the
Store. On the other hand, other Platform Functional (PF) requirements and Non-Functional (NF)
requirements have been now mapped to vNSFO to cover related, though not direct,
responsibilities.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
28

2.3.3. General workflow

The vNSFO communicates with other components in the vNSF environment to retrieve vNSF
and NS-related information (Store), support the attestation of the security state of the running
vNSFs, receive notifications (Trust Monitor) and inject policies (vNSFs). The orchestrator
communicates as well with other components in the SHIELD platform in order to receive
policies for the vNSFs (Security Dashboard) and to provide up-to-date status on the network
and vNSF status (DARE). The data flow diagram of the vNSFO (Figure 16) depicts these
interactions.

Figure 16: Data flow diagram of vNSFO

2.3.4. Internal operation

Both the NS Manager and vNSF Manager work closely, along with other subcomponents of the
vNSFO, to manage the lifecycle of the NSs and vNSFs. The operations are described in the
“Appendix A Intra-component interactions”.

2.3.5. Interactions with other components

The vNSFO interacts with the Store, NFVI, Trust Monitor, DARE and Security Dashboard in order
to obtain information on NSs, deploy their resources, attest them and gather information to
support analytics and visualisation. Specific details are provided in the “Appendix B Inter-
component interactions”. Trust Monitor

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
29

2.4. Trust Monitor

The Trust Monitor (TM) assesses the trust in the network infrastructure bearing the deployed
vNSFs, namely the NFVI Points of Presence (PoP) and the hardware network devices (e.g.
switches). The trustworthiness of the infrastructure is assessed by performing both
authentication and integrity verification.

Although attackers tend to exploit multiple vectors to breach into a system, the Trust Monitor
focuses on detecting intrusion in the network infrastructure, considering the control and
management plane components (vNSF store, orchestrator, DARE, Security Dashboard)
implicitly trusted. From a technical standpoint, extending the TM security concepts to assess
the control and management plane, is feasible since they are based on the same kind of
computer architecture (in term of operating system, virtualisation technology, application
packaging).

SHIELD’s threat model considers the following threats, classified on whether the attacker has
physical access to the infrastructure or not:

 Physical threats:
o T1 - physical eavesdropping: on network wire, bus probing;
o T2 - physical modification of nodes: chip replacement;
o T3 - physical introduction of a new/alternate control plan;
o T4 - flashing of firmware/software of the network infrastructure nodes;

 Software threats:
o T5 - zero-day vulnerability exploitation;
o T6 - malicious (or accidental) administration: configuration modification,

crafting SDN rules update;
o T7 - installation and execution of arbitrary firmware/software;

SHIELD aims at providing the network infrastructure with detection mechanisms against
software-based and low-end physical attacks: T1 and T2 are clearly out-of-scope since SHIELD
does not provide any physical perimeter protection.

Using Trusted Platform Module (TPM), remote attestation and other Trusted Computing
mechanisms, the TM protects SHIELD’s network infrastructure against T3, T4, T6 and T7.
Particularly, the TPM protected log of all binary executed on a node allows the TM to detect
arbitrary code (T4 and T7). The same mechanism can be used to detect unwanted configuration
modification (T6). If an attacker manages to introduce a new control plane entity in the network
infrastructure (T3), the TM does not detect it directly but instead would detect any behaviour’s
modification of the computer or network nodes since it would not be correct compared to the
genuine control plane components, mainly the vNSFO. The TM verifies each node against their
expected state, as configured by the vNSFO; if an attacker introduces a new control plane entity
and change – even slightly - the configuration of one node, the TM will detect it since it will not
match the vNSFO’s view.

T5 is not detected by the TM or regular Trusted Computing mechanisms. Zero-day vulnerability
can be reduced by using code analysis tools and/or prevent their consequences by reducing
the ability of the attackers by using mechanisms such as control-flow protection. Nevertheless,
these kind of attacks are usually the initial attack vector used to install additional software:
execution of this software is detected by the TM.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
30

Each physical node must be successfully authenticated - using hardware-based cryptographic
identities - and verified by the Trust Monitor before joining the SHIELD infrastructure. The Trust
Monitor leverages the Remote Attestation workflow, as defined by the Trusted Computing (TC)
[11] paradigm (see “Appendix C Definition of technologies”), to verify the integrity of the code
being executed (e.g., running instances of vNSFs, software directly managing virtualisation
processes, etc) on each physical node, as well as its configuration, both at boot and run-time.
The TM acts as a continual verification engine for the physical infrastructure hosting the NSs,
capable of interacting with the rest of the vNSF ecosystem (vNSFO, vNSF Store) as well as the
DARE to provide an assessment of the trustworthiness of the infrastructure. Each NFVI node,
being equipped with a TPM and suitable software, is able to collect the integrity measurements
of both running code (starting from boot-time) and configuration, and to report them to a third
party in a secure and trusted way. The resulting integrity report, which contains the logged
software events - as measured by IMA for example - is validated by the Trust Monitor, which
maintains a whitelist populated by measurements of known software and valid configurations.
The networking-related configuration, including the dynamic Software-Defined Network
forwarding rules, are verified by the Trust Monitor as well, using the overall view available in
the vNSFO.

Trust Monitor subcomponents are identified in the figure 17.

Figure 17: Trust Monitor subcomponents

2.4.1. Subcomponents

A description of the TM’s subcomponents depicted in Figure 17 is provided below:

Verifier

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
31

It performs the TC-compliant Remote Attestation operations on each component that has been
pre-registered with it. It performs both initial attestation of newcomers, periodic attestation
tasks and notification of security events to both the DARE and the vNSF Orchestrator. Each
target must run specific software to gather the integrity measurements and send back this
information to the Verifier.

Whitelist Database

It contains the list of measurements of known software - for both the platform and the vNSFs -
and valid configuration. The list of known measurements for each vNSF is gathered from its
security manifest in the vNSF Store. It should be noted that vNSFs are versioned in the Store,
which allow detection of changes in a vNSF (and hence the need to update the Whitelist
Database) or simultaneous use of different versions of the same vNSF.

vNSF Store Connector

This connector is used to receive requests for integrity information from the store for each
vNSF to be attested. This subcomponent is responsible for querying the vNSF Store via a client
API and for retrieving the data required for the attestation of the vNSF: code in execution, with
a special emphasis on custom applications that are not available from the standard software
repositories, and configuration files required by the integrated security function, deployment
and runtime. This information is required to keep the Whitelist Database up to date with the
measurements of the software components needed for the execution of the vNSF.

The TM updates the Whitelist Database only when it detects that a new vNSF, or an updated
version of it, is deployed in the NFVI. This could be achieved by keeping a version for each vNSF
and check the version of running vNSFs against the already measured ones.

DARE Connector

This connector sends security events to the DARE if one physical or virtual instance is detected
as compromised by periodic attestation, or in case a newcomer fails during authentication or
initial integrity validation. The subcomponent’s workflow is triggered by the Verifier.

vNSFO Connector

The vNSFO connector notifies the vNSFO about the need to terminate a compromised vNSF or
to exclude a physical node from the NFVI. This workflow is triggered by the Verifier upon a
failed attestation. In addition, it is used to request the configuration of the network at a given
time from the vNSF Orchestrator. The configuration consists of the description of active
physical nodes, running virtual instances, logical connectivity and network flow tables.

Newcomer Attestation API

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
32

It exposes an API that receives requests from the vNSFO for remote attestation of a node of
the NFVI. The attested node must be pre-registered with the TM before performing the
attestation procedure.

Management API

This is a read-only interface for retrieving status information about the attestation of the
infrastructure.

2.4.2. Update since D2.1

After further analysis, the interface between the Trust Monitor and the vNSFO should be
extended to support enrolment of a newcoming node on the NVFI PoP in the TM.

In addition, the mapping between the component and the Platform Requirements (PF), as
envisioned in D2.1, has been reconsidered with regards to the capabilities of the other
components of the platform. More specifically, "PF04 - Security data monitoring and analytics"
is addressed by the data acquisition and analysis capabilities provided by the DARE, as the Trust
Monitor does not receive logs straight from the vNSFs to detect occurring security incidents.
The "PF13 - Mitigation" requirement is addressed by the recommendation and remediation
capabilities of the DARE; the corresponding requirement for the Trust Monitor is “PF19 -
Network infrastructure attestation”. The "PF18 - Service composition" requirement is
addressed by the Security Dashboard and the DARE, as they are the components involved in
the selection and deployment of vNSFs. Differently from D2.1, the "PF11 - vNSF attestation"
requirement is fulfilled by the Trust Monitor, which is collecting attestation's data from the
hosts running the vNSFs and check their integrity information against the known values
retrieved from the Store.

2.4.3. General workflow

The purpose of the TM is to assess the trustworthiness of the nodes composing the NFVI, in
order to act on compromised nodes (e.g. exclusion from the NFVI) and attest the integrity of
newcomers. To do so, the TM should be able to interact and cooperate with several other
components of the SHIELD infrastructure, such as the vNSFO, vNSF Store, etc. An overall
description of the flows between the TM and the other component of the infrastructure is
depicted in Figure 17.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
33

Figure 18: Data flow diagram of Trust Monitor

2.4.4. Internal operation

To assess the trust of the NFVI (both physical nodes and virtual instances), the Trust Monitor
needs to keep an updated list of known measurements about software packages and valid
configurations. To do so, it interacts with the vNSF Store to retrieve the information needed for
performing attestation of vNSFs, packaged within the security manifest of each network
function’s instance. Additionally, the Trust Monitor can download and measure packages of
various Linux distributions from the official repositories, and can also keep internal knowledge
of the software updates for each of them. This particular data is used by the TM to attest the
infrastructure nodes and rate them with different trust levels (e.g. by considering untrusted a
node with a known software vulnerability).

The Trust Monitor is also able to keep an updated view of the network infrastructure at a given
time by a specific interaction with the vNSFO, which in turn updates the Trust Monitor with
status changes of the NFVI. This information can then be utilised by the Trust Monitor to
periodically attest the NFVI, to detect any compromised node. In addition, the vNSFO could
directly ask the Trust Monitor to attest a node joining the NFVI, referred as “newcomer”.

The whitelist of known measurements can be used for checking the integrity report provided
by each physical node of the NFVI during the Remote Attestation workflow. If any of the
verification steps fail, the Trust Monitor is in charge of notifying the failure to the vNSFO and
also log the event in the DARE.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
34

2.4.5. Interaction with other components

The Trust Monitor interacts with the Store, vNSFO and DARE components of the SHIELD’s
infrastructure to request attestation-related information or as a response of an external
attestation request. A detailed description of each workflow is presented in the “Appendix B
Inter-component interactions”.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
35

3. SPECIFICATIONS AND IMPLEMENTATION

The information conveyed in this section decreases the abstraction level for the software
solution provided. Based on the components and sub-components defined in the architecture
section it presents additional insight on the inner details of said sub-components by defining
implementation-oriented behaviours, operations and interactions. Such behaviours may be
supported by software design elements such as data flows, state machines, decision flows or
API/interfaces descriptions.

Targeting an implementation-oriented approach this section references possible technologies
or features from existing technologies to use, reused outcomes or extensions to develop based
on other projects or even specify features to create from scratch. To assist the reader in
understanding how the selected technologies fits within SHIELD rationale, the requirements
fulfilment is also included.

3.1. Security network functions and services

This section describes the vNSFs identified so far to perform monitoring and remediation within
the scope of the SHIELD platform. For each of them a mapping of its functionality against a
subset of the SHIELD requirements is provided, as well as low level specification and
implementation details when available.

3.1.1. Virtual Intrusion Detection System (vIDS)

3.1.1.1. Implementation details

For the implementation of a virtualised Intrusion Detection System in SHIELD it is planned to
adopt the IDS VNSF [12] that was developed in the frame of CHARISMA project. Several
modifications and extensions will be made to support full compatibility with the SHIELD
platform.

The vIDS vNSF, as used in CHARISMA, includes the following components:

 Snort IDS: An open-source intrusion detection system, capable of performing real-time
traffic analysis and packet logging on IP networks.

 Barnyard2: An open-source software tool that takes Snort output and writes it to a SQL
database to reduce load on the system.

 PulledPork: An open-source tool that automatically downloads the latest Snort rules
(threat signatures).

 Snorby: An open-source web-based graphical interface for viewing and clearing events
logged by Snort.

 Rule Configuration Service: A service that accepts requests for creating, deleting and
modifying rules that can be applied in Snort detection engine.

 Event Publisher Service: A service responsible for publishing the alerts produced by
Snort detection engine.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
36

The current CHARISMA IDS vNSF implementation is based on Ubuntu 14.04 operating system,
which was selected as the guest operating system in CHARISMA project. Incoming traffic to the
IDS vNSF is being analysed in real time and analysis decisions are being communicated to
external interfaces as HTTP requests. This vNSF consists of one virtual machine which requires
to have one virtual network interface where all traffic that need to be monitored must be
routed (or mirrored). Thus, the CHARISMA IDS has a single vNSFC. Additionally, the vNSF is
accompanied by an ETSI compliant descriptor that allowed its life-cycle management through
the TeNOR (T-NOVA) orchestrator.

The IDS implementation is based on Snort open source IDS. Snort [13] is an open-source
intrusion detection system that is developed by Sourcefire. It is capable of performing real-time
traffic analysis and packet logging on IP networks. Snort architecture is composed by the packet
capture library, the packet decoder, the preprocessor, the Snort detection engine which is
configured with detection rules and the alert output components plug-ins.

Rule Configuration Service

To provide intrusion detection functionalities based on policy defined by external modules to
the vIDS, this VNSF implements a RESTful API which accepts requests for creating, deleting and
modifying rules that can be applied in Snort detection engine. This offers an easy way of
external configuration of the VNSF without requiring knowledge of its inner workings.

Event Publisher Service

The IDS VNSF provides another functionality, necessary for the utilisation of the results
produced by Snort packet analysis, the Event Publisher Service. This service translates, curates,
and publishes events in readable format to external interfaces for further analysis. Once traffic
enters the IDS vNSF, Snort software analyses all packets. Snort detection engine, described
above, can contain rules which consist of conditions. When the conditions of a rule are met,
the detection engine produces an event and saves it in a log file. Snort event logs are saved in
Unified2 format so the Event Publisher Service translates them to JSON format, assesses their
timestamp to avoid publishing redundant information and publishes the events.

A number of modifications to the CHARISMA IDS vNSF to make it compatible with the SHIELD
platform are foreseen. More specifically:

 Virtualisation enabler: A CentOS 7.X will be used as the guest operating system to
provide a virtual machine-based IDS for SHIELD. Additionally, a second version of the
IDS will be provided bundled in a Docker container or -if required- multiple Docker
containers.

 vNSF descriptor: The vNSF descriptor of the vIDS will have to be implemented from
scratch to allow life-cycle management through the OSM orchestrator.

 Rule Configuration Service: This component matches the configuration listener element
included in all vNSFs that accept configuration through the Security orchestrator.
Modifications to the current implementation are expected to allow compatibility with
the Security Orchestrator and the exact format of the policies sent.

 Event Publisher Service: This component matches the streaming service element
included in all vNSFs that provide monitoring information data to the DARE.
Modifications to the current implementation are expected to allow compatibility with
the data format expected from the DARE Streaming Service.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
37

 User interface and output: As SHIELD platform features a User Dashboard for displaying
output and threat alerting and notifications to the user, it is unlikely that the Snorby
GUI component will be required for the SHIELD vIDS implementation.

3.1.1.2. Requirements mapping

Requirement Requirement name Requirement description

SF08 DoS Protection A security service SHALL protect against volumetric
Denial of Service attacks. Detect the DoS attack and
divert the traffic for filtering. Forwarding the good
traffic flows to the destination.

VI_SPEC_01 vIDS will perform traffic analysis against its signatures database to detect a
DoS attack and notify DARE about it; which will in turn instruct specific
mitigation procedures.

SF09 Intrusion
Detection/Prevention
System

A security service SHALL detect attacks with a wide
range of techniques such as network flow or
behaviour analysis and deep packet inspection.
Allow traffic flows according to IPS rules. Monitor
traffic network traffic at OSI layer 7 and generate
alerts for security policy violations, infections,
information leakage, configuration errors and
unauthorised clients.

VI_SPEC_02 vIDS will analyse the traffic in L3-L4 and L7, generating appropriate alerts
upon any detected intrusion and notify DARE regarding identified security
threats or incidents. After internal analysis and correlation, DARE will instruct
specific mitigation procedures.

NF05 Impact on perceived
performance

When network traffic is proxied or analysed, the
user experience SHALL not be degraded.

VI_SPEC_03 The traffic analysis carried out by this IDS should not seriously delay or
degrade the detection and mitigation operations.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
38

3.1.2. Virtual Deep Packet Inspection (vDPI)

3.1.2.1. Implementation details

The implementation of the vDPI components is based on a variety of technologies allowing to
perform traffic inspection as well as packet capturing. The following technologies are currently
envisioned to be used in the implementation of this vNSF:

 nDPI [14]: is an open source alternative to the OpenDPI [15] library, maintained by ntop.
Its goal is to extend the original library and add new protocols that are otherwise
available only on the paid version of OpenDPI. Furthermore, nDPI is modified to be more
suitable for traffic monitoring applications, by optimising the DPI engine. One of its
major advantages is that nDPI can support application-layer detection of protocols,
regardless of the port being used.

 PF_RING [16]: is a set of library drivers and kernel modules, which enable high-
throughput packet capture and sampling. The PF_RING kernel module library polls
packets through the Linux NAPI. Packets are copied from the kernel to the PF_RING
buffer for analysis with the nDPI library.

 DPDK (Data Plane Development Kit) [17]: comprises of a set of libraries that support
efficient implementations of network functions through access to the system’s network
interface card (NIC). DPDK offers to network function developers a set of tools to build
high speed data plane applications. DPDK operates in polling mode for packet
processing, instead of the default interrupt mode. The polling mode operation adopts
the busy-wait technique, continuously checking for state changes in the network
interface and libraries for packet manipulation across different cores.

A PF_RING implementation has the capacity of maintaining uninterrupted connectivity with the
OpenStack network. DPDK has the capacity to bypass the Linux kernel, leading to high-
performance packet capture but less robust and fault-tolerant that PF_RING.

3.1.2.2. Requirements mapping

Requirement Requirement name Requirement description

SF02 Detect/Block access to
malicious websites

The vDPI can block access to known malicious
websites including (but not limited to) phishing
websites, known malware Command and Control
servers, Ransomware Command and Control
servers and payment sites.

vDPI can also block access depending on
application types (e.g. SMB connections, IRC, RDP
etc. that can indicate the potential presence of a
backdoor). This does not include deep content
inspection.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
39

VD_SPEC_01 vDPI will be able to redirect, limit or block suspicious traffic based on already
established rules. Other suspicious traffic can be redirected to DARE for
analysis and thus the vDPI should be able to receive new policy
configurations.

SF08 DoS Protection A security service SHALL protect against volumetric
Denial of Service attacks. Detect the DoS attack and
divert the traffic for filtering. Forwarding the good
traffic flows to the destination.

VD_SPEC_02 vDPI will be able to indicate suspicious traffic and redirect to DARE for
inspection. Some known (D)DoS attack types (e.g. Ping of death, application
level flooding etc.) can be blocked by common rules and policies. vDPI will not
be performing behavioural analysis; this will be performed in DARE to assess
legitimacy of other examined traffic flows.

SF09 Intrusion
Detection/Prevention
System

A security service SHALL detect attacks with a wide
range of techniques such as network flow or
behaviour analysis and deep packet inspection.
Allow traffic flows according to IPS rules. Monitor
traffic network traffic at OSI layer 7 and generate
alerts for security policy violations, infections,
information leakage, configuration errors and
unauthorised clients.

VD_SPEC_03 vDPI will offer deep packet inspection capabilities based on the nDPI library.
Capabilities include inspection of packet headers, applications types etc., but
not deep content inspection (which requires reassembly and inspection of an
entire message)

NF05 Impact on perceived
performance

When network traffic is proxied or analysed, the
user experience SHALL not be degraded.

VD_SPEC_04 The traffic inspection performed by vDPI should not seriously degrade the
user’s quality of experience on the NS. vDPI engine will be based on open
source high-throughput tools (nDPI, PF_RING etc) and will be able to parse
small subsets of mirrored traffic.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
40

3.1.3. mcTLS Middlebox and Gateway

3.1.3.1. Implementation details

This vNSF is going to be available in Y2, so implementation details are not yet available. It will
be based in the mcTLS Open Source project [18] over Ubuntu.

3.1.3.2. Requirements mapping

Requirement Requirement name Requirement description

SF09 Intrusion
Detection/Prevention
System

A security service SHALL detect attacks with a wide
range of techniques such as network flow or
behaviour analysis and deep packet inspection.
Allow traffic flows according to IPS rules. Monitor
traffic network traffic at OSI layer 7 and generate
alerts for security policy violations, infections,
information leakage, configuration errors and
unauthorized clients.

VM_SPEC_01 The vNSF (middlebox) allows the monitoring of ciphered traffic directed at a
specific server (HTTPs server with a mcTLS Gateway vNSF) in order to identify
attacks.

NF05 Impact on perceived
performance

When network traffic is proxied or analysed, the
user experience SHALL not be degraded.

VM_SPEC_02 When network traffic is proxied or analysed, the user experience SHALL not
be degraded.

3.1.4. HTTP/S Analyser

3.1.4.1. Implementation details

This vNSF it is going to be available in Y2, so implementation details are not yet available. It is
going to be based in machine learning techniques to provide the HTTP/s traffic classification.

3.1.4.2. Requirements mapping

Requirement Requirement name Requirement description

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
41

SF09 Intrusion
Detection/Prevention
System

A security service SHALL detect attacks with a wide
range of techniques such as network flow or
behaviour analysis and deep packet inspection.
Allow traffic flows according to IPS rules. Monitor
traffic network traffic at OSI layer 7 and generate
alerts for security policy violations, infections,
information leakage, configuration errors and
unauthorized clients.

VH_SPEC_01 Traffic classification will allow the classification of traffic traversing the
network and therefore enable its correlation with potential attacks therefore
improving its detection/mitigation mechanisms.

SF08 DoS Protection A security service SHALL protect against volumetric
Denial of Service attacks. Detect the DoS attack and
divert the traffic for filtering. Forwarding the good
traffic flows to the destination.

VH_SPEC_02 Traffic classification will allow the classification of traffic traversing the
network and therefore enable its correlation with potential attacks therefore
improving its detection/mitigation mechanisms.

NF05 Impact on perceived
performance

When network traffic is proxied or analysed, the
user experience SHALL not be degraded.

VH_SPEC_03 When network traffic is proxied or analysed, the user experience SHALL not
be degraded.

3.1.5. L3 Filter

3.1.5.1. Implementation details

The implementation of this vNSF will be based on the packet filtering framework included
within the Linux kernel, starting from the 2.4 version. The framework, maintained by the
netfilter.org project, consists of different subsystems, such as iptables [19]. This userspace
program can be used to configure the filtering ruleset, composed of rules consisting of
classifiers (e.g. the source IP address) and one connected action (e.g. deny).

The vNSF will provide an Access Control List in a standard format, such as XML, containing a list
of IP addresses to be allowed or denied, depending on the kind of list (whitelist, blacklist). The
vNSF will manage the low-level translation of the ACL to iptables rules.

An implementation for a L3 packet filter, based on iptables, has been developed in the scope
of the SECURED project [4], and will be considered as base point for development of this vNSF.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
42

3.1.5.2. Requirements mapping

Requirement Requirement name Requirement description

SF09 Intrusion
Detection/Prevention
System

A security service SHALL detect attacks with a wide
range of techniques such as network flow or
behaviour analysis and deep packet inspection.
Allow traffic flows according to IPS rules. Monitor
traffic network traffic at OSI layer 7 and generate
alerts for security policy violations, infections,
information leakage, configuration errors and
unauthorised clients.

VL3_SPEC_01 The L3 Filter vNSF is expected to be integrated with the IDS/DPI as a
remediation vNSF, blocking any malicious traffic detected by the IDS.

NF05 Impact on perceived
performance

When network traffic is proxied or analysed, the
user experience SHALL not be degraded.

VL3_SPEC_02 The filtering operation performed by the vNSF should not seriously degrade
the user’s quality of experience on the NS.

3.1.6. Forward L7 Filter

3.1.6.1. Implementation details

This vNSF will be implemented by leveraging the functionalities offered by the Squid web cache
[20] for its internal logic. This software can inspect traffic at application layer (e.g. HTTP, FTP,
Gopher, WAIS) to filter specific URLs and provide ACL management. Squid is also able of acting
as a web cache, even though this functionality is considered out of scope for the proposed
vNSF. In addition, Squid may be configured as a Transparent Proxy, which would also require
the redirection of incoming HTTP traffic to the port Squid is running on (e.g. via an iptables
rule). By interacting with certain plugins, such as DansGuardian web content filter, the vNSF
would be able to grant or deny access to a web page depending on its actual content (e.g.
phrase matching) other than URL. The filtering capabilities managed by Squid are the most
relevant ones for implementing this reacting vNSF.

An implementation for a L7 filter, based on Squid, has been developed in the scope of the
SECURED project [4], and will be considered as base point for development of this vNSF.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
43

3.1.6.2. Requirements mapping

Requirement Requirement
name

Requirement description

SF02 Detect/Block
access to
malicious
websites

A security service SHALL control access to malicious
websites, such as phishing servers, malware spreading,
C&C servers, etc. The user must be alerted and the
access to the site could be blocked/allowed depending
on the configured policy rule.

VL7_SPEC_01 The Forward L7 Filter vNSF will be able of blocking L7 traffic depending on
different criteria in order to control access to malicious websites (such as by
filtering HTTP data according to blacklists of URLs).

NF05 Impact on
perceived
performance

When network traffic is proxied or analysed, the user
experience SHALL not be degraded.

VL7_SPEC_02 The filtering operation performed by the vNSF should not seriously degrade
the user’s quality of experience on the NS.

3.2. Store

Based on the general architecture of the Store component provided in previous sections, the
present section aims providing a preliminary specification of its low-level functionalities.

3.2.1. Specifications

For each subcomponent of the Store component, the low-level specifications are provided
below.

Lifecycle Manager

Lifecycle Manager subcomponent is responsible for implementing a set of features that enable
the envisioned onboarding lifecycle of either vNSFs and NSs. The vNSF/NS onboarding lifecycle
comprises the following steps:

 Submitted A vNSF has been submitted to the Store for onboarding by a Developer. Due
to the nature of the process, as it comprises time-consuming operations such as
validations and considerable-sized downloads, the submission request is promptly
acknowledged and the process continues in the background. Later on, the Developer
will be notified whether the operation succeeded or failed.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
44

 Sandboxed: A vNSF is registered in the Catalogue but is not yet ready for production. It
is undergoing a validation process to determine whether it is deemed fit for service.

 Onboarded: A vNSF has successfully undergone all the required checks to be considered
able to integrate the ecosystem and is fit for attestation tests.

 Decommissioned: A vNSF has been taken out of service and can no longer be
instantiated.

Descriptors Validator

To ensure a vNSF/NS can be onboarded, the descriptors provided in the package need to be
validated. These descriptors are checked for:

 Syntax errors to prevent incorrect vNSF descriptors from being processed.

 vNSF topology integrity to avoid potential loops or errors such as references to
undefined network interfaces.

Every onboarded vNSF descriptor will be checked for syntax, correctness and completeness
issues. With no issues found the next step is to check the defined network topology and ensure
inconsistencies such as no unconnected interfaces are present and all virtual links are properly
defined. Upon successful validation, the vNSF may proceed with the onboarding process. Any
error results in a notification to the Developer stating what is not compliant with the SHIELD
requirements. As for Network Services, onboarding the descriptors provided in the package
need to be validated. These descriptors are checked for:

 Syntax errors to prevent incorrect NS descriptors from being processed.

 vNSF/NS topology integrity to avoid potential loops or errors such as references to
undefined network interfaces

 Decommissioned vNSF usage to avoid service instantiation issues

Again, every NS descriptor will be checked for syntax, correctness and completeness issues.
With no issues found the next step is to check whether any usage of decommissioned vNSF is
present. Upon successful validation, the NS may proceed with the onboarding process. Any
error results in a notification to the Security Dashboard stating what isn’t compliant with the
SHIELD requirements.

Integrity Checker

The vNSF onboarding security check is performed by:

 Verifying the package digital signature against the stored one to prove provenance.

 Checking the hashes for the vNSF-related files against the ones provided in the manifest
to ensure integrity.

The security manifest format is defined by SHIELD and all submitted vNSFs, regardless of
intended target vNSFO, shall comply with it (no tailoring is allowed). Upon successful checks
the vNSF may proceed with the onboarding process. Any error results in a notification to the
Developer stating what is not compliant with the SHIELD requirements.

Catalogue

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
45

The Catalogue handles the records for the entire Store component. It stores data of all the
onboarded vNSFs and NSs and can convey it to the other components upon request through
the adapters provided for such purpose. The specific data is defined below:

 vNSF Catalogue
o Version: an identifier for the submitted vNSF package which defines a unique

set of specific functionalities and dependencies provided within the vNSF-
related descriptors.

o Status: the current status of the vNSF. It can be “submitted”, “sandboxed”,
“onboarded” or “decommissioned”.

o Security manifest: holds the hashes for all the vNSF-related files as well as
information needed for attestation.

o vNSF Descriptor (vNSFD): description for the vNSF, containing the vNSFCs that
conform the vNSF, the available flavours to deploy and the description of the
virtual links interconnecting the different vNSFCs.

 NS Catalogue
o Version: an identifier for the submitted NS package which defines a unique set

of specific functionalities and dependencies provided within the NS-related
descriptors.

o Status: the current status of the NS be it submitted, sandboxed, onboarded or
decommissioned.

o Security manifest: holds the hashes for all the NS-related files as well as
information needed for attestation.

o NS Descriptor (NSD): description for the service, containing the vNSFs that
conform the service and their forwarding graphs, the virtual link description
interconnecting the vNSFs, the preferred flavour (instance configuration) per
vNSF to use and any SLA to be met by the NS.

o Virtual Link Descriptor (vLD): definition of the virtual network links that
interconnect the vNSFs.

o vNSF Forwarding Graph Descriptor (vNSFFGD): definition of the network
deployment for the vNSFs contained in the NS.

Developer Adapter

This module provides connectivity with the Developer either in the form of an API for the
Developer to use Store’s features as well as a connector allowing Store to push information to
the Developer.

Dashboard Adapter

This module provides connectivity with the Security Dashboard component either in the form
of an API for the Dashboard to use Store’s features as well as a connector allowing Store to use
Security Dashboard’s functionalities.

Orchestrator Adapter

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
46

This module provides connectivity with the Orchestrator component either in the form of an
API for the Orchestrator to use Store’s features as well as a connector allowing Store to use
Orchestrator’s functionalities.

Trust Monitor API

This module provides connectivity to Trust Monitor component in the form of an API.

DARE API

This module provides connectivity to DARE component in the form of an API.

3.2.2. Implementation details

The Store component will leverage existing technologies that already address some of the
features intended for its implementation. Currently the following implementations are being
analysed to be used as a basis or as an extension of SHIELD’s store component:

 SONATA catalogue

 SONATA NS/VNF syntax validation features

 SONATA NS/VNF topology validation features

 TeNOR catalogue

 OSM catalogue

 OSM NS/VNF descriptors

REST API Services will be used to expose an interface to access Store’s internal features. Further
specifications comprising the envisioned APIs can be found in “Appendix D Application
Programming Interfaces (APIs)”.

3.2.3. Requirements mapping

Requirement Requirement name Requirement description

PF02 vNSF lifecycle
management

The platform SHALL be able to manage the full
lifecycle of vNSFs (on boarding, instantiation,
chaining, configuration, monitoring and termination).

S_SPEC_01 The Store provides the Developer with an interface to onboard a vNSF and
the Security Dashboard with another interface to onboard NSs. It also
provides an interface to vNSFO to query vNSF and NS information during
instantiation. The remaining states for the vNSF lifecycle management are
outside the scope of the Store.

PF10 vNSF validation The store SHALL validate that the image of a vNSF is
not manipulated, faked or invalid.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
47

S_SPEC_02 At the time of a vNSF submission by the Developer the Integrity Checker
ensures that the vNSF content is trusted and stores (amongst other data) the
hash(es) for the vNSF image(s) which can be provided upon request for
integrity checks by other components.

PF11 vNSF attestation The platform SHALL check the provenance and
integrity of a vNSF and associated policies, before it
starts to operate.

S_SPEC_03 When the Developer submits a vNSF the Integrity Checker validates the
digital-signature associated with it to verify the provenance of the submitted
data and analyses its integrity to ensure it wasn't tampered with in any way.
This data is stored and can be provided upon request for attestation purposes
to other components.

PF15 Service store The store SHALL allow selecting security services from
the catalogue.

S_SPEC_04 A record of the successfully onboarded Network Services is kept by the
Catalogue. These security services are provided upon request through the
Store’s interfaces.

PF17 Interoperability The platform SHALL expose openly-defined APIs for
information exchange with third parties.

S_SPEC_05 The Store provides the interoperability features through APIs and connectors.
The vNSF onboarding is accomplished by the Develope’s API, the NS
onboarding and store-related GUI interaction is done by the Dashboard API,
the vNSF and NS data concerning orchestration is provided by the
Orchestrator API and the attestation-related data is conveyed by the Trust
Monitor API.

3.3. Orchestrator

When analysing the Platform Requirements (described in D2.1), four well-known NFV MANO
solutions were identified and analysed. These are OSM [3], TeNOR [21], SONATA [2] and
OpenBaton [22]. OSM stems from industrial community, whilst TeNOR, SONATA and
OpenBaton have grown in the R&D environment.

To carry out the analysis, the accordance with the Platform Requirements (as defined in D2.1)
was examined, along with several extra indicators; from more subjective, like the extensibility
and complexity degree in terms of development, to others such as its ongoing and future
roadmap as well as its community. When considering how appropriate are the provided
features to the SHIELD’s Platform Requirements, OSM and TeNOR provide mostly the same

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
48

capabilities; with more support by the former to extra VIMs and SDN controllers, and on
monitoring and operational capabilities on the latter. SONATA and OpenBaton show a focus on
specific aspects (the former focusing on identity management, the latter in service operations).
These are at different stages of development, being SONATA under development and
OpenBaton a more consolidated orchestrator. Both provide advanced features on their field of
focus, and provide extensive documentation. A detailed analysis can be found in the “Appendix
E Technology Selection”. After evaluating the aforementioned indicators and prioritising the
Platform Requirements, the community and available support, the consortium decided to use
OSM as the base vNSFO for SHIELD.

3.3.1. Specifications

The low-level specifications of the subcomponents of the Orchestrator are provided below.

NS Manager

The NS Manager supports issuing the following operations on the NS:

 NS instantiation: initial validation and deployment of the vNSF and NS instances,
according to the lifecycle events defined in the vNSF and NSD and triggered from the
latter. The operations on the vNSFs are delegated to the vNSF Manager

 NS configuration: changes in the configuration of any given NS through its descriptor,
whether these are done prior to starting the NS or as an active update while the NS is
running. One of the possible changes encompassed is the distribution of policies to be
applied within vNSFs

 NS monitoring: monitoring of the NS performance. The metrics from the network links
and the compute instances and service-specific data are retrieved from the NFVI and
the VNFM. The operations on the vNSFs are delegated to the vNSF Manager

 NS scaling: increase or decrease of the NS capacity according to the auto-scaling policies
defined per vNSF and NS in their descriptors. The scaling can result in
increasing/decreasing capacity per vNSF, creating or terminating vNSF instances and
adjusting the number of links between vNSFs

 NS termination: release any given NS instance and its associated resources (vNSF
instances, NFVI-related resources, connecting links between vNSFs)

vNSF Manager

The vNSF Manager supports issuing the following operations on the vNSFs:

 vNSF instantiation: initial validation and deployment of the vNSF instances in the NFVI

 vNSF configuration: changes in the configuration of the deployed vNSF, whether these
are done prior to starting the vNSF or during runtime. Some possible changes are the
introduction of user-specific attributes

 vNSF monitoring: monitoring of the performance information of the instance, obtained
from the NFVI; and of the vNSF itself, providing service-specific metrics within the vNSF
instance

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
49

 vNSF scaling: increase or decrease of the vNSF capacity through adding (scale-out) or
removing (scale-in) compute nodes associated to the vNSF

 vNSF termination: release any given resource from the NFVI that is related to the vNSF

Repositories

Two repositories are expected to persist information on the running vNSFs and NSs, along with
physical and virtual nodes from the NFVI.

 vNSF and NS instance repository: A registry of the running virtual instances for both NSs
and vNSFs, the status per vNSF and any data related to them, such as low-level
information of the NFVI (IDs of each record/running instance of NSs and vNSFs, IPs per
vNSF, etc). Such records are consulted by different processes, such as the monitoring
carried out in the NS manager. This role is covered by the VIM, abstracting the NFVI
details.

 Infrastructure repository: This repository keeps a list of which resources from the NFVI
are available, reserved or allocated. The NS Manager consults this to perform
operations such as the validation prior to the deployment of a requested NS and the
mapping of its resources into the physical infrastructure.

Dashboard API

This exposes a read-only API that provides necessary information on the resources in the NFVI.
This is used by the Security Dashboard to present its graphical view to the user.

Trust Monitor API

This exposes an interface for the Trust Monitor to retrieve information on the NFVI, which can
be used to perform the periodic attestation task.

DARE API

This interface provides DARE with a global view on the infrastructure. This is done by offering
information on the physical nodes, the running and available vNSFs, etc. The analytics leverage
on this and external monitoring data sources.

3.3.2. Implementation details

The vNSF Orchestrator will be based on the OSM solution. The following software modules and
technologies will be used to fulfil the orchestration:

 Service Orchestrator (SO)
o Acting as the NS Manager, RIFT.ware provides end-to-end network service

orchestration, abstracting from computing resources, and provisioning lifecycle
management and interconnection of VLs

 Resource Orchestrator (RO)

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
50

o OpenMano enables operations from both the Infrastructure and vNSF
Managers. It provisions resources as needed, interacting with multiple VIMs and
SDN controllers. Along with SO, these conform the NFVO entity in the ETSI NFV
architecture

 vNSF Configuration and Abstraction (VCA)
o Generic vNSF Manager allowing the initial vNSF configuration (pre-boot). It

relies on Canonical’s Juju charms and cloud-init to provide instructions to the
vNSFs to be deployed

These modules can be mapped of the ETSI NFV architecture as depicted in Figure 19

Figure 19: OSM mapped to ETSI NFV architecture

More details on the implementation and deployment details can be found in the
documentation and whitepaper for the latest release (R2) [23][24].

The details on the specific development for the interfaces and connectors described earlier are
provided in the “Appendix D Application Programming Interfaces (APIs)”.

3.3.3. Requirements mapping

Requirement Requirement name Requirement description

PF01 vNSF and Network
Service (NS)
deployment

The platform SHALL be able to deploy the vNSFs in
different PoPs and domains. The deployment can
occur within internal or external premises.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
51

O_SPEC_01 The NS and vNSF Managers can initiate the deployment of the vNSFs in the
different PoPs; as these are previously registered into the vNSFO.

PF02 vNSF lifecycle
management

The platform SHALL be able to manage the full
lifecycle of vNSFs (on boarding, instantiation,
chaining, configuration, monitoring and
termination).

O_SPEC_02 The NS and vNSF Managers can control the different stages in the lifecycle of
the vNSFs.

PF03 vNSF status
management

The operator SHALL be able to control the lifecycle
via a graphical user interface. The vNSF lifecycle
should support events like DEPLOY, START, STOP,
MODIFY, DELETE.

O_SPEC_03 The NS and vNSF Managers will receive lifecycle events from Security
Dashboard to deploy or instantiate, run, stop, configure or delete the vNSFs.

PF07 Service elasticity The platform COULD provide the mechanism to
allow scalability of the vNSFs.

O_SPEC_04 The NS and vNSF Managers provide the capability to request a specific NS or
vNSF to adapt (scale) to its operational conditions.

PF11 vNSF attestation The platform SHALL check the provenance and
integrity of a vNSF and associated policies, before it
starts to operate.

O_SPEC_05 The vNSFO checks the associated policies before configuration.

PF13 Mitigation The platform SHALL be able to trigger, in the case of
an event, proper actions to mitigate the threat.

O_SPEC_06 As the result of an accepted suggestion by a user in the Dashboard, the NS
and vNSF Managers receive and distribute requests to deploy specific
mitigation NSs.

PF17 Interoperability The platform SHALL expose openly-defined APIs for
information exchange with third parties.

O_SPEC_07 The orchestrator will provide different APIs to interact with the DARE, the
Trust Monitor and the Security Dashboard.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
52

PF19 Network
infrastructure
attestation

The platform SHALL verify that the network
infrastructure that executes the vNSF is in a trusted
state (network elements and server identity,
software, configuration).

O_SPEC_08 The vNSFO provides information on newcomer nodes on the NFVI; so that the
Trust Monitor can periodically attest those.

NF03 Scalability The platform SHALL be expandable by adding nodes
in the network infrastructure, to increase capacity.

O_SPEC_09 The vNSFO interacts with the VIM and is aware of the existing and newcomer
nodes in the NFVI, which will be later on provided to the Trust Monitor.

3.4. Trust monitor

The general architecture and design of the Trust Monitor has been defined according to the
Platform Requirements, as defined in D2.1. This section aims to describe the specifications of
the low-level functionalities that will be developed within the Trust Monitor sub-components.

3.4.1. Specifications

The low-level specifications of each subcomponent of the Trust Monitor are reported as
follows, as well as the mapping of the specifications to the PFRs. The specifications may be
subject to minor modifications during the development stage.

Verifier

The Verifier is the central sub-component of the Trust Monitor. It manages different
functionalities:

 Registration of a node

 On-demand attestation of a node

 Periodic attestation of the nodes in the NFVI

 Notification of attestation failure to both the DARE and the vNSFO

The registration phase is needed to setup the attestation process with each NFVI PoP
composing the network infrastructure. Each node of the NFVI should be properly configured to
enable its interaction with the TPM and to start measuring the software running into it. The
remote attestation procedure is performed both in the initial attestation of newcomers and
periodic attestation tasks. It requires the Verifier to perform the following operations:

1. Send an attestation request to the node, including a nonce for freshness of the response
2. Validate the response
3. Extract the software measurements from the integrity report, consisting of the software

and configuration utilised by both the host and the vNSFs running into it

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
53

4. Verify the integrity measurements of the host against the reference values contained in
the Whitelist Database

5. For each vNSF, verify the integrity measurements against the known digests contained
in the vNSF security manifest

6. For SDN-controlled switches, verify the SDN forwarding rules with regards to the
expected one (in the SDN controller)

The Verifier can verify the measurements of the host by leveraging the Whitelist Database
functionality. The known measurements of each vNSF can be retrieved via the API exposed by
the vNSF Store. In case of failure during attestation, the Verifier leverages the APIs provided by
both the vNSFO and the DARE. Periodic attestation should be performed by an internal task
that leverages the API offered by the vNSFO to retrieve the "map" of the current status of
running nodes in the NFVI.

DARE Connector

The Trust Monitor should be able to collect relevant information from the NFVI in real time to
verify the nodes' software integrity. This information is used to detect security incidents
regarding misuse of a node. In case of failure upon attestation, a security event is sent by the
Trust Monitor to the DARE. This information is logged by the DARE and it could also be shared
with a third entity.

Whitelist Database

The database contains the complete data of the executables allowed on the attested platforms.
More specifically, for example on Linux-based platforms, it contains the following information
for each file to be measured:

 The digest

 The full path name

 The packages in which it is contained (grouped by distribution and architecture)

Given the supported distributions and architectures, the database is initialised and updated
periodically by downloading the packages' lists from their official repositories. Alternatively, the
database can be updated with release information for components that do not come from
public repositories.

Additionally, the database should store the history of each package, reporting the information
about its updates (e.g. the type of update). Given the packages' history, the Verifier verifies the
IMA log at one of the following trust levels:

 Level 1: TPM and IMA measurement in the node is running correctly

 Level 2: In addition to Level 1, all the software is found in the reference database but
there is at least one with a known security vulnerability

 Level 3: In addition to Level 2, at least one binary has a known functional bug

 Level 4: In addition to Level 3, no known security vulnerabilities or functional bugs are
found in the measured software

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
54

vNSF Store Connector

This subcomponent allows the retrieval of the security manifest for each vNSF to be attested.

vNSFO Connector

The vNSF Orchestrator is in charge of terminating nodes of the NFVI if their execution cannot
be trusted. Therefore, the Trust Monitor is in charge of notifying both the vNSFO and the DARE
in case of remote attestation failure. In addition, the Trust Monitor should have a clear view of
the vNSFs and NFVI PoPs deployed in the SHIELD infrastructure, in order to perform the periodic
attestation of running nodes. To do so, it will leverage a specific functionality offered by the
vNSFO API.

Newcomer Attestation API

The sub-component exposes an API for on-demand registration and attestation of newcomers
in the NFVI.

Management API

The sub-component exposes a read-only API for checking the status of the Trust Monitor, and
retrieving relevant information about the attestation of the infrastructure.

3.4.2. Implementation details

The Trust Monitor implementation starts from components that have been developed in the
EC-funded project SECURED [4]. More specifically, the following technologies could be reused:

 Third-party Verifier based on Open Attestation v1.7 [5]

 Whitelist Database based on Apache Cassandra 2 [6]

 SDN-enabled switch attestation prototype [7]

These technologies, representing the starting point for the development stage, are bound to a
Linux CentOS 7 environment equipped with TPM 1.2 device. The development efforts in the
project are aimed to enrich the already available software with the SHIELD-specific APIs.

Additionally, the Trust Monitor should be able to support TPM 2.0-enabled hardware, meaning
that the attestation framework needs further improvements. Regarding this point, the OpenCIT
[25] framework, developed by Intel, will be exploited as an evolution to the Open Attestation
framework.

As stated in the official website of the project, Open Attestation no longer receives any update
and it does not provide support for the TPM 2.0 devices. On the opposite side, OpenCIT does
not support the integrity report workflow at the moment of writing, meaning that further
improvements are needed over the mainstream version.

The details on the specific development for the interfaces and connectors described earlier are
provided in the “Appendix D Application Programming Interfaces (APIs)”.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
55

3.4.3. Requirements mapping

Requirement Requirement name Requirement description

PF08 Platform
expandability

The platform SHALL be easily extended to support
new security services.

T_SPEC_01 The Trust Monitor provides documented APIs and interfaces to enable the
interaction with the different components. In addition, the component
provides a generic client-service workflow to attest the nodes in the NFVI.

PF11 vNSF attestation The Trust Monitor attests deployed vNSFs.

T_SPEC_02 The Trust Monitor should attest the vNSFs deployed on top of a host in the
NFVI and provides notifications to both DARE and vNSFO.

PF12 Log sharing Sharing logs with a third entity SHALL be allowed. The
granularity of the data provided by the logs depends
on the severity and type of each attack.

T_SPEC_03 The Trust Monitor provides other components of the infrastructure with APIs
to retrieve information about its status. In addition, the Trust Monitor notifies
events about attestation failures to both the DARE and vNSFO, which could
enrich their logs as well.

PF16 History reports The platform SHALL generate reports of past
incidents based on historic data.

T_SPEC_04 The Trust Monitor contributes to the definition of reports of past incidents,
as it will provide notifications to both the DARE and the vNSFO to enrich the
logs of occurring incidents.

PF17 Interoperability The platform SHALL expose openly-defined APIs for
information exchange with third parties.

T_SPEC_05 The Trust Monitor provides different APIs to interact with the DARE, the
vNSFO and the vNSF Store. In addition, the component provides a
management API to allow third parties to retrieve status information about
the infrastructure’s attestation.

PF19 Network
infrastructure
attestation

The platform SHALL verify that the network
infrastructure that executes the vNSF is in a trusted

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
56

state (network elements and server identity,
software, configuration)

T_SPEC_06 The Trust Monitor attests the software integrity of the network infrastructure
and provides notifications to both DARE and vNSFO.

NF01 Response time The platform SHALL report the incident within a
relatively short time (in the order of seconds)

T_SPEC_07 The Trust Monitor periodically attests the nodes in the NFVI (in the order of
seconds) to identify any occurring incidents and report them to both DARE
and vNSFO. The bottleneck for minimising the latency between two
subsequent attestations is the latency introduced by the usage of TPM, as it
registers the measurements in the node.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
57

4. CONCLUSIONS

This document presents the technical details of the vNSF ecosystem, starting with the high-
level architecture and design to the specifications and implementation. The former section
deals with the high-level picture of the SHIELD vNSF platform, its purpose and interconnections
between components, whilst the latter presents low-level details, such as the specifications to
cover, its mapping with the requirements defined in D2.1 and the decisions regarding
implementation aspects.

As depicted in the document, SHIELD’s vNSF ecosystem is composed by the vNSFs, Store,
Orchestrator and Trust Monitor components. High-level architecture is provided per each of
these components, taking into consideration the requirement specification as well as SHIELD’s
use cases. On the other hand, the high-level specifications, especially for the vNSFs and vNSFO,
have been defined by following the recommendations and specifications of ETSI, considering it
as the main standardisation body in the area. This alignment is one of the main goals of the
consortium since it greatly promotes and eases the dissemination and exploitation of SHIELD’s
results into this standardisation body or other reference ecosystems. An example of the
envisioned collaboration deals with the contribution of extensions developed within the project
into some of the current standardisation bodies.

The low-level details specified for each of the scoped components result in an important asset
for the next phase of the project, concerned with the implementation of such components.
Specifically, the definition of the intra and inter-connectivity workflows makes it easier to agree
on the responsibilities and behaviour of each component, how these will be implemented and
which features will be provided by each one of them ensuring its integration at a later stage of
the project. The specification of these connections took into consideration the full set of
components involved in the architecture, including some from the analytics and visualisation
part; whose definition is addressed in D4.1.

The details on the implementation per component indicate the intention to reuse the results
of previous projects and other open-source solutions as much a possible; covering a fair
amount of functionality and thus allowing to better focus on innovative aspects not yet covered
by the community.

With all these aspects in mind, we conclude the first iteration of the project’s design phase and
we enter into the first iteration of the development phase.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
58

REFERENCES

[1] ETSI, “Network Functions Virtualisation (NFV); Virtual Network Functions Architecture” -
http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-
SWA001v010101p.pdf (Accessed May 2017)

[2] Sonata - http://sonata-nfv.eu/ (Accessed May 2017)
[3] Open Source Mano - https://osm.etsi.org/ (Accessed May 2017)
[4] The SECURED project - http://www.secured-fp7.eu/ (Accessed May 2017)
[5] Open Attestation project -

https://github.com/OpenAttestation/OpenAttestation/tree/v1.7 (Accessed May 2017)
[6] Apache Cassandra 2 project - https://cassandra.apache.org/ (Accessed May 2017)
[7] Towards trusted SDN - http://ieeexplore.ieee.org/document/7116186/ (Accessed May

2017)
[8] mcTLS - http://mctls.org/ (Accessed May 2017)
[9] Automated Certificate Management Environment,

https://datatracker.ietf.org/wg/acme/charter/ (Accessed May 2017)
[10] Tstat, “TCP STatistic and Analysis Tool” - http://tstat.polito.it
[11] Trusted Computing - https://trustedcomputinggroup.org/trusted-computing/ (Accessed

May 2017)
[12] Charisma D3.2 - http://www.charisma5g.eu/wp-content/uploads/2015/08/CHARISMA-

D3.2_v1.0.pdf (Accessed May 2017)
[13] Snort IPS - https://www.snort.org/ (Accessed May 2017)
[14] ntop nDPI - http://www.ntop.org/products/deep-packet-inspection/ndpi/ (Accessed

May 2017)
[15] OpenDPI code repository - http://code.google.com/p/opendpi/ (Accessed May 2017)
[16] PF_RING - http://www.ntop.org/products/packet-capture/pf_ring/ (Accessed May

2017)
[17] Data Plane Development Kit - http://dpdk.org/ (Accessed May 2017)
[18] mcTLS code repository - https://github.com/scoky/mctls (Accessed May 2017)
[19] The netfilter.org “iptables” project -

https://www.netfilter.org/projects/iptables/index.html (Accessed May 2017)
[20] Squid - http://www.squid-cache.org/ (Accessed May 2017)
[21] TeNOR - https://github.com/T-NOVA/TeNOR (Accessed May 2017)
[22] OpenBaton: https://openbaton.github.io (Accessed May 2017)
[23] Open Source MANO, release 2 -

https://osm.etsi.org/wikipub/index.php/OSM_Release_TWO (Accessed May 2017)
[24] Open Source MANO, release 2 whitepaper - https://osm.etsi.org/images/OSM-

Whitepaper-TechContent-ReleaseTWO-FINAL.pdf (Accessed May 2017)
[25] OpenCIT project - https://github.com/opencit/opencit/wiki/Open-CIT-2.2-Product-

Guide (Accessed May 2017)
[26] Trusted Computing Group - https://trustedcomputinggroup.org/trusted-computing/

(Accessed May 2017)
[27] Integrity Measurement Architecture - https://sourceforge.net/p/linux-ima/wiki/Home/

(Accessed May 2017)

http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf
http://sonata-nfv.eu/
https://github.com/T-NOVA/TeNOR
http://www.secured-fp7.eu/
https://github.com/OpenAttestation/OpenAttestation/tree/v1.7
https://cassandra.apache.org/
http://ieeexplore.ieee.org/document/7116186/
http://mctls.org/
https://datatracker.ietf.org/wg/acme/charter/
http://tstat.polito.it/
https://trustedcomputinggroup.org/trusted-computing/
http://www.charisma5g.eu/wp-content/uploads/2015/08/CHARISMA-D3.2_v1.0.pdf
http://www.charisma5g.eu/wp-content/uploads/2015/08/CHARISMA-D3.2_v1.0.pdf
https://www.snort.org/
http://www.ntop.org/products/deep-packet-inspection/ndpi/
http://code.google.com/p/opendpi/
http://www.ntop.org/products/packet-capture/pf_ring/
http://dpdk.org/
https://github.com/scoky/mctls
https://www.netfilter.org/projects/iptables/index.html
http://www.squid-cache.org/
https://github.com/T-NOVA/TeNOR
https://github.com/T-NOVA/TeNOR
https://github.com/T-NOVA/TeNOR
https://github.com/T-NOVA/TeNOR
https://github.com/T-NOVA/TeNOR
https://github.com/T-NOVA/TeNOR
https://openbaton.github.io/
https://openbaton.github.io/
https://osm.etsi.org/wikipub/index.php/OSM_Release_TWO
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTWO-FINAL.pdf
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTWO-FINAL.pdf
https://github.com/opencit/opencit/wiki/Open-CIT-2.2-Product-Guide
https://github.com/opencit/opencit/wiki/Open-CIT-2.2-Product-Guide
https://trustedcomputinggroup.org/trusted-computing/
https://sourceforge.net/p/linux-ima/wiki/Home/

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
59

LIST OF ACRONYMS

Acronym Meaning

ACL Access Control List

ACME Automated Certificate Management Environment

API Application Programming Interface

BSS Business-Support System

C&C Command and Control

CDN Content Delivery Network

CoT Chain of Trust

CRTM Core Root of Trust for Measurement

DARE Data Analysis and Remediation Engine

DoS Denial of Service

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

EM Element Management

EMS EM System

FAB Fulfilment, Assurance and Billing

FCAPS Fault, Configuration, Accounting, Performance and Security

ETSI European Telecommunications Standards Institute

FTP File Transfer Protocol

GUI Graphical User Interface

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
60

HTTP Hyper Text Transfer Protocol

HTTPS HTTP Secure

I2NSF Interface to Network Security Functions

ID Identifier

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

IMA Integrity Measurement Architecture

IP Internet Protocol

IPS Intrusion Prevention System

IRC Internet Relay Chat

ISP Internet Service Provider

JSON JavaScript Object Notation

LoC Lines of Code

MAC Media Access Control

MANO MANagement and Orchestration

mcTLS Multi-Context TLS

ML Machine Learning

MSPL Medium-level Security Policy Language

NFV Network Function Virtualisation

NFVI NFV Infrastructure

NS Network Service

NSD NS Descriptor

NSM NS Manager

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
61

ODL Open Day Light

ONOS Open Network Operating System

OSI Open Systems Interconnection

OSS Operations Support System

PCR Platform Configuration Registers

PF Platform Functional

PFR PF Requirement

PNF Physical Network Function

PoP Point of Presence

R&D Research and Development

RDP Remote Desktop Protocol

REST REpresentational State Transfer

RO Resource Orchestrator

SDN Software-Defined Networking

SecaaS Security as a Service

SMB Server Message Block

SO Service Orchestrator

SP Service Provider

SPI Stateful Packet Inspection

SQL Structured Query Language

TC Trusted Computing

TCG TC Group

TLS Transport Layer Security

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
62

TM Trust Monitor

TPM Trusted Platform Module

TSTAT TCP STatistic and Analysis Tool

UC Use Case

VCA vNSF Configuration and Abstraction

VDU Virtual Deployment Unit

VIM Virtual Infrastructure Manager

VL Virtual Link

VLD VL Descriptor

VM Virtual Machine

VNF Virtual Network Function

VNFC VNF Component

vNSF Virtual Network Security Function

vNSFC vNSF Component

vNSFD vNSF Descriptor

vNSFFG vNSF Forwarding Graph

vNSFFGD vNSFFG Descriptor

vNSFM vNSF Manager

vNSFO vNSF Orchestrator

WAIS Wide Area Information Server

XML Extensible Markup Language

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
63

APPENDIX A. INTRA-COMPONENT INTERACTIONS

This section provides a detailed description of the internal processes carried out within the
different components, along with explanations on each step of the process.

Store

vNSF Onboarding

Onboarding a vNSF (Figure 20) comprises several steps to ensure the data provided complies
with the SHIELD constraints and policies. To avoid potential vNSF misbehaviour or malfunction
the onboarding process encompasses an approval stage. In this stage the vNSF is registered but
kept on a sandboxed state which makes it only visible to the Service Provider. Once this Service
Provider deems the vNSF approved, it will be available in the Store for all the other users. Whilst
the vNSF is sandboxed the Service Provider can perform any kind of validations to ensure the
vNSF delivers as expected. To perform such validations a special kind of tenant may be used to
provide a self-contained environment where the vNSF runs and allows the Service Provider to
perform the validation in any way, shape or form, be it only the vNSF lifecycle (start/stop/etc.),
any additional traffic or behaviour analysis, or operating as integrated in a NS (instantiated for
the approval stage).

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
64

Figure 20: vNSF onboarding

NS Onboarding

The Network Service onboarding (Figure 21) is very much like the one for vNSF with the
difference being the Service Provider is the one who builds a service through chaining one or
more vNSFs.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
65

Figure 21: NS Onboarding

vNSF/NS Onboarding Failure

The onboarding may fail (Figure 22) due to errors in the descriptors, integrity checks or final
approval by the Service Provider. An example of a workflow of an onboard failure of a vNSF is
provided below.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
66

Figure 22: vNSF onboarding failure

vNSFO Orchestrator

NS instantiation

The vNSFO exerts the instantiation workflow (Figure 23) upon deployment of a given NS, which
in turn deploys the constituent vNSFs and interconnect appropriately. As part of deployment,
the configuration process can occur as well in order to perform pre-boot configuration on
vNSFs.

 NS deployment
1. The vNSFO retrieves the NS descriptor from the Store

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
67

2. The NS descriptor is parsed to identify the constituent vNSFs and virtual links
3. The NS Manager requests the VIM on each operation, which delegates the

execution to the NFVI
4. The virtual links are defined for the vNSFs contained in the NS
5. Upon termination of the process, the resulting status is sent to the vNSFO

 vNSF deployment
6. For each vNSF, the vNSFO retrieves the vNSF descriptor from the Store
7. The VIM downloads the image corresponding to the specific vNSF to be

deployed
8. The request is forwarded to the NS Manager, then to the vNSF Manager
9. The compute nodes are allocated by the VIM, and interconnected afterwards

with the virtual links defined during the first stages of the NS deployment
10. Upon termination of the process, the resulting status is sent to the vNSFO

Figure 23: NS instantiation

NS configuration

The workflow is triggered when the vNSFO receives a request for configuring a deployed NS;
for instance after a user selects a recommendation from the Security Dashboard, which will
provide the vNSFO with policies to apply on specific vNSFs of a given NS. Then, the vNSFO calls
upon the configuration on a given vNSF (Figure 24), deploying if needed the constituent vNSFs
of the service and interconnecting them.

 NS configuration
1. The request is forwarded to the NS Manager
2. According to the configuration requested, the NS may be required to perform a

change on the virtual links interconnecting the vNSFs within the service
(updating, adding or deleting them) or address configurations on vNSFs only

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
68

3. The NS Manager requests the VIM on each operation, which delegates the
execution to the NFVI

4. Upon termination of the process, the resulting status is sent to the vNSFO

 vNSF configuration
5. For each vNSF, the request is forwarded to the NS manager, then to the vNSF

Manager
6. The vNSF Manager ensures that the provided configuration policies are valid
7. If the policies are valid; the vNSF Manager makes use of specific EMs to

introduce configuration into the vNSFs. The vNSFs provide endpoints to listen
for configuration changes

8. Upon termination of the process, the resulting status is sent to the vNSFO

Figure 24: NS configuration

NS monitoring

The workflow (Figure 25) is triggered when the vNSFO receives a request for monitoring a
running/deployed NS.

 NS monitoring
1. The request is forwarded to the NS Manager
2. Using the metrics retrieved from the constituent vNSFs, the metrics are

aggregated to provide information on the status of the different monitoring
values. These values are described in the NSD during its registration in the Store

3. Upon termination of the process, the resulting status is sent to the vNSFO

 vNSF monitoring
4. For each vNSF, the request is forwarded to the NS Manager, then to the vNSF

Manager
5. The vNSF Manager asks the NFVI for metrics on the vNSF running instance

(operation data on the compute nodes themselves) and requests the vNSFs for
any metric on the processes running within them (such as load within specific
services, etc)

6. Upon termination of the process, the resulting status is sent to the vNSFO

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
69

Figure 25: NS monitoring

NS scaling

The workflow (Figure 26) is triggered when the vNSFO receives a request for scaling (reduce,
increase or extend resources) an existing NS.

 NS scaling
1. The request is forwarded to the NS Manager, then to the VIM
2. According to the operation requested, the NS may be required to update, add or

delete virtual links interconnecting the vNSFs within the service
3. The VIM interacts with the NFVI to update the definition of the links and their

interconnection with the vNSFs
4. Upon termination of the process, the resulting status is sent to the vNSFO

 vNSF scaling
5. For each vNSF, the request is forwarded to the NS Manager, then to the vNSF

Manager
6. The vNSF Manager forwards the request to the VIM
7. The VIM interacts with the NFVI to remove or extend the capacity of the vNSF with

additional resources
8. Upon termination of the process, the resulting status is sent to the vNSFO

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
70

Figure 26: NS scaling

NS termination

The workflow (Figure 27) is triggered when the vNSFO receives a request for terminating a
running/deployed NS.

 NS termination
1. The request is forwarded to the NS Manager, then to the VIM
2. The VIM interacts with the NFVI to remove the virtual links between the constituent

vNSFs
3. Upon termination of the process, the resulting status is sent to the vNSFO

 vNSF termination
4. For each vNSF, the request is forwarded to the NS Manager, then to the vNSF

Manager
5. The vNSF Manager forwards the request to the VIM
6. The VIM interacts with the NFVI to terminate the vNSF and release additional

physical resources associated to these
7. Upon termination of the process, the resulting status is sent to the vNSFO

Figure 27: NS termination

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
71

APPENDIX B. INTER-COMPONENT INTERACTIONS

This section will include the description of the processes carried out between the components
of the infrastructure. Each subsection will be focused on the processes initiated by a specific
component.

Store

VDU Image Storage

Upon successful vNSF validation all referenced VDU images must be stored locally to allow
faster instantiations. The Store provides the vNSFO with the VDU image(s) associated with the
vNSF and receives a path to the image(s) storage location (Figure 28). Even though the VDU
image(s) are downloaded to a Store-controlled storage location for integrity checks, these will
only live in the storage controlled by the VIM. Once the images are stored by the VIM the Store
do not need these anymore, so it deletes the local copy and records the final location in the
Catalogue.

Figure 28: VDU image store

NS/vNSF Decommissioning

When a NS or vNSF reaches the end of life it must be removed from the Store. This operation
(Figure 29) is triggered by the Store which marks the NS or vNSF as decommissioned to prevent
further instantiations. For a running NS or vNSF a graceful decommission is provided through
the schedule of the operation to a later date.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
72

Figure 29: vNSF decommissioning

vNSF Orchestrator

Interaction with Store

The interaction between the Orchestrator and Store is effective during the deployment or
instantiation. The vNSFO requests the NSD or vNSFD from the Store, as a first step to gather all
resources for the NS instantiation, as depicted in Figure 23.

Interaction with Network infrastructure

The vNSFO talks with the NFVI on every operation defined for the vNSF and NS Managers. It
accounts for two type of operations: creating, updating or removing virtual links and fetching
metrics from the infrastructure. The different interactions can be observed from Figure 23 to
Figure 27.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
73

Interaction with Trust Monitor

The vNSFO will interact with the Trust Monitor at two points: first, when adding a physical node
to the NFVI, so as to attest its software integrity before allowing it the access to the NFVI; and
second, during the periodic attestation of the infrastructure. The process for the initial
attestation is initiated by the vNSFO and is defined below, whereas the periodic attestation is
depicted within the Trust Monitor section (Figure 34).

This part of the process is depicted in Figure 30, and it is described as follows:

1. The vNSFO queries the Trust Monitor to attest a newcomer and provides information
about the target

2. The Trust Monitor registers the node internally if not already there
3. For each node in the NFVI, the Trust Monitor establishes a Remote Attestation process
4. Each node of the NFVI sends back its integrity report to the Trust Monitor
5. The Trust Monitor assesses each integrity report by leveraging the list of known

measurements in the whitelist, as well as expected dynamic configuration such as SDN
forwarding rules

6. The Trust Monitor replies to the vNSFO with the attestation result (failure or success)

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
74

Figure 30: Interaction between Trust Monitor and vNSFO in the initial attestation of a newcomer

Interaction with DARE

The vNSFO provides the DARE with information on the network topology, the list of vNSFs per
tenant and the running NSs and vNSFs. Such information is used by the subcomponents within
DARE to analyse the most appropriate deployment to mitigate an active threat (Figure 31).

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
75

Figure 31: Interaction between the vNSFO and the DARE

Interaction with Security Dashboard

The end-user will access the Security Dashboard to obtain relevant information about the
infrastructure and possible suggestions to exert in order to mitigate a given threat. The
interaction between the Security Dashboard and the vNSFO occurs at this point; where the
suggestions are provided to the vNSF Orchestrator as a set of NSs to deploy, as well as the
policies to provide to the specific constituent vNSFs at the deployed NSs (Figure 32).

Figure 32: Interaction between the vNSFO and the Security Dashboard

Trust Monitor

Interaction with Store

The Trust Monitor interacts with the Store to retrieve attestation-specific information needed
to verify the integrity of the vNSFs running in the NFVI.

The process, pictured in Figure 33, is described as follows:

1. The Trust Monitor sends a request to the vNSF Store containing a specific vNSF identifier
2. The vNSF Store sends back a response with the requested vNSF’s security manifest

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
76

3. The Trust Monitor extracts the measurements (digests) of the software executed by the
vNSF

4. The Trust Monitor checks if the digests are included in the Whitelist Database
5. If no matching digest is present, the TM updates the whitelist with the new

measurements and links them to the correct vNSF identifier

Figure 33: Interaction between Trust Monitor and vNSF Store

Interaction with vNSF Orchestrator

The Trust Monitor interacts with the vNSFO when performing attestation of the NFVI; either on
the initial attestation of a newcomer of the NFVI or during the periodic attestation task. The
former process is described in the vNSF Orchestrator section (Figure 30), whereas the process
for the periodic attestation is described below (Figure 34).

1. The Trust Monitor retrieves the NFVI state from the vNSFO
2. The Trust Monitor extracts the list of nodes to be attested from the NFVI
3. For each node in the NFVI, the Trust Monitor initiates a Remote Attestation procedure
4. Each node of the NFVI sends back its integrity report to the Trust Monitor
5. The Trust Monitor assesses each integrity report by leveraging the list of known

measurements in the whitelist, as well as the expected dynamic configuration such as
SDN forwarding rules

6. If any of the verifications fails:
a. The Trust Monitor sends a notification about the failure to the vNSFO
b. The vNSFO excludes the node from the NFVI

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
77

7. In the other case, the process successfully terminates

Figure 34: Interaction between Trust Monitor and vNSF Orchestrator in the periodic attestation task

Interaction with DARE

The Trust Monitor sends by sending security event information to the DARE (i.e., a node is
found to be compromised during initial or periodic attestation tasks); this can then be
processed by the Big Data engine for logging and further sense extraction thanks to its security
modules. The workflow is depicted in Figure 35 and goes as follows:

1. The TM detects a security event that should be logged in the DARE, such as an
attestation failure of a NFVI node or vNSF (either during initial or periodic attestation)

2. The TM sends the alarm to the DARE with the detailed information about the failure.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
78

Figure 35: Interaction between Trust Monitor and DARE

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
79

APPENDIX C. TRUSTED COMPUTING TECHNOLOGIES

Trusted Computing aims at providing specific technologies and mechanisms to establish a
hardware-based assessment of the integrity of a computing system. The Trusted Computing
Group (TCG) [26] is the major company-backed TC consortium, which mainly focuses on the
development of solutions for enabling TC in computing platform from mobile and embedded
devices to data-centre class servers.

One of the fundamental principle of TC is the Chain of Trust (CoT), a transitive mechanism that
ensures the trustworthiness of a computing system via a step-by-step extension process. The
process requires the definition of a minimal combination of hardware and software - called
Core Root of Trust for Measurement (CRTM) - that initiate the CoT measuring - and storing the
measurement - the next software to be executed; it is implicitly trusted by a remote verifier.
Each element of the CoT is responsible for measuring and storing the integrity of the next
element, so that the whole chain can be verified by a third party. The starting point of the
verification process is the CRTM, whose establishment requires a dedicated hardware security
chip, called Trusted Platform Module (TPM).

The TPM is a device, standardised by the TCG, acting as a secure cryptoprocessor capable of
storing keys, secrets, identities and measurements of the platform integrity. The standard has
undergone different revisions, reaching the 2.0 version at the time of writing. Integrity
measurements are protected by the TPM’s Platform Configuration Registers (PCR). PCRs can
only be updated by the TPM itself, using an internal secure hash function, via the “extend”
operation: at each step, the current value of a PCR is concatenated with the new measurement
and the digest of the resulting message is stored in the PCR. This mechanism ensures that
unless the platform is rebooted, no PCR-stored measurement can be erased - thus software-
based attacks cannot hide execution of untrusted binaries.

The TCG also defines a specific workflow to attest the trustworthiness of TPM-equipped and
measured boot enabled entities by a remote third party, called Remote Attestation. The PCRs’
value can be accessed by a remote entity by challenging the TPM with a nonce; using a
hardware-protected key (i.e. only the TPM can use the private key for signing), the TPM
protects the integrity of the PCRs’ with a signature which include the challenge nonce for
freshness. Using the prior knowledge of all the platform’s TPM public key used for attestation,
the remote entity can verify the genuineness of the signature - which also validates the
hardware identity, as well as the content of the logged software events.

The TPM specification does not specify the measurement strategy to be adopted by the
computing system for logged software events. The Integrity Measurement Architecture (IMA)
[27] in Linux is a specific implementation that maintains a log of measured software events (e.g.
the execution of a binary, using a configuration file) at runtime and, if enabled with a TPM, an
aggregate integrity value is stored in one of the static PCRs. Although the log file might be
manipulated by an attacker, the hardware register can’t be directly altered, meaning that a
verifier could detect any unexpected tampering to the log file.

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
80

APPENDIX D. APPLICATION PROGRAMMING INTERFACES

(APIS)

This appendix presents a first definition of the methods (and arguments) to be supported by
the APIs exposed by each component.

Orchestrator

This section includes the low-level specifications of the operations offered by each API exposed
by the vNSFO.

Dashboard API

The vNSFO will provide an interface so that the Security Dashboard can retrieve the necessary
information to provide the visualisation to the end-user.

Operation Arguments Description

get_network_topology - Provides the topology of the network as provided by the
VIM

get_deployed_vnsfs - Provides the running vNSFs

get_deployed_vnsfs tenant_id Provides the running vNSFs, filtered by tenant

Trust Monitor API

The vNSFO will provide an interface so that the Trust Monitor can obtain the information to
perform the periodic attestation task.

Operation Arguments Description

get_physical_nodes - Provides the list of active physical nodes in the NFVI

get_deployed_vnsfs - Provides the running vNSFs

get_network_topology - Provides the topology of the network as provided by the
VIM

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
81

get_network_flowtable - Provides the contents of the flow tables of the SDN
controller

DARE API

The vNSFO will provide an interface for the DARE to obtain a global view on the NFVI and thus
be able to perform the analytics and provide the recommendations.

Operation Arguments Description

get_network_topology - Provides the topology of the network as provided by the
VIM

get_deployed_vnsfs tenant_id Provides the running vNSFs, filtered by tenant

get_deployed_vnsfs - Provides the running vNSFs

get_deployed_nss - Provides the running NSs

Trust Monitor

This section includes the low-level specifications of the operations offered by each API exposed
by the Trust Monitor.

Management API

The Trust Monitor will provide a Management API with operations that would allow other
components to check the status of the infrastructure’s attestation.

Operation Arguments Description

get_status_info

Retrieves status information about the Trust
Monitor

get_vnsf_attestation_info node_id Retrieves attestation-specific information for a
single vNSF

get_nfvi_attestation_info

Retrieves attestation-specific information for the
whole NFVI

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
82

get_nfvi_pop_attestation_info node_id Retrieves attestation-specific information for a
specific NFVI PoP

Newcomer Attestation API

The Trust Monitor will provide an interface for receiving attestation requests for a newcomer
in the NFVI. Note that the interface should be specific for the newcomer’s attestation, as the
Trust Monitor will later on perform periodic attestation tasks over the different nodes that have
been pre-registered to it. The API may be used for both physical nodes, during the initial
authentication phase, or for vNSFs, during their instantiation phase.

Operation Arguments Description

register_node node_id,
address,
distribution, ...

Registers the node to the Verifier, given a unique identifier
(which will be used for further attestation procedure), the
address of the node, the distribution of the OS running in it

attest_node node_id,
analysis_type

Remote Attestation request to the node, identified by a
unique ID. The client to be attested will provide the
integrity measurements according to the type of requested
analysis (e.g. load-time analysis with a certain trust level for
the measurements)

Store

The Store will provide an interface to obtain a the information it persists as well as accessing
features it provides.

Operation Arguments Description

onboard_vnsf security_manifest,
vnsf_descriptor

Onboards a vNSF

onboard_ns security_manifest,
ns_descriptor

Onboards a NS

get_vnsf_onboarding_status id Provides the status for the vNSF
onboarding operation

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
83

get_ns_onboarding_status id Provides the status for the NS
onboarding operation

list_vnsfs - Provides a list of all the onboarded
vNSFs along with a brief description
for each one

list_nss - Provides a list of all the onboarded
NSs along with a brief description for
each one

get_vnsf_info id Provides all the information on the
onboarded vNSF

get_ns_info id Provides all the information on the
onboarded NS

decommission_vnsf id Retire a vNSF

decommission_ns id Retire a NS

get_vnsf_security_info id Provides all the security information
concerning a vNSF

get_ns_security_info id Provides all the security information
concerning a NS

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
84

APPENDIX E. TECHNOLOGY SELECTION

Orchestrator

The analysis of different vNSFOs has been carried out to choose which one to use in SHIELD. To
do this we selected a subset of some well-known open-source NFV MANO (TeNOR, OSM,
SONATA, OpenBaton) and considered the adequateness depending on the mapping to the
SHIELD’s Platform Functional Requirements, the support of some relevant key features within
the project and the status of its community and development.

Platform Functional mapping

PF Requirement TeNOR OSM SONATA OpenBaton

PF01 - vNSF and
Network Service (NS)
deployment

Y Y Y-

(No external
cloud

deployment)

Y

PF02 - vNSF lifecycle
management (on
boarding,
instantiation,
chaining,
configuration,
monitoring and
termination)

Y Y-

(Monitoring based
on VIM

implementation
integrated in R3)

Y Y

PF03 - vNSF status
management
(DEPLOY, START,
STOP, MODIFY,
DELETE)

Y Y Y-

(Ongoing for:
adding restart,

stop, pause)

Y-

(Some may
be missing)

PF04 - Security data
monitoring and
analytics

Y-

(Delegated
to NSM and

vNSFM)

Y-

(Delegated to the
EM)

Y-

(Custom metrics
allowed, infra

metrics)

Y-

PF05 - Analytics
visualisation

N/A N/A N/A N/A

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
85

(son-gui shows
monitoring

metrics)

PF06 - Ability to offer
different
management roles
to several users
(multi-user with
possibility of
configuring different
roles)

N N Y

(Static
dev/customer

roles; new roles
will be

customised and
dynamic)

N

PF07 - Service
elasticity [optional]

Y Y

(Experimental NS
scaling. manual GUI,

support for
adding/removing full

VNFs to/from a
running NS)

Y-

(Will allow scale-
out)

Y

PF08 - Platform
expandability

Y Y Y Y

PF09 - Access control Y

(Tokens)

Y

(Certificates)

Y

(User/sw, sw-sw
using tokens)

Y

PF10 - vNSF
validation

N/A N/A N

(Signed
packages in

store, control
mangling)

N/A

PF11 - vNSF
attestation

N N N N

PF12 - Log sharing N/A N/A N/A N/A

PF13 - Mitigation Y Y N Y

PF14 - Multi-tenancy Y Y- N N

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
86

(1 tenant :
1 running

NS)

(1 tenant
for all)

PF15 - Service store N/A N/A Y N/A

PF16 - History
reports

N/A N/A N

(alerts
aggregated)

N/A

PF17 -
Interoperability

N/A Y

(Multiple VIMs)

N N/A

PF17 -
Interoperability

Y Y Y Y

PF19 - Network
infrastructure
attestation

N/A N/A N N/A

PF20 - Billing
framework

N

(Delegated
to BSS)

N

(Delegated to BSS)

N/A

(License concept
in NS related to

billing)

N

Feature-focused analysis

Feature TeNOR OSM SONATA OpenBaton

Type of
virtualisation

VMs VMS

(Containers may be
possible)

VMs VMs

VIM supported OpenStack OpenVIM (R1/R2),
OpenStack (R2),

VMWare (R2)

OpenStack OpenStack

SDN controller
supported

ODL

(through
netfloc)

ODL (R1/R2),
Floodlight (R1/R2),

ONOS (R2)

ODL ODL, ONOS
(ongoing)

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
87

Service
Function
Chaining

Y

(Using netfloc
plug-in and

ODL)

Y

(Direct, no plug-in)

Y

(ODL SFC)

Y

Lifecycle
management

Y

(Start, stop)

Y

(Available for VNF
& NS)

Y Y

Event
management

Y

(Custom)

Y

(Provide messages
about the deploy of

vNSF & NS)

Y-

(ongoing)

Y

(Generic and
specific)

Elasticity Y

(Scale-in, scale-
out)

Y

(Scale-in, scale-out;
experimental

support to modify
running NSs)

Y-

(Will allow scale-
out)

Y

(Auto-
scaling)

Monitoring Y

(Per NS, per
vNSF instance

and inner
service)

Y

(Based on VIM,
delegated to EM)

Y

(Prometheus, log
aggregation per

component)

Y

(Zabbix for
NFVI and

VNFs)

Dynamic vNSF
placement

Y-

(Algorithms in
place, not

tested)

N N

(Ongoing design
for auto-location
and distributed

NSs)

Y

Maintenance-focused analysis

Key TeNOR OSM SONATA OpenBaton

LoC 441217 340861 6596 118322

Development
language

Ruby Python Ruby,
Python

Java

SHIELD D3.1 • Specifications, design and architecture for the vNSF ecosystem

© SHIELD Consortium
88

Community i2CAT

ETSI and 60 orgs (8
net operators)

ATOS,
i2CAT, etc

Fraunhofer/FOKUS,
TUB

Projects in use EU and
national R&D

ongoing
projects

EU R&D projects,
Telefónica VNF cert

Lab, RIFT.ware

EU R&D
projects

EU R&D project,
5GBerlin testbed

